Contents

		page	
	Abstract		
Acknowledgements Contents		iii v	
	Contents		
	of Figures	vii	
	of Tables	xi 	
List of Symbols List of Abbreviations		xiii	
List c	of Abbreviations	xv	
Chap	oter 1: Introduction		
1.1	Motivation	1	
1.2	Objectives and Scopes	3	
Chap	oter 2: Literature Review		
2.1	Photovoltaic Energy Conversion – A Brief History	5	
2.2	Dye sensitized solar cells (DSSCs)	8	
	2.2.1 Basic structure and principles of DSSCs	8	
	2.2.2 Electron generation, transportation, and recombination	9	
	2.2.3 Recent progress in DSSCs	10	
2.3	Photodegradation for Water Treatment	12	
	2.3.1 Decontamination of water	12	
	2.3.2 Basic mechanism of photodegradation	13	
2.4	Closed shell metal oxides	14	
-	oter 3: Dimensionally controlled titania at sub-zero temperature, ZnO-TiO $_2$ and H-		
HfO;	₂ /TiO ₂ nanospheres		
3.1	Dimensionally controlled titania at sub-zero temperature (-40°C to -10°C)	19	
-	3.1.1 Mechanism of titania synthesized at sub-zero temperature	20	
	3.1.2 Crystallographic analysis of titania by XRD and RAMAN	21	
	3.1.3 Crystalline nature and optical properties of titania by TEM and UV-vis spectroscopy	24	
3.2	Electron Trapper ZnO-TiO ₂ Heterojunction Solid Nanospheres	27	
	3.2.1 Mechanism and morphological analysis of $ZnO-TiO_2$	28	
	3.2.2 Crystalline nature and elemental analysis of ZnO-TiO $_2$ heterojunction solid nanospheres	29	

3.2.3 Specific surface area study of ZnO-TiO₂ nanospheres
3.1
3.3 Hydrogenated TiO₂ and HfO₂ nanodots
3.3.1 Mechanism of hydrogenated TiO₂ and HfO₂ nanodots synthesis
3.3.2 Morphology and structural composition of H-HfO₂/TiO₂ nanodots
3.3.3 Optical properties of hydrogenated H-HfO₂/TiO₂ nanodots
3.4 Concluding remarks
31

Chapter 4: High Performance DSSC using dimensionally controlled titania at sub-zero temperature, $ZnO-TiO_2$ and $H-HfO_2/TiO_2$ nanospheres as photoanode Materials

cering	perature, Eno moz una minoz moz nanospineres as priotoanoae materiais	
4.1	Titania at sub-zero temperature (-40°c to -10°c) as photoanode material	37
	4.1.1 Optimization of photoanode material	37
	4.1.2 Light scattering enhancement in photoanode films	39
	4.1.3 Light harvesting, charge transport and recombination	41
4.2	Zno-TiO ₂ heterojunction solid nanospheres as photoanode	43
	4.2.1 Nanosphere as electron trapping sites	43
	4.2.2 Dye loading and light harvesting capability	44
	4.2.3 Electron transport and mobility	46
4.3	Hydrogenated TiO ₂ and HfO ₂ nanodots as photoanode material	47
	4.3.1 Hydrogenation, high surface area and light adsorption	47
	4.3.2 Dye loading	49
	4.3.3 Electron lifetime and charge transfer	49
4.4	Concluding remarks	50

Chap	oter 5: Graphene as a counter electrode Materials for high photo conversion efficiency	
5.1	Investigation of chemically synthesized graphene as counter electrode for DSSC	51
	5.1.1 Synthesis and optimization of graphene counter electrode films	51
	5.1.2 Structural and morphological analysis of graphene	53
	5.1.3 Stability and performance study of counter electrode	55
5.2	Carbon coated stainless steel as counter electrode for DSSC	57
	5.2.1 SS-Carbon material DSSC	57
	5.2.2 Structural, electrical and J-V performance of SS-Carbon material DSSC	58
5.3	Graphene counter electrode with sub-zero temperature, ZnO-TiO ₂ and H-HfO ₂ /TiO ₂	61
	nanospheres as photoanode materials	<i>c</i> .
	5.3.1 Effect of working area on DSSC performance	61
	5.3.2 Titania at sub-zero temperature, ZnO-TiO ₂ and H-HfO ₂ /TiO ₂ nanospheres as photoanode materials	62
5.4	Concluding remarks	63
Chap	oter 6: Water treatment: Removal of Cr(VI) and organic contaminants	
6.1	Photo-catalytic membrane	66
	6.1.1 Fabrication and Morphology	66
	6.1.2 Restoration of photo-catalytic membrane	67
6.2	Photo assisted Cr(VI) reduction	68
	6.2.1 Sub-zero temperature TiO $_2$ membrane and reaction rate	68
	6.2.2 ZnO-TiO ₂ nanosphere and reproducibility	69
	6.2.3 H-HfO ₂ /TiO ₂ and industrial organic dye impurities	70
6.3	Concluding remarks	73
Chap	oter 7: Summary and Conclusions	
7.1	Summary	75
7.2	Concluding Remarks	76
7.3	Future work	76
		page
Anne	exure A : Materials and Methods	
A.1	Materials	77
	A.1.1 Synthesis	77
	A.1.2 Solar cell	77
A.2	Methods	77
	A.2.1 Material synthesis	77
	A.2.2 Solar cell preparation	78
	A.2.3 Water treatment	78
Publi	cations	80
Refei	rences	81