List of Figures

Figures Title

1.1	Applications of flexible organic electronics; (a) a flexible seven segment display (Image source: electroiq.com). (b) An ultra-thin and wearable LED display (Image source: www. independent.co.uk). (c) A flexible color e-reader display with OTFT back plane (Image source: Plastic logic). (d) An ultra-flexible organic circuitry (Image source: www.printedelectronicsworld.com). (e) A wearable flexible AMOLED display (Image source: Plastic logic).	2
1.2	Chemical structure of various organic semiconductors; (a) C8-BTBT. (b) Sexithiophene. (c) MEH-PPV. (d) TIPS-pentacene. (e) Anthracene. (f) Pentacene. (g) DNTT. (h) P3HT. (i) Tetracene. (j) PPV. (k) Rubrene. (l) PTAA. (m) CuPC. (n) PQT-12.	3
1.3	Classification of organic semiconductors.	3
1.4	General chemical structure of small molecule (a), and polymeric (b) organic semiconductors.	4
1.5	(a) sp ² hybridized orbitals in carbon atom. (b) Orbital level interactions in a small unit in a π conjugated molecule. (c) Canonical structures of benzene molecule. (d) Interactions in molecular orbitals of benzene and subsequent delocalization of π electrons.	4
1.6	(a) Linear combination of two p_x and two p_z atomic orbitals to form bonding (σ and π) and antibonding (σ^* and π^*) molecular orbitals respectively. (b) Linear combination of many p_z orbitals to form energy bands.	6
1.7	Some common solution processing techniques; (a) Drop casting. (b) Spin coating. (c) Dip coating. (d) Inkiet printing. (e) Screen printing. (f) Blade coating.	8
1.8	OFET device architectures; (a) Bottom gate top contact. (b) Top gate bottom contact. (c) Bottom gate bottom contact. (d) Top gate bottom contact.	9
1.9	Metal-semiconductor energy band diagram for p-type (a), and n-type (b) organic semiconductors.	10
1.10	Operating principle of an OFET in linear mode (a), onset of saturation (b), and saturation mode (c).	10
1.11	Various factors affecting performance of devices.	11
2.1	(a) A complete cycle in the atomic layer deposition process. (b) Savannah S-200 ALD system from Cambridge nanotech used in experiments.	17
2.2	(a) Complete process of film formation in spin coating method. (b) WS-650 MHz-BNPP/LITE spin coating system from Laurell used in experiments.	18
2.3	(a) Drop casting procedure and crystal formation. (b) Actual drop casting on a silicon sample. (c) Optical micrograph of obtained crystals.	19
2.4	(a) Material deposition in thermal evaporation method. (b) SC-Triaxis thermal evaporation system from Semicore used in experiments.	20
2.5	(a) Linear surface profile measurement from stylus based profilo-meter. (b) DektakXT	21
2.6	(a) Simplified principle of X-ray diffraction measurements. (b) D8-advanced X-ray diffraction measurement system from Bruker used in analysis.	22
2.7	(a) Simplified working principle of atomic force microscopy technique. (b) XE-70 surface probe microscopy system from Park Systems used in surface characterization.	23
2.8	(a) Simplified working principle of scanning electron microscopy. (b) EVO-18 special edition scanning electron microscope from Carl Zeiss used in characterization.	24
2.9	(a) Simplified working principle of UV-visible absorbance spectroscopy. (b) UV-1800 UV-visible spectrophotometer from Shimadzu used in characterization.	24
2.10	(a) 4200-SCS Semiconductor parameter analyzer from Keithley used in electrical characterization. (b) PM-5 probe station from Cascade Microtech used for housing and probing sample during electrical characterization.	25
2.11	A transfer (a), and output (b) characteristics of a specimen OFET, showing various electrical parameters of the device.	26
3.1	A representation of the solubility analysis on Teas graph. Dashed line represents solubility- window of TIPS-pentacene. Various solvents and binary solvent mixtures have been indicated on the graph as H (hexane), C (cyclohexane), B (benzene), T (toluene), T:B (toluene\benzene), T:C (toluene\cyclohexane), and T:H (toluene/hexane).	29

