List of Figures

Figures	Title	Page
2.1	MEMS Tunable filter	8
2.2	Semiconductor tunable Varactor	9
2.3	Capacitance of a parallel plate capacitor with (a) vacuum and (b) dielectric material	9
	between plates.	
2.4	AC sinusoidal potential and loss current	10
2.5	Loss tangent $tan(\delta)$ vector scale diagram	11
2.6	Frequency dependence of different polarization mechanisms	11
2.7	P-E relationship of linear dielectrics	13
2.8	Electrical polarization of nonlinear dielectrics	13
2.9	ABO ₃ perovskite structure	14
2.10	Capacitance–voltage (C-V) 'butterfly' characteristic loop	17
2.11	BaSrTiO ₃ crystal structure; ABO ₃	18
2.12	Representative schematic of BST based thin film (a) parallel plate and	20
2 12	(b) interdigitated Capacitor Lead zirconate titanate crystal structure	20
2.13	Dielectric constant and loss tangent with Pt/PZT/BZN/Pt capacitors at 100 kHz.	20 22
2.14 2.15	PZT based tunable capacitor	22
2.16	Schematic illustration of photon induced photo electric effect	25
2.17	Schematic illustration of Compton scattering	25 25
2.18	Schematic illustration of pair production process	26
2.19	Representation of radiation environment and exposure to electronic device	27
3.1	The Schematic diagram of the thin film growth process.	-, 34
3.2	Schematic representation of the three conventional thin film growth modes:	34
	(a) layer or Frank-van der Merwe mode, b) layer plus island or Stranski-Krastanov mode	,
	and c) island or Volmer-Weber	
3.3	The variation of the free energy versus the radius of the film nuclei.	35
3.4	A schematic of the sputtering process	37
3.5	View of the RF magnetron sputtering system at IIT Jodhpur	38
3.6	Schematic view of Pulsed Laser Deposition	39
3.7	Thermal Deposition System	41
3. 8	X-ray diffraction process	42
3.9	2θ-ω measurement from X-ray diffraction	42
3.10	Schematic representation of Atomic Force Microscope	43
3.11	X-Ray Photoemission process	45
3.12	Schematic illustration of Optical Characterisation process	47
3.13	Schematic view of Interdigitated Capacitors	47
3.14	Schematic of Parallel Plate Capacitors	48
3.15	Kithley SCS 4200 electrical measurement system	48
3.16	Schematic representation of gamma irradiation	49
3.17	Schematic representation of neutron irradiation	50
4.1	Schematic view of process flow for deposition of BST capacitor X-ray Diffraction patterns showing the effect of Ar flow rate on the crystallinity of BST	52 52
4.2	thin films	53
4.3	XRD spectra for as deposited and annealed BST samples at 25 sccm and 45 sccm Ar flow	54
4·4	Surface morphology of BST Films Sputtered at different Ar flow rate (a) 35 sccm;	55
11	(b) 25 sccm and (c) 45 sccm))
4.5	Core level spectrum of Ba 3d of BST thin film	56
4.6	Core level spectrum of Sr 3d of BST thin film	56
4.7	Core level spectrum of Ti 2p of BST thin film	57
4.8	Optical spectra (a) Measured Transmittance (b) Estimated band gap of Pristine BST film	57
4.9	Schematic illustration of the fabrication of Ni/BST/Si varactor	58
4.10	Capacitance voltage characteristic of BST varactor	58
4.11	Leakage current of pristine BST varactor	59
4.12	Gamma irradiation effects of BST structure	60
4.13	AFM spectra of BST films (a) Pristine, (b) 25 kGy, (c) 100 kGy and (d) 200 kGy.	61

