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Review of Portable Cardiography Systems

In this chapter, a detailed review of recent advancements in heart monitoring systems
is provided. As discussed in the previous chapter, lack of early-stage detection and hence
delay in medication causes heart diseases to reach to an extent where it is difficult to cure
[Jiaquan et al., 2010]. For early-stage detection of CVDs, a system should be convenient to
use for long-term and should also be user friendly to use it at home or at a workplace. Such
features would be favourable to have frequent monitoring of health status of the heart and
a significant reduction in unnecessary hospital visits is expected. In view of this, existing
portable cardiography systems are reviewed for their suitability in real-life scenarios. The
review focuses only on four cardiography systems ECG, PCG, SCG, and PPG, due to their
favourable features such as portability and diagnostic efficiency.

2.1 INTRODUCTION
Portable heart monitoring systems have been used in two manners, as shown in Fig-

ure 2.1, one is on-site and another is off-site. In on-site monitoring, the acquired heart signal
is processed on the patient site, without transmitting it to the remote site.While in off-site, the
acquired heart signal is transmitted to a remote site using a wireless module. On-site heart
monitoring systems have advantages in the case where low latency feedback is required or
wireless access is not accessible. Furthermore, it eliminates data transmission and hence elim-
inates the radio power consumption. However, the on-site monitoring has limitation that it
has only a set of general diagnosis steps and thus unable to perform a detailed diagnosis. On
the other hand, in off-site monitoring, diagnosis is performed at remote location with high
computation capable processors and supports input from a cardiologist. This makes it suit-
able for accurate anddetailed diagnosis. It is attractive because of higher processing capability
and less power restrictions on such remote computation. Off-site monitoring also reduces the
false alarm rate and thus reduces visits to clinics or hospitals. In view of these advantages of
off-site monitoring, this chapter is intended to provide a detailed review of recent research in
the off-site monitoring system.

Figure 2.1 : Heart monitoring system
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A typical off-site heartmonitoring system consists of fivemodules, as shown in Figure
2.2. The system with first four modules; body sensor, signal conditioning, Analog-to-Digital
Converter (ADC) and compression, andwirelessmodule are situated at the patient site.While
the fifthmodule that is noise suppression and classificationmodule is situated at a remote site
which can be any computational device with high computational ability. In each module, a
brief introduction about the function of themodule, recent developments, and their limitation
and challenges are discussed.

Figure 2.2 : Block diagram of Off-site heart monitoring system

2.2 BODY SENSORS
Different body sensors have been used to acquire the signals related to movement of

the heart.

2.2.1 Electrodes (Electrocardiography)
ECGmeasures the electrical activity of the heart using electrodes placed on both sides

of the heart. For signal acquisition, attachment of electrodes to different points on the body
restricts patient’smobility [Koivisto et al., 2015]. A lot of research efforts have been targeted in
the development of ECGpatchmonitors. Themain problem is that a reliable analysis requires
good electrode-to-patient contact and a minimum electrode distance (5-10 cm) which poses a
size limitation and electrodes also irritate the skin in long-termuse [Koivisto et al., 2015]. Some
of the ECG sensors, widely used in practice, can be classified into following three categories.

(a) Wet Sensors
In these types of sensors, Ag-AgCl electrodes are attached to the skin using gel which

provides a conducting medium for charge transfer between the electrodes and the body [Ne-
mati et al., 2012]. These sensors provide good signal quality, but it is inconvenient in terms of
long-termwear-ability due to use of gel which creates irritation and itching problem [Nemati
et al., 2012]. The acquired signal quality may deteriorate due to sweat [Searle and Kirkup,
2000] and due to gel dehydration [Jung et al., 2012].

(b) Dry Sensors
These sensors use a metal plate direct placed on the skin without use of gel. Thus, the

problem of irritation and itching caused by gel, have been eliminated [Gómez-Clapers and
Casanella, 2012]. Although, it still has direct contact with the skin. Dry sensors are robust to
environmental noises and sweat noise but more vulnerable to motion noise compare to wet
sensors. The quality of the signal acquired using these sensors depends on the composition
of the materials and size of the electrode [Jung et al., 2012]. Increasing size of the electrode
gives better capacitance and consequentially good signal quality, but it decreases the patient’s
convenience.
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(c) Capacitive Coupled Sensors
Capacitive Coupled (CC) sensors avoid direct contact with the skin that minimizes