- 3.2 A Schematic representation of TIPS-pentacene solution formation. Solute-solute, solvent-31 solvent, and solute-solvent intermolecular forces are represented by solid, double-lined and dotted arrows respectively. Height of the arrow indicates relative strength of the force. Arrow pointing down indicates attractive forces whereas a down pointing arrow signifies repulsive forces among molecules. (a) TIPS-pentacene and toluene in an unmixed state. (b) TIPS-pentacene and toluene just mixed with each other. (c) Solution is formed with very strong interactions between TIPS-pentacene. (d) A solution in the presence of hexane (non-solvent). The presence of non-solvent molecules causes a lesser repulsive force among TIPS-pentacene molecules. Molecular structures of various solvents; toluene (a), benzene (b), cyclohexane (c), and 3.3 32 hexane (d). (e) The solvent evaporation behavior of TIPS-pentacene drop cast solution. (f) Device structure of a bottom-gate top-contact TIPS-pentacene OFET. Optical micrographs and surface morphologies of TIPS-pentacene crystals obtained by 3.4 33 solutions of toluene (a) & (e), toluene/benzene (b) & (f), toluene/cyclohexane (c) & (g), and toluene/hexane (d) & (h). Similar surface morphologies of the crystals in the image (e) and (f) confirm similar behavior of the toluene and toluene/benzene solutions. As the dissimilarity between the additive and the main solvent rises, more irregularities in the terracing structure can be observed. X-ray diffractograms for TIPS-pentacene crystals obtained from several solutions. An 3.5 33 additive solvent with higher dissimilarity has the least ability to surmount the intermolecular forces between TIPS-pentacene molecules, which causes a higher degree of crvstallinity. 3.6 Output and transfer characteristics of OFETs obtained from solutions of toluene (a) & (b); 35 toluene/benzene (c) & (d); toluene/cyclohexane (e) & (f) and toluene/hexane (g) & (h). Variation in the field-effect mobility and integrated intensity values for OFETs fabricated 36 3.7 using various solvents. Device structure of neat TIPS-pentacene OFETs with SiO₂ dielectric (a), and TIPS-4.1 39 pentacene:PS blend OFETs (b). Optical micrograph of a crystal obtained from solutions of neat TIPS-pentacene on SiO₂ 4.2 40 substrate (a), and TIPS-pentacene:PS blend on SiO₂ substrate(b). Cross sectional SEM image for neat TIPS-pentacene film (a), and TIPS-pentacene:PS blend 4.3 40 film (b). Fig. 4.3 (b) shows a clear phase separation in TIPS-pentacene:polymer blend structure. AFM image of a crystal obtained from solutions of neat TIPS-pentacene (a), and TIPS-4.4 41 pentacene:PS blend (b). (c) X-ray diffractogram of neat TIPS-pentacene and TIPSpentacene:PS blend film indicating higher crystallinity in the blend films. (a) & (b) Output and (c) & (d) transfer characteristics of a representative neat TIPS-4.5 42 pentacene and TIPS-pentacene:PS blend OFET respectively. 4.6 Drain current decay as a function of stress time. Total stress time was 2 h and current 44 values were recorded in the interval of 30 s. Recovery from the effects of bias stress in the saturation regime for a neat TIPS-pentacene 4.7 45 device with SiO₂ (a), and TIPS-pentacene:PS blend device (b). 4.8 Repeatability of electrical characteristics for a neat TIPS-pentacene device with SiO2 (a), 46 and TIPS-pentacene:PS blend device (b). TIPS-pentacene:PS device demonstrates a well consistent performance with nearly unchanged performance parameters. Device structure of flexible top contact neat TIPS-pentacene OFET (a), and TIPS-5.1 48 pentacene:PS blend OFETs (b). (a) Digital image of fabricated devices. Optical micrographs of semiconductor crystal 5.2 49 obtained from neat TIPS-pentacene solution (b), and TIPS-pentacene:PS blend solution (c). Optical micrographs of TIPS-pentacene:PS blend crystals before etching (a), and after 5.3 49 etching from n-hexane (b). Surface morphology of HfO_2 (a), cross linked PVP (b), crystal obtained from the neat TIPS-5.4 50 pentacene solution (c), and TIPS-pentacene:PS blend solution (d). X-ray diffratograms for TIPS-Pentacene crystals obtained from neat TIPS-pentacene and 5.5 50 TIPS-pentacene:PS blend solutions. 5.6 Output and transfer characteristics for a representative neat TIPS-pentacene (a), (b) and 51 TIPS-pentacene:PS blend OFET (c), (d). Bias stress induced decay in normalized drain current in TIPS-pentacene OFETs as a 5.7 53 function of stress time at V_{DS} = -10 V, V_{GS} = -10 V.
- 6.1 Strategy for application of tensile strain (a), and multiple cycles of tensile and compressive 56

strain (b). A single cycle of strain application follows $I. \rightarrow II. \rightarrow III. \rightarrow IV. \rightarrow I$.

- 6.2 (a) AFM image of the TIPS-pentacene crystal obtained from the PS blend solution. (b) Optical micrograph of a TIPS-pentacene crystal revealing a distinct PS rich layer under the TIPS-pentacene crystal. (c) Line profile along the solid line in the optical micrograph. Thicknesses of the PS rich layer and TIPS-pentacene crystal were found to be 140±20 nm and 416±88 nm respectively.
- 6.3 Output (a) and transfer (b) characteristics of a representative TIPS-pentacene:PS blend 58 flexible OFET.
- 6.4 (a) Transfer characteristics of a representative device for strain duration varying from unbent to 2 days. (b) Variation in mobility and threshold voltage with strain duration.
- 6.5 Transfer characteristics of device on logarithmic scale (a), and linear scale (b) after 59 undergoing multiple cycles of mechanical stress at Rbend of ±5 mm for a tbend of 5 s.
- 6.6 (a) Bias-stress induced decay in normalized drain current for various device conditions. (b) 59 Shift in threshold voltage with stress time.
- 7.1Electronic transitions in an organic semiconductor. Photon absorption (1); Photo-induced65absorption (7); Radiative transitions: fluorescence (2), Phosphorescence (6); Intersystem65crossing (4); Non-radiative transitions (3, 5); CP state generation by branching (8); CP_L state65generation by relaxation and vibrational energy (9 \rightarrow 10).65
- 7.2 UV and visible absorption spectrum of TIPS-pentacene.
- 7.3 Transfer characteristics of TIPS-pentacene OFET on linear and logarithmic scales 68 respectively for blue (a) & (b), green (c) & (d), and red illumination (e) & (f), with varying intensity.

67

- 7.4 Variation in current modulation (a), and photo-responsivity (b), with applied gate voltage 69 for various illuminations.
- 7.5 (a) Effect of illumination time with constant biasing conditions ($V_{GS,bias} = 10 V, V_{DS,bias} = 0 V$) 70 on the photo-response. (b) Exponential variation of V_{TH} with illumination time. (c) Dependence of maximum current modulation and photoresponsivity on illumination time.
- (a) Effect of gate bias during illumination on the photo-response of an OFET for constant
 illumination time of 100 s. (b) Linear dependence of shift in V_{TH} on the applied gate bias
 during illumination. (c) Variation of maximum current modulation and photo-responsivity
 with the applied gate bias during illumination.
- 7.7 (a) Dynamic response of TIPS-pentacene photo-OFET for different illuminations. (b)
 7.7 Illustration of drain current response for a single cycle of blue light illumination. Trapping and release rates were extracted from the initial 30 s of the ON and OFF regions.
- 7.8 Transfer characteristics of TIPS-pentacene OFET on logarithmic (a), and linear scales (b), 75 under UV irradiation.
- 7.9 (a) Effect of UV illumination time on the transfer characteristics of the OFET. (b) Variation 76 of μ_{sat} and V_{TH} with increasing illumination time. (c) Trend of maximum drain current at V_{GS} = -10 V with increasing illumination time. (d) X-ray diffractogram of a pristine and 10 minute UV irradiated sample.
- 7.10 (a) Effect of increasing gate bias during illumination on the transfer characteristics of an OFET for a constant illumination time of 100 s. (b) Dependence of µsat and shift in VTH on the applied gate bias during illumination.
- 7.11 (a) UV switching response of TIPS-pentacene OFETs. (b) Variation in (I_{DS}(t))^{1/2} for a single
 78 cycle of UV illumination. Slopes have been extracted from the linear fit in the ON and OFF regions.