4.14	XPS core level spectra of Ba3d ($3d_{5/2}$ and $3d_{3/2}$) of gamma irradiated BST thin film	62
	from 0 kGy(Pristine) to 200 kGy.	
4.15	XPS core level spectra of Sr ₃ d ($3d_{5/2}$ and $3d_{3/2}$) of gamma irradiated BST thin film	63
	from 0 kGy(Pristine) to 200 kGy.	
4.16	XPS core level spectra of Ti 2p _{1/2} and 2p _{3/2} of gamma irradiated BST thin film	64
	from 0 kGy(Pristine) to 200 kGy.	
4.17	XPS valance band spectra of BST thin film from o kGy(Pristine) to 200 kGy and	65
	schematic reprentation of Fermi level shift.	
4.18	Optical band gap of the gamma irradiated BST film.	66
4.19	Leakage current of Ni/BST/Si device at 0, 25 and 200 kGy.	67
5.1	IDC patterning steps by photolithography	71
5.2	Schematic view of BST/Sapphire based Au plated IDC structured Device.	72
	SEM image of top view is shown in inset.	
5.3	XRD spectra of the Ba _{0.5} Sr _{0.5} TiO ₃ films as a function of gamma dose up to 600kGy	72
5.4	AFM images of BST thin film before and after gamma irradiation, (a) unirradiated,	73
	(b) 50 kGy (c) 400 kGy and (d) 600 kGy.	
5.5	C-V measurements of pristine device at 200 kHz, 500k, and 1 MHz for IDC capacitor	74
5.6	Gamma irradiated response of BST IDC capacitor for initial gamma doses	75 76
5.7	The capacitance as a function of the cumulative gamma doses from (a) o to 50kGy and (b) 50 to 600 kGy at 500 kHz frequency.	76
5.8	The capacitance as a function of the cumulative gamma doses from (a) o to 50kGy and	77
5.0	(b) 50 to 600 kGy at 1MHz frequency.	77
5.9	Leakage current characteristics of IDC capacitor as a function of gamma doses.	79
6.1	Schematic cross-section view and optical image of gold plated IDC structured Device	82
6.2	XRD 2θ-ω scan of BST thin film before and after neutron irradiation	83
6.3	AFM images (3 x 3 μm²) at different neutron fluencies a) Pristine b) 2.5x10 ¹¹ n/cm² and	84
,	c) 7.5x10 ¹¹ n/cm ²	- 1
6.4	Bell shape C-V behavior of pristine BST varactor at 200 kHz and 500 kHz frequency	85
6.5	The capacitance as a function of the neutron fluences at (a) 200 kHz and	86
	(b) 500 kHz frequency	
6.6	Leakage current characteristics of IDC capacitor as a function of neutron fluences.	88
7.1	XRD 2θ-α scan of pristine PZT epitaxial film	92
7.2	XRD scan PZT epitaxial film (001) diffraction peak at different gamma radiation doses.	92
7.3	AFM images of the PZT films (a) Pristine, (b) 50 KGy and (c) 200 KGy.	93
7.4	XPS core level spectra of Pb 4f ($4f_{7/2}$ and $4f_{5/2}$) (a) Pristine, (b) 50 kGy, and (c) 200 kGy.	95
7.5	XPS core level spectra of Zr 3d $(3d_{5/2}$ and $3d_{3/2})$ (a) Pristine, (b) 50 kGy, and (c) 200 kGy	96
7.6	XPS core level spectra of Ti 2p (2p _{3/2} and 2p _{1/2}) (a) Pristine, (b) 50 kGy, and (c) 200 kGy	97
7.7	Leakage current characteristics of Pt/PZT capacitor as a function of gamma dose.	98
8.1	Schematic illustration of the patterning process of PbZr _{0.52} Ti _{0.48} O ₃ films	103
8.2	Optical photomicrograph of PZT capacitor	104
8.3	Schematic view of Pt/PZT/Pt varactor	104
8.4	C-V characteristics of epitaxial PZT varactor device with capacitor area 1x10 ⁻⁴ cm ²	105
8.5	C-V characteristics of epitaxial PZT varactor device with smaller capacitor of 0.25x10-4 cm ²	105
0.6	area	
8.6	C-V characteristics for three different capacitor area at 100kHz frequency	106
8.7	Normalized Capacitance and dielectric loss(tan δ) of pristine epitaxial PZT as a function	107
0 0	of frequency	400
8.8	Influence of gamma irradiation on C-V characteristics of large area varactor of 1x 10 ⁻⁴ cm ²	108
9 0	(a) 100 kHz and (b) 500 kHz with different gamma doses from 0 kGy to 400 kGy	100
8.9	Influence of gamma irradiation on C-V characteristics of small area varactor of 0.25x 10 ⁻⁴ cm² (a) 100 kHz and (b) 500 kHz with gamma doses from 0 kGy to 400 kGy	109
8 10		111
8.10	Influence of gamma irradiation on capacitance of PZT varactor as a function of frequency at different gamma doses from 0 kGy to 400 kGy for capacitor area (a) 1 x 10 ⁻⁴ and	111
	(b) 0.25x 10°4 cm²	
8.11	Dielectric Loss tangent of PZT varactor with different gamma dose as function of frequency	117
8.12	Dielectric Loss tangent of PZT varactor with different gamma dose as function of	112 112
0.12	bias voltage at 100 kHz.	112
8.13	C-V hysteresis measurement at 100 kHz as a function of applied bias for gamma irradiated	114
	PZT varactor a) 200 kGy, and b) 400 kGy	7

8.14	Dielectric tunability of the device as a function of applied bias at 100 kHz.	115
8.15	Calculated tunability of PZT varactor as a function of total gamma dose at 100 kHz.	116
8.16	Leakage current for PZT varactor before and after gamma irradiation as a function of	117
	applied bias for large area electrode.	
8.17	Leakage current for PZT varactor before and after gamma irradiation as a function of applied bias for smaller area electrode.	117

