Со	ntents
	Page
Abstract	I
Acknowledgements	lii
Contents	V
List of Figures	vii
List of Tables	Xiv
List of Symbols	Xvi Xviii
List of Abbreviations	
Chanter a later duction	4
Chapter 1: Introduction	1
 Purpose of the Study Brief Results, Scope and Future Perspective of the Work 	2
1.2 Bher Results, scope and ruture reispective of the work	3
Chapter 2: Literature Review	7
2.1 Protein aggregation and its biological significance	7
2.2 Effective strategies to target protein aggregation process	10
2.3 Collagen self-assembly and its biological significance	10
2.4 Biophysical tools to study protein aggregation	11
Chapter 3: Self-assembly of phenylalanine molecules under physiological conditions and its	13
biological significance.	
3.1 Phenylalanine fibril assembly and its effect on the aggregation of proteins and amino acids	13
3.1.1 Self-assembly of phenylalanine molecule in to amyloid like structures	13
3.1.2 Effect of phenylalanine aggregates on aggregation properties of selected globular proteins	18
3.1.3 Structural characterization of protein amyloid fibrils obtained from phenylalanine-	21
driven aggregation reaction	- (
3.1.4 Effect of Phenylalanine aggregates on Amino acids	26
3.1.5 Does Phenylalanine fibrils and phenylalanine-induced protein fibrils have any effect on Hemolysis?	27
3.1.6 Molecular simulation phenylalanine assembly and molecular docking studies of	33
phenylalanine with proteins	
3.3 Discussion	37
3.4 Conclusion	38
Chapter 4: Effect of capsaicin coated silver nanoparticles on amyloid fibril formation of	39
serum albumin	
4.1 Effect of capsaicin coated nanoparticles on amyloid aggregation	39
4.1.1 Characterization of Capsaicin coated silver nanoparticles	40
4.1.2 Effect of Capsaicin coated silver nanoparticles on amyloid aggregation of BSA	42
4.1.3 Molecular interaction of Capsaicin with BSA	44
4.3 Discussion	47
4.4 Conclusion	48
Chapter 5: Effect of piperine coated gold nanoparticles on amyloid fibril formation of 4 insulin	
5.1 Effect of piperine coated nanoparticles on insulin fibril assembly	40
5.1.1 Selection of piperine to target insulin fibril assembly	49 50
5.1.2. Synthesis and characterization of piperine coated gold nanoparticles	50
5.1.3. Effect of piperine coated nanoparticle on insulin fibril assembly	54
5.1.4. Quenching studies on the interaction between insulin and AuNPs ^{piperine}	55
5.1.5. Molecular interaction of native insulin with piperine	56
5.1.6. Effect of piperine coated nanoparticle on collagen fibril assembly	58

v

5.1.7. Biocompatibility studies of AuNPs^{piperine}

59

5.2 5.3	Discussion Conclusion	60 61
	ter 6: Strategically designed antifibrotic gold nanoparticles to prevent	62
-	lagen fibril formation	02
6.1	Effect of gold nanoparticles coated with aromatic residues on collagen fibril formation.	62
	6.1.1 Synthesis and characterization of gold nanoparticles.	63
	6.1.2. Biocompatibility studies of synthesized gold nanoparticles	66
	6.1.3. Effect of surface functionalized gold nanoparticles on collagen fibril formation	66
	6.1.4. Computational Docking Studies of amino acids with Selected Triple-Helical Collagen	69
	Model Peptides	
	6.1.5 Interaction of triple-helical collagen peptide with AuNPs ^{HYP} by Isothermal Titration	71
	Calorimetry (ITC).	
6.2	Discussion	73
6.3	Conclusion	76
Chap	eter 7: Conclusions	78
Anno	xure A: Materials and Methods	80
Allie A.1	Reagents	80 80
A.2	Fluorescence Measurements	81
	A.2.1 Thioflavin-T Assay	81
	A.2.2 Protein-ligand Binding Assay	81
	A.2.3 Calculation of binding constant (K_a) and binding site (n).	82
A.3	Amyloid Fibril Formation of Proteins	82
	A.3.1 Understanding Amyloid fibril formation	82
	A.3.2 Understanding single molecule aggregation	82
	A.3.3 Amyloid aggregation studies of BSA with Silver nanoparticles	82
	A.3.4 Amyloid aggregation of Insulin and Insulin with Gold nanoparticles	82
A.4	Circular Dichroism	83
A.5	Activity Assay of Lysozyme	83
A.6	ATR-FTIR Spectroscopy	83
A.7	DYNAMIC LIGHT SCATTERING (DLS) AND ZETA POTENTIAL MEASUREMENTS	83
A.8	Atomic Force Microscopy (AFM) Scanning Electron Microscopy (SEM)	83
A.9	A.9.1 SEM of Amyloid and collagen fibers	84 84
	A.9.2 Scanning Electron Microscopic studies of RBC's	84 84
A.10	Transmission Electron Microscopy (TEM)	84
A.11	Fluorescence microscopy	84
A.12	Dark field microscopy	84
A.13	UV-Visible Spectroscopy	84
2	A.13.1 Collagen Fibril Formation	84
	A.13.2 Protein Concentration Measurements	85
	A.13.3 Characterization of nanoparticles	85
A.14	Native Gel Electrophoresis	85
A.15	Sodium Dodecyl Poly Acrylamide (SDS) gel electrophoresis	85
A.16	Synthesis of nanoparticles	85
A.17	Computational Studies	86
	A.17.1 Molecular Docking Studies	86
	A.17.2 Molecular dynamics	87
A.18	In vitro hemolysis assay	87
۸	A.18.1 Calculating the lysis percentage	88
A.19	Leishman staining and visualizing of RBC's by light microscope	88
A.20	Isothermal Titration Calorimetry	88
A.21	Data processing	88

88

References