Abstract		iii
Acknowledgements		v
Contents		vii
List of Figures		xi
List of Tables		$x v$
List of Symbols		xvii
List of Abbreviations		xix
Chapter 1: Introduction		
	Motivation and Objectives	2
1.2	Organization of Thesis	3
1.3	List of Publications	
	1.3.1 Peer Reviewed Journal Publications	6
	1.3.2 Conference Paper	6
Chapter 2: Literature Review		
2.1	Introduction	7
2.2	Tunable Device Technologies	8
	2.2.1 Micro-electro-mechanical systems, (MEMS)	8
	2.2.2 Semiconductors	9
	2.2.3 Dielectric Materials	9
2.3	Frequency Dispersion in Dielectrics	11
	2.3.1 Atomic polarization	12
	2.3.2 Electronic polarization	12
	2.3.3 Dipolar polarization	12
2.4	Dielectric Constant and Polarization	12
	2.4.1 Classification of Dielectrics	12
2.5	Soft Mode Concept and Tunability	15
2.6	Perovskite Oxides Films for Tunable Applications	17
	2.6.1 Barium Strontium Titanate Crystal Structure	18
	2.6.2 BST Thin Film for Tunable Application	19
	2.6.3 Lead Zirconate Titanate structure	20
	2.6.4 PZT Thin Film for Tunable Application	21
2.7	High Energy Radiation Environments	23
	2.7.1 Radiation in Space	23
	2.7.2 Radiation in Nuclear Reactors	23
	2.7.3 Weapons Environment for Military use	24
	2.7.4 Radiation Processing Environments	24
2.8	Interaction of Radiation with Matter	24
	2.8.1 Gamma Radiation	24
	2.8.1.1 Photo-Electric Effect	24
	2.8.1.2 Compton Scattering	25
	2.9.1.3 Pair Production	26
	2.8.2 Neutron Radiation	26
2.9	Radiation Dose	26
2.10	High Energy Radiation Effects	27
	2.10.1 Point Defects	28
	2.10.2 Microstructural Defects	29
2.11	Radiation Effects on Electronic Devices	30
	2.11.1 High Energy Radiation Effects on Perovskite Oxides	31

Cahpter 3: Experimental Techniques

3.1 Introduction 33
3.2 Thin Film Deposition Techniques 36
3.2.1 RF Magnetron Sputtering 36
3.2.2 Pulsed Laser Deposition 39
3.2.3 Thermal Evaporation 40
$3.3 \quad$ X-Ray Diffraction 41
3.4 Atomic Force Microscope 43
3.5 X-Ray Photoelectron Spectroscopy 44
3.6 UV-VIS-NIR Spectrophotometer 46
3.7 Perovskite Thin Films for Microwave Circuit Applications 47
3.7.1 Interdigitated Capacitor (IDC) 47
3.8.2 Parallel Plate Capacitor 48
3.9 Electrical Characterisation 48
3.10 High Energy Irradiation 49
3.10.1 Gamma Irradiation 49
3.10.2 Neutron Irradiation 50
Chapter 4: Effect of Gamma Irradiation on Structural and Surface Chemical Properties of $\mathrm{BaSrTiO}_{3}$ Thin Film
4.1 Introduction 51
4.2 Optimisation of Deposition Parameters for BST Thin Films 51
4.2.1 Structural Analysis of Sputtered BST Films 53
4.2.2 Surface Morphology of BST Films 54
4.2.3 X-Ray Photoelectron Spectroscopy measurement 55
4.2.4 Optical Characterization of Pristine BST Thin Film 57
4.2.5. Dielectric Properties 58
4.3 Gamma Irradiation Induced Effects on BST Films 59
4.3.1 Structural Analysis of Gamma Irradiated BST 59
4.3.2 Surface Morphological Study 60
4.3.3 Core Level and Valance Band Photoelectron Spectroscopy 61
4.3.4 Optical Properties of Irradiated BST film 66
4.3.5 Leakage Current Study 66
4.4. Conclusions 67
Chapter 5: Gamma Radiation Induced Electrical Response of $\mathrm{BaSrTiO}_{3}$ Interdigitated Capacitor 5.1 Introduction 69
5.2 Deposition of BST on Sapphire Substrate 70
5.2.1 Electrode Patterning on BST 71
5.3 Structural and Surface Morphological Characterizations 72
5.4 Electrical Characterization 74
5.4.1 Capacitance - Voltage (C-V) Measurements 74
5.4.2 Current - Voltage (I-V) Measurements 78
5.5 Conclusions 80
Chapter 6: Neutron Induced Structural and Electrical Response of $\mathrm{BaSrTiO}_{3}$ Interdigitated Capacitor
6.1 Introduction 81
6.2 Experimental Details 82
6.2.1 Sample Preparation 82
6.2.2 Neutron Irradiation 82
6.3 Structural and Surface Morphological Study 83
6.4 Electrical Characterization 85
6.4.1 Capacitance - Voltage (C-V) Measurements 85
6.4.2 Leakage Current Study 87
6.5 Conclusions 88
Chapter 7: Gamma Radiation Induced Structural and Surface Chemical Changes in $\mathrm{PbZrTiO}_{3}$ Thin Film
7.1 Introduction 89
7.2 PLD Grown Epitaxial PZT Thin Film 90
7.3 Structural Analysis of PZT/SRO/STO Thin Film 91
7.4 Surface Morphological Study 93
7.5 X-Ray Photoelectron Spectroscopic on PZT 93
7.5 Leakage Current Analysis 98
7.6 Conclusions 99
Chapter 8: Gamma Radiation Induced Electrical Response of $\mathrm{PbZrTiO}_{3}$ Varactor 8.1 Introduction 101
8.2 Pt Electrode Patterning on $\mathrm{PbZrTiO}_{3} / \mathrm{SrRuO}_{3}$ Films 103
8.3 Capacitance-Voltage Measurement of PZT Varactor 104
8.4 Gamma Irradiation Effect on Dielectric Response of Pt/PZT Varactor 107
8.4.1 Hysteresis C-V Measurement 113
8.5 Radiation Effects on Device Tunability 115
8.6 Leakage Current Measurements 116
8.7 Conclusions 118
Chapter 9: Conclusion and Future Scope of Work
9.1 Conclusion 119
9.2 Future Scope of Work 121
References 123