patients’ inconvenience as in case of the wet and the dry sensors. A thin layer of insulator
is placed between the body and metal-plate sensing electrode [Nemati et al., 2012]. The elec-
trode, together with the skin and insulator, form a capacitance that conveys the ECG signal
from the body to the sensor. CC sensors have been developed on a chair [Aleksandrowicz
and Leonhardt, 2007; Baek et al., 2012], on bed [Lim et al., 2007] and textiles [Cho et al., 2011].
Development of sensors on chair, bed and textiles supports continuous heartmonitoring even
when working in the office and sleeping. CC sensors are highly sensitive to motion noise as
in case of dry sensors. This is because, a movement of electrode changes the coupling capac-
itance and consequentially the acquired signal [Nemati et al., 2012].

For clinical use, where simplicity of operation, less processing time, and good signal
quality is preferred, wet sensors are suitable. Additionally, the availability, relative cheap-
ness, and disposability of wet electrodes overcome hygiene concerns. While, the dry and ca-
pacitive electrodes are convenient in use and consistent in performance. These features make
these sensors suitable for long-term. However, the performance of these types of electrodes
depends on the electrode geometry. Furthermore, these electrodes require proper shielding
and settling time to perform comparable to, or better than wet electrode. Researchers in the
past have made numerous attempts to overcome these problems [Searle and Kirkup, 2000].

2.2.2 Stethoscope (Phonocardiography)
The stethoscope was invented by René Laennec in 1816. It is basically a transducer

which converts vibration signal into acoustic signal and transmits the sounds to the physi-
cian’s ear [de Lima Hedayioglu, 2009]. The plotting of the heart sound signal is called as
phonocardiogram signal. The stethoscope is a user-friendly, effective, and economical instru-
ment and therefore, one of the most basic instruments used in diagnosing health problems
and treating patients [Callahan et al., 2007].

There are two general types of stethoscopes, acoustic and electronic. Acoustic stetho-
scopes transmit sound from a chest-piece to the listener’s ear via an air-filled hollow tube. The
main limitation of the acoustic stethoscope is that the intensity of some body sounds is below
the threshold of audibility [Jatupaiboon et al., 2010]. An electronic stethoscope overcomes
this issue by electronically amplifying the heart sounds. However, its signal is highly sus-
ceptible to various noises generated due to motion of subject, speech of subject, and ambient
sources, because it uses a microphone to convert the acoustic signal into an electrical signal
[Gradolewski and Redlarski, 2014]. Therefore, in literature, there have been several attempts
to improve electronic stethoscopes for better sound amplification and frequency response
[Hedayioglu et al., 2007; Tavel et al., 1994]. Jatupaiboon et al. [Jatupaiboon et al., 2010] incor-
porate adaptive noise cancellation mechanism to suppress the level of noise from acquired
sound. Chao et al. [Chao et al., 2012] implemented the Adaptive Line Enhancer (ALE) filter
structure on a Field-Programmable Gate Array (FPGA) based platform to perform filtering
in real-time.

As reported in [de Lima Hedayioglu, 2009], for the wide acceptability of stethoscope,
it should integrate real-time signal processing to increase the effectiveness of the auscultation.
Recent advances in electronics and digital circuits allow us to real-time acquisition, analysis,
display, and classification of heart sounds andmurmurs. These types of stethoscope are called
digital stethoscope. Bredesen and Schmerler [Bredesen and Schmerler, 1993] developed an
‘intelligent stethoscope’ for automatically diagnosing abnormalities by comparing digitized
sounds to reference templates using a signature analysis technique.

The leading suppliers of electronic stethoscopes are Cardionics, Thinklabs, Meditron
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(Welch-Allyn) and 3M (Littmann) [Callahan et al., 2007]. Thinklabs uses a novel electronic
diaphragm detection system to directly convert sounds into electronic signals. Welch-Allyn
Meditron uses a piezo-electric sensor on a metal shaft inside the chest piece, while 3M and
Cardionics use conventional microphones.

2.2.3 Accelerometer (Seismocardiography)
Accelerometer used in SCG, measure the vibrations on the surface of the thorax pro-

duced by the heart contraction and blood ejected from the ventricles into the vascular tree
[Inan et al., 2015; Khosrow-khavar et al., 2015]. Zanetti and Salerno were the first two, who
introduced SCG for clinical applications [Zanetti and Salerno, 1991]. The accelerometer sen-
sor generates an electrical signal with its amplitude proportional to the applied acceleration.
Since acceleration is the second time derivative of the displacement, acceleration provides
good details of heart movement during each cardiac cycle [Wick et al., 2012].

