page
Abstract I
Acknowledgements iii
Contents v
List of Figures vii
List of Tables xi
List of Symbols xiii
List of Abbreviations xv
Chapter 1: Introduction
1.1 Motivation 1
1.2 Objectives and Scopes 3
Chapter 2: Literature Review
2.1 Photovoltaic Energy Conversion - A Brief History 5
2.2 Dye sensitized solar cells (DSSCs) 8
2.2.1 Basic structure and principles of DSSCs 8
2.2.2 Electron generation, transportation, and recombination 9
2.2.3 Recent progress in DSSCs 10
2.3 Photodegradation for Water Treatment 12
2.3.1 Decontamination of water 12
2.3.2 Basic mechanism of photodegradation 13
2.4 Closed shell metal oxides 14
Chapter 3: Dimensionally controlled titania at sub-zero temperature, $\mathrm{ZnO}^{-\mathrm{TiO}_{2}}$ and H - $\mathrm{HfO}_{2} / \mathrm{TiO}_{2}$ nanospheres
3.1 Dimensionally controlled titania at sub-zero temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$ 19
3.1.1 Mechanism of titania synthesized at sub-zero temperature 20
3.1.2 Crystallographic analysis of titania by XRD and RAMAN 21
3.1.3 Crystalline nature and optical properties of titania by TEM and UV-vis spectroscopy 24
3.2 Electron Trapper $\mathrm{ZnO}-\mathrm{TiO}_{2}$ Heterojunction Solid Nanospheres 27
3.2.1 Mechanism and morphological analysis of $\mathrm{ZnO}-\mathrm{TiO}_{2}$ 28
3.2.2 Crystalline nature and elemental analysis of $\mathrm{ZnO}-\mathrm{TiO}_{2}$ heterojunction solid nanospheres 29
3.2.3 Specific surface area study of $\mathrm{ZnO}-\mathrm{TiO}_{2}$ nanospheres 31
3.3 Hydrogenated TiO_{2} and HfO_{2} nanodots 31
3.3.1 Mechanism of hydrogenated TiO_{2} and HfO_{2} nanodots synthesis 32
3.3.2 Morphology and structural composition of $\mathrm{H}-\mathrm{HfO}_{2} / \mathrm{TiO}_{2}$ nanodots 32
3.3.3 Optical properties of hydrogenated $\mathrm{H}-\mathrm{HfO} / \mathrm{TiO}_{2}$ nanodots 34
3.4 Concluding remarks 35
Chapter 4: High Performance DSSC using dimensionally controlled titania at sub-zero temperature, $\mathrm{ZnO}-\mathrm{TiO}_{2}$ and $\mathrm{H}-\mathrm{HfO}_{2} / \mathrm{TiO}_{2}$ nanospheres as photoanode Materials
4.1 Titania at sub-zero temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$ as photoanode material 37
4.1.1 Optimization of photoanode material 37
4.1.2 Light scattering enhancement in photoanode films 39
4.1.3 Light harvesting, charge transport and recombination 41
4.2 $\mathrm{Zno}-\mathrm{TiO}_{2}$ heterojunction solid nanospheres as photoanode 43
4.2.1 Nanosphere as electron trapping sites 43
4.2.2 Dye loading and light harvesting capability 44
4.2.3 Electron transport and mobility 46
4.3 Hydrogenated TiO_{2} and HfO_{2} nanodots as photoanode material 47
4.3.1 Hydrogenation, high surface area and light adsorption 47
4.3.2 Dye loading 49
4.3.3 Electron lifetime and charge transfer 49
4.4 Concluding remarks 50
Chapter 5: Graphene as a counter electrode Materials for high photo conversion efficiency
5.1 Investigation of chemically synthesized graphene as counter electrode for DSSC 51
5.1.1 Synthesis and optimization of graphene counter electrode films 51
5.1.2 Structural and morphological analysis of graphene 53
5.1.3 Stability and performance study of counter electrode 55
5.2 Carbon coated stainless steel as counter electrode for DSSC 57
5.2.1. SS-Carbon material DSSC 57
5.2.2 Structural, electrical and J-V performance of SS-Carbon material DSSC 58
5.3 Graphene counter electrode with sub-zero temperature, $\mathrm{ZnO}-\mathrm{TiO}_{2}$ and $\mathrm{H}-\mathrm{HfO}_{2} / \mathrm{TiO}_{2}$ 61
nanospheres as photoanode materials
5.3.1 Effect of working area on DSSC performance 61
5.3.2 Titania at sub-zero temperature, $\mathrm{ZnO}-\mathrm{TiO}_{2}$ and $\mathrm{H}-\mathrm{HfO} / \mathrm{TiO}_{2}$ nanospheres as photoanode 62
materials
5.4 Concluding remarks 63
Chapter 6: Water treatment: Removal of $\mathrm{Cr}(\mathrm{VI})$ and organic contaminants
6.1 Photo-catalytic membrane 66
6.1.1 Fabrication and Morphology 66
6.1.2 Restoration of photo-catalytic membrane 67
6.2 Photo assisted $\mathrm{Cr}(\mathrm{VI})$ reduction 68
6.2.1 Sub-zero temperature TiO_{2} membrane and reaction rate 68
6.2.2 $\mathrm{ZnO}-\mathrm{TiO}_{2}$ nanosphere and reproducibility 69
6.2.3 $\mathrm{H}-\mathrm{HfO}_{2} / \mathrm{TiO}_{2}$ and industrial organic dye impurities 70
6.3 Concluding remarks 73
Chapter 7: Summary and Conclusions
7.1 Summary 75
7.2 Concluding Remarks 76
7.3 Future work 76
page
Annexure A : Materials and Methods
A. 1 Materials 77
A.1.1 Synthesis 77
A.1.2 Solar cell 77
A. 2 Methods 77
A.2.1 Material synthesis 77
A.2.2 Solar cell preparation 78
A.2.3 Water treatment 78
Publications 80
References 81