Zanetti’s approachused a bulky piezoelectric accelerometerweighing almost one kilo-
gram [Zanetti and Salerno, 1991]. The bulky size of accelerometer hinders its wide acceptabil-
ity. Recent development of low weight and small size accelerometer make it less obtrusive
transducer, consequentially, many researchers are now studying SCG. Different types of ac-
celerometers have been developed, including piezoelectric, electromechanical servo, liquid
tilt, and piezo-resistive [control learn zone, 2008]. In recent years, MEMS accelerometers have
made tremendous advances in terms of its cost and level of on-chip integration [Sun et al.,
2010; Metropolia, 2014]. The MEMS accelerometer based on the principle of capacitance dif-
ferentiation has high sensitivity and accuracy [Sun et al., 2010].

Castiglioni et al. attached a tri-axialMEMS accelerometer (ST-LIS3L02AL, fromSTMi-
croelectronics) on the left clavicle to record SCG signal and later integrate into textiles tomake
a wearable device for SCG detection [Castiglioni et al., 2007; Rienzo et al., 2012]. Pandia et al.
[Pandia et al., 2010] and Bombardini et al. [Bombardini et al., 2011] also used ST-LIS3L02AL to
monitor the heart sounds. Bryant et al. used ST-LIS3L02DL (with digital interface) to develop
a chest-worn heart monitoring system [Bryant et al., 2010]. Imtiaz et al. used MMA7260QT
[Imtiaz et al., 2013]. Among different conventional piezoelectric accelerometers, 393C (PCB
Piezotronics) has been extensively used for physiological sounds monitoring [Salerno and
Zanetti, 1990]. In addition to piezoelectric sensors, piezoresistive accelerometers have also
been used [Bew et al., 1971]. However, piezoresistive accelerometers are generally not as sen-
sitive as piezoelectric accelerometers. Various accelerometers, used for physiological acoustic
sensing, are summarized by HU et al. [Hu et al., 2014].

2.2.4 Diode (Photoplethysmography)
PPG uses LEDs and photo-diode which makes it a low cost, non-invasive, easy to use

and portable system. Since it operates optically, it is not intrinsically susceptible to capacitive
coupling interference as in ECG [Sweeney et al., 2012]. However, photo-diodes are sensitive
to natural and artificial light sources. PPG based heart monitoring systems are unobtrusive
as size and weight of the device of PPG are low. PPG is generally used in direct contact with
the patient’s skin as in case of other systems (ECG, PCG, and SCG). To avoid direct contact
with skin, Huelsbusch et al. [Huelsbusch and Blazek, 2002] proposed a remote PPG (rPPG)
that can acquire PPG signal without contact with skin. The main concern with rPPG is its
sensitivity to the subject motion.

2.3 SIGNAL CONDITIONING
Heart signals, acquired by different body sensors, often get contaminated by noise

components such as flicker noise, common-mode interference, power-line interference, base-
line wandering etc [Liu et al., 2012b]. Also, the amplitude of the acquired signal is typically
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low. A signal conditioning module typically consists of an algorithm for noise minimization
and amplifier to amplify low amplitude signals. This module operates on signals in the ana-
log domain. Power consumption of this module used to be low so as to support long-term
operability of heart monitoring systems. For the same purpose, Rieger et al. [Rieger, 2011]
proposed a variable gain circuit consists of a continuous-time input stage using lateral bipo-
lar transistors. Spinelli et al. [Spinelli et al., 1999] proposed a driven right leg circuit to reduce
common-mode interference. Gomez-Clapers and Casanella [Gómez-Clapers and Casanella,
2012] used dual ground configuration to reduce the noise caused by power line interference
and base line wandering. Since most of the heart monitoring systems are digital in nature
and needs communication for remote monitoring, following section discusses analog to dig-
ital conversation and compression algorithms.

2.4 ANALOG TO DIGITAL CONVERSION AND COMPRESSION
Heart signals (analog) are converted into digital signals for its processing on digital

computers. This is done by sampling the heart signal and quantizing the sampled values. This
process is done on Digital Signal Processor (DSP) called ADC. Selection of the DSP depends
on the desired sampling rate, number of bits to be used for quantisation, operating frequency,
and power consumption. As described in Table 2.1, Mixed-Signal Processor (MSP) based pro-
cessors have lower power consumption compared to the Programmable Interface Controllers
(PIC) based processors, while the PIC based processors have a higher operating frequency
compared to the MSP based processors. Both types of processors provide multiple working
and idle modes according to the required computational power, to optimize the power con-
sumption. DSP with low power consumption supports long-termmonitoring of the heart. To
optimize the power consumption, Bachmann et al. [Bachmann et al., 2012] proposed a DSP
with the capability to perform in different power modes according to required accuracy and
available computational power. Power consumption was optimized at different abstraction
layers from application optimization and mapping, for the system.

Table 2.1 : Digital signal processors
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Conventional sampling techniques sample signals at or above Nyquist rate, which
ensues perfect reconstruction of the signal. Nyquist rate is twice the maximum frequency
component present in the signal to be sampled. Typically, heart signal components are below
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1 kHz frequency and hence, as per Nyquist rate, 2k samples per second are sufficient to avoid
aliasing error. However, even 2k samples per second sampling rate generates a huge number
of samples, if the heart is monitored for a long time. Consequentially, the power requirement
of DSP increases as the number of samples to be processed are huge. In spite of it, Compressed
Sensing (CS) enables sub-Nyquist sampling of signals.

CS is a data acquisition approach that requires only a few incoherent measurements
to compress signals that are sparse in some domain [Candes andWakin, 2008]. Let [ in] be an
original input vector of dimension N× 1 and [Ψ] is the N×N sampling basis or sparsifying
matrix containing orthonormal basis (such as a wavelet basis) [ 1, 1, ..., n]. Then [X ], sparse
in [Ψ] domain with length N can be found as

[X ] = [Ψ][ in]

Then output compressed vector is defined as:

[Y ] = [ ][X ]

where [ ] is the M×N measurement or sensing matrix. So, we get an output vector [Y ] with
length M, where M < N. CS captures M measurements from N samples using random linear
projections. Now, as the lower number of measurements were taken than the original signal,
non-linear optimization techniques are used to reconstruct the original signal [Candes and
Wakin, 2008]. Reconstruction of the signal can be achieved as:

Min||
X ||1 subject to [Y ] = [ ][
X ]

Perfect reconstruction of the signal depends on the incoherence between [Ψ] and [ ] matri-
ces. Thus, random matrices can be used as a measurement matrix because random matrices
are, with high probability, highly incoherent with any fixed basis [Ψ]. CS is considered non-
adaptive because measurement matrix [ ] remains constant.

Severalmeasurementmatrix design considerations and reconstructionalgorithms have
been presented in [Dixon et al., 2012] and found that using Bernoulli measurement matrix,
compression ratio of 16 is achievable. Mamaghanian et al. [Mamaghanian et al., 2011] com-
pared CS and the DWT-based compression algorithms and found that CS was inferior to
DWT-based algorithm in terms of compression ratio. Despite of it, CS-based compression
outperforms in terms of energy efficiency due to its lower complexity and reduced CPU exe-
cution time.

After digitization of analog signals, digital signals are compressed to reduce amount
of data. The basic purpose of data compression is to represent the original signal with a
smaller number of bits than that is needed for the original signal. The compression is typ-
ically achieved by removing redundancy from the signal to be compressed. Since power re-
quirement of wireless module directly depends on the amount of data to be transmitted, one
of the major advantages with compression is a reduction in power requirement by wireless
module. However, there is a loss of information, in general, when signal is reconstructed
from the compressed data. A proper balance is maintained with compression ratio and the
requirement that the information of diagnostic importance is preserved.

Heart monitoring systems have additional requirement for compression algorithms
to be computationally efficient to support long-term monitoring. Various compression algo-
rithms for heart signals have been reported in literature. Wavelet Transform (WT) [Kao et al.,
2005; Martinez-Alajarin and Ruiz-Merino, 2004], Walsh transform [Kadrolkar et al., 2012],
Hermite function [Sandryhaila et al., 2012], and Discrete Cosine Transform (DCT) [Bendifal-
lah et al., 2011] based compression algorithms first decompose the signal into coefficients by
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projecting the signal onto basis functions of transforms. Then compression is achieved by re-
taining only a small number of coefficients which typically preserves essential information
of the heart signal. As stated before, computational complexity is crucial for the compression
algorithm as these have to be implemented on the patient side. Computational complexity
of DWT is O(N), DCT is O(NlogN), Walsh transform is O(NlogN), and Hermite function is
O(Nlog2N). Thus, DWT has lowest computational complexity. However, compression per-
formance of the Hermite function based method is better than DCT and DWT based basic
compression algorithms [Sandryhaila et al., 2012]. In these approaches, trade-off between the
percentage of retained energy and compression ratio is crucial. Increment in the percentage
of retained energy reduces compression ratio and enhances reconstructed signal quality and
vice versa. Retained coefficients are compressed using conventional compression algorithms
such as zero-removal [Kao et al., 2005], Huffman coding [Kao et al., 2005; Martinez-Alajarin
and Ruiz-Merino, 2004], dead zone quantization [Bendifallah et al., 2011], run length cod-
ing [Martinez-Alajarin and Ruiz-Merino, 2004; Rajoub, 2002]. While, Sharma et al. [Sharma
et al., 2012] applied Multi-Scale Principal Component Analysis (MSPCA) on WT coefficients
and then MSPCA coefficients are uniformly quantized and encoded by Huffman coding. All
the above algorithms compressed the entire frame with the same compression ratio. On the
other hand, researchers have beenproposed approaches to use different compression ratio for
different block of signals [Kadrolkar et al., 2012; Rajoub, 2002; Wang et al., 2010; Kim et al.,
2008]. Different statistical parameters have been calculated to identify the significance of the
segment such as Wang et al. [Wang et al., 2010] calculated kurtosis, Kim et al. [Kim et al.,
2008] calculated Mean Deviation (MD), Ma et al. [Ma et al., 2012] calculated wavelet coeffi-
cient energy. In [Kadrolkar et al., 2012], significance of the segment is calculated based on the
energy of the Walsh coefficients. While, Rajoub [Rajoub, 2002] applied DWT and then divide
the coefficients into three groups based on the magnitude of coefficients and then applied
different thresholding for each group.

Researchers have also proposed compression algorithms that preserve features of
heart signal (rather than preserving the waveform) [Alvarado et al., 2012; Kim et al., 2012].
Alvarado et al. [Alvarado et al., 2012] proposed a compression algorithm based on integra-
tor and fire sampler. Similarly, Kim et al. [Kim et al., 2012] proposed an algorithm based on
curvature points, which calculated the important information from the signal.

Compression algorithms which require low computation are suitable for long-term
heart monitoring. DWT based compression algorithms have lower computational complexity
than other algorithms and thus have been used extensively. On the other hand, feature pre-
serving compression algorithms have a high compression ratio. They are suitable for heart
signals because diagnosis can be performed based on these features. However, the selection
process of the diagnostic features from the heart signal is a complex process. Furthermore,
the performance of these types of algorithm deteriorated in the presence of noises.

2.5 WIRELESS MODULE
In off-site monitoring, digitized and compressed heart signals are transmitted to re-

mote site. Analysis and classification of the heart signals are performed at the remote site.
Transmitter consists of wireless module which helps to transmit heart signals to remote site.
Low power consumption, convenient connection process, and low latency are some impor-
tant features of wireless modules that promotewider acceptance of heart monitoring systems.
In literature, various wireless communication techniques and protocols have been proposed
for transmission purpose Table 2.2. Bluetooth 4.0 [Morak et al., 2012] wireless system sup-
ports 24 Mbps data rate, working range up-to 100 m, and consumes low power. Bluetooth
devices with these features are suitable to be integrated with heart monitoring systems. The
Bluetooth wireless systems require initial connection setup that has to be done manually. Pa-
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tient’s intervention is not desirable in a heart monitoring system as it reduces convenience.
To overcome this problem an approach was proposed by Morak et al. [Morak et al., 2012]
using Radio-Frequency Identification (RFID) and Near Field Communication (NFC). In this
approach, the connection establishes by bringing two NFC enabled devices closer and using
RFID information of both devices. The drawback of this approach is that it requires perma-
nent activation of Bluetooth which results in extra power consumption. Moreover, NFC can
support data rate up-to 424Kbps only. Since data rate is lower than Bluetooth 4.0, it takes long
time to transmit data. A good review of the state-of-art technologies for wireless network was
presented by [Bachmann et al., 2012].

Keeping in view the desired features of wireless module, various protocols have been
proposed [Nemati et al., 2012; Chen et al., 2012]. Chen et al. [Chen et al., 2012] proposed a
reliable protocol based on any-cast routing algorithm. This algorithm automatically selects
nearest hop (sink), in case of failure in original path, instead of rebuilding the path from the
source node. Thus, it provides a reliable communication as well as reducing traffic overhead
and transmission latency. However, selection of the hop process increases the complexity of
routing algorithm and the complexity increases power consumption. To optimize power con-
sumption, Nemati et al. [Nemati et al., 2012] proposed an ANT protocol. The ANT protocol
was used as a low-data-rate wireless module to reduce the power consumption and size of
the sensor. ANT is an adaptive isochronous ad-hoc wireless protocol based on master-slave
model. It consumes from 1 mA to 6.3 mA current and supports many topologies such as
peer-to-peer, star, tree, and mesh. SimpliciTI is also a low power radio frequency network
protocol used in heart monitoring systems [Gómez-Clapers and Casanella, 2012; Dilmaghani
et al., 2011]. SimpliciTI was designed by Texas Instruments for easy implementation and de-
ployment on RF platforms. It is Low data rate and low duty cycle protocol and supports star
and peer-to-peer network topology.

Tao et al. [Ma et al., 2012] proposed an unequal-error protection approach for heart
signals to reduce transmission distortion and to reduce power consumption of wireless trans-
mission. In this approach, more protection is provided to the segment of heart signal which
contains diagnostic important features compared to the other segments. Results showed that
nearly 40% of transmission energy can be saved compared to the equal error protection.

In a different approach, Atakanet al. [Atakan et al., 2012] introduced the concept of a
Body Area Network (BAN) with molecular communication where the messenger molecule
is used as a communication carrier from a sender to receiver. However, the communications
at the molecular scale are subject to numerous problems, some similar to the ones faced on a
larger scale in existing wireless networks.

2.6 NOISE SUPPRESSION AND CLASSIFICATION
Noise suppression and classification module performs automatic machine diagnosis

that enhances diagnostic accuracy. It is very helpful in the present scenario where number of
cardiologists are low as compared to the number of cardiac patients [WHO, 2011]. In noise
suppression step, noises are suppressed from heart signals. In the next step, the heart signal
is classified into normal and different CVDs.

2.6.1 Noise Suppression
Noise suppression fromheart signals is essential as its presencemay lead to imprecise

or inaccurate classification of the signals. Various denoising algorithms for the heart signal in
time domain and frequency domain have been proposed [Leng et al., 2015]. In the time do-
main, denoising algorithms have been proposed based on conventional filters (Butterworth
filter, Weiner filter, and Chebyshev IIR filter) [Bai and Lu, 2005], Adaptive Noise Canceller
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Table 2.2 :Wireless modules

(ANC), and autocorrelationmethod [Manikandan and Soman, 2010]. The conventional filters
are limited to suppress the noise which is out of the frequency band of the signal compo-
nents. On the other hand, ANC based algorithms such as Least Mean Square (LMS) [Song
et al., 2012; Tan et al., 2015], suppress the noise in an adaptive manner and, hence, suppress
in-band noise as well. These algorithms can detect dynamic variation in the signal [Rahman
et al., 2012]. LMS calculates filter coefficients that relate to producing the least mean squares
of error signal (difference between the desired signal and the filtered signal). Estimation of
filter coefficients requires high computation. To reduce the computation of LMS algorithms,
various variations in LMS algorithms have been proposed in literature and reported in [Rah-
man et al., 2012]. To further reduce the computational complexity author proposed [Rahman
et al., 2012] sign and error non-linear sign based LMS. The major drawback of the ANC al-
gorithms is that they need a reference (noise source) signal, which is not available in most
cases of the real-life scenarios. Manikandan and Soman [Manikandan and Soman, 2010] pro-
posed a computationally efficient denoising algorithm based on lag-1 autocorrelationmethod
[Manikandan and Soman, 2010]. However, the performance of these algorithms significantly
degrades as the level of noise increases.

In the frequency domain based denoising algorithms, the time domain signal is first
transformed into the frequency domain using a specific transform function such as Fourier
transform and WT, and then the transformed signal is processed. Analysis of the signal in
frequency domain provides the information about the spectral characteristics of the compo-
nents presented in the signal and, hence, more efficiency in noise removal can be obtained as
compared to the time domain. Sanei et. al. proposed an approach to separate the murmurs
from the FHS using singular spectrum analysis [Sanei et al., 2011]. Patidar and Pachori pro-
posed an algorithm to remove murmurs from the PCG signal using constrained tunable-Q
wavelet transform [Patidar and Pachori, 2013]. However, both the algorithms require high
computational time.

Variousdenoising algorithmshavebeendevelopedbased onWT [Debbal andBereksi-
Reguig, 2008b]. In these filters, signals are transformed into wavelet coefficients, as discussed
previously. Then noise suppression is achieved by discarding the coefficientswhich are corre-
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lated to noises, by applying a threshold. Although, wavelet based filters are able to suppress
the in-band noise, but the threshold value plays a crucial role in this approach Gradolewski
and Redlarski [2014]. If the threshold is selected high, signal information will be lost, while
small valuewill not have a significant effect on the signal. To obtain optimal denoising param-
eter for DWT based denoising, Messer et al. [Messer et al., 2001] performed experiments and
found that level 5 for the signal decomposition and soft thresholding with rigrsure threshold
selection rule gives the best result.

Almasi et al. [Almasi et al., 2013] introduced model-based Bayesian denoising frame-
work which combined the extended Kalman filter and dynamic model of the heart signal.
Results demonstrate that proposed method has the superiority over wavelet based denosing.
However, the requirement of a model of the heart signal limits the use of this framework.

Researchers have proposed many filtering approaches which analyse diversity be-
tween characteristics of heart signal components and characteristics of noises [Lee et al., 2012;
Liu et al., 2012b; Manikandan and Soman, 2010]. Lee et al. [Lee et al., 2012] used First order-
Intrinsic Mode Function (F-IMF) to minimize motion noise from the heart signals. F-IMF of
the clean signal has periodic patterns, whereas noise contaminated signal has highly varying
irregular dynamics with lower magnitudes. Thus, noisy segment can be classified from the
clean heart signal. Liu et al. [Liu et al., 2012b] removed the noises from heart signal compo-
nents based on the characteristic of wavelet coefficient that the signal coefficients with large
magnitude at a finer scale will also be large in magnitude at coarser scales. On the other hand,
the magnitude of coefficients caused by noises will decay rapidly along the scales. Manikan-
dan et al. [Manikandan and Soman, 2010] calculated lag-1 auto-correlation coefficients, which
give positive values for heart signal components and negative values for spurious noise.

Quasi-cyclostationary nature of heart signals also has been considered to filter noise
from the signals [Tang et al., 2010a,b]. Quasi-cyclostationary means that the morphology of
the heart signals does not change abruptly from a cardiac cycle to consecutive cardiac cycle.
Thus,Noise suppression can be achieved by correlating the consecutive cycles of the signal be-
cause noise components, in general, are uncorrelated. However, quasi-cyclostationary nature
of the heart signal may not be fulfilled due to variation in waveform, presence of murmurs,
and variation in the timing of the heart sound components. Furthermore, the performance of
this approach depends on the segmentation of cycle.

Respiratory system also affects heart signals significantly. To overcome this problem,
Chen et al. [Chen et al., 2011] proposed a zero-crossing method. It calculates the time interval
between two consecutive upward and downward points (IBI) in the signal. Then the inverse
of IBI gives the frequency of breathing signal, which can be removed by notch filtering.

When the heart signal is being recorded continuously, noise often appears in parts of
the recorded signal. In some part, noise affects severely to the heart signal while in others it
affects mild. In case of severe contamination, that part of the signal can be eliminated from
diagnostic consideration while in case of mild contamination, noise suppression algorithm
can be used. This approach will improve diagnosis efficiency as well as optimize complexity
of denoising algorithms. This approach will be also helpful in-home care systems for alarm-
ing to the user for the bad signal quality. Thus, it is of interest to obtain a signal quality index
to find out a subsequence with better signal quality with respect to the rest of the cycle. Li
et al. [Li et al., 2013] proposed an optimum heart sound selection scheme based on cycle fre-
quency spectral density. In this approach, the quality of the heart sound signal depends on
the periodicity of the heart signal. In [Beritelli and Spadaccini, 2009], the quality index was
calculated using the Cepstral distance between homogeneous cardiac sounds. In this algo-
rithm, first, the heart signal was segmented into separate cardiac cycle using wavelet based
approach. After segmentation, Mel Frequency Cepstral Coefficient (MFCC) was calculated

22



for each cycle. Finally, the reciprocal of distance between MFCC coefficients of consecutive
cycle gives the quality score. The performance of this algorithm depends on the segmenta-
tion of the heart signal into cardiac cycle. Naseri [Naseri et al., 2013] described an approach
to identify the level of noise in the heart signal cycle. In this approach, first, the signal is seg-
mented into separate heart cycle. Then, cycles are clustered into a finite number of groups
based on geometrical parameter and spectral content. Next, median of these clusters is cor-
related to the test cycle features. Finally, by applying a threshold, the cycle is prescribed as
clean or noisy. Although, requirement of a test cycle features limits the use of this approach.

2.6.2 Analysis and Classification
Analysis and classification of the heart signals are challenging tasks due to non-stationary

nature of them. Moreover, time-to-time varying morphology of heart signals from Intra- and
inter-patient needs sophisticated classification algorithms. Classification of heart signals is
performed by analysing diagnostic features present in the signal. Since different signals pro-
vide different diagnostic features, therefore analysis and classification of these signals are
provided separately for each sensor, as follow.

(a) Electrocardiography
ECG signal consists of different waves P, Q, R, S, T, and U. Each wave is associated

with particular functionality of the heart, as discussed in Chapter 1. Analysis of the shape of
these waves leads to diagnosis of CVDs including MI, hypertensive heart diseases, arrhyth-
mia, and CHD. The impact of CVDs can be seen on the waves in ECG signal. MI causes ST
elevation or depression depending on the severity of the infarction. Location of the infarc-
tion can be identified by analysing ECG signals of different leads. In case of hypertension,
QRS voltage increases due to both thickening of wall (pressure overload) and dilatation of
chamber (volume overload) of the left ventricle. The RR (R wave to next R wave) interval is
critical in the diagnosis of many arrhythmias such as premature ventricular contractions, left
and right bundled branch blocks, and paced beats [Bashir et al., 2012]. ECG has been used in
combination with the PCG to assess the E-M window [Kim et al., 1984]. E-M window is the
difference between electrical systole (QT) and mechanical systole(QS2).

Classification of the ECG signal is performed by analysing shape of the waves present
in the signal. Parameters of the shape of thewaves act as features for classification algorithms.
Computational requirement of classification algorithms depends directly on the number of
the features used and the accuracy of classification depends on the quality of the features.
Thus, feature selection plays a prominent role in the classification of the ECG signals. In lit-
erature, many approaches have been proposed to select optimal features. Bashir et al. [Bashir
et al., 2012] calculated QRS, P, and T wave’s morphological parameters as features to de-
tect different arrhythmia. Then, a parameter score was calculated for an adaptive selection
of feature subset for particular arrhythmia. Accordingly, there will be a different feature set
for each arrhythmia, which enhances the accuracy, and at the same time reduces the com-
putational burden. While, Llamedo et al. [Llamedo and Martinez, 2011] calculated interval
features and morphological features for classification of arrhythmia. Interval features were
calculated from R peaks, and morphological features were calculated from three sources, R-
R interval, 2-D vectorcardiogram loop, and DWT of the ECG signal. Then outliers from the
feature set were removed based on Kurtosis coefficients. Mar et al. [Mar et al., 2011] applied
sequential forward floating search algorithm with a new criterion function index. The draw-
back of the proposed method is that in many cases the subset with highest criterion value
has a very large number of features. Kamath [Kamath, 2011] selected mean of Teager Energy
Operator (TEO) in the time domain and frequency domain as features set. Key characteristic
of the TEO is that it models energy of the source that generated signal rather than the en-
ergy of the signal itself. Hence, any deviations in the regular rhythmic activity of the heart
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get reflected in the TEO. Most of the above algorithms face the same challenge, requirement
of a large number of the feature set. The Large number of feature set is required for diagnosis
of the different types of diseases, but it results in large computational complexity. Another
challenge is due to variation in morphological descriptors of the heart signal with time.

Since mathematical operators work in the time domain, these are computationally
efficient and hence consume low power. Mathematical morphological operators have been
used [Zhang and Lian, 2009] to extract structural information of the ECG signal. However,
computational requirement increases as increment in order of the operators. To optimize com-
putation requirement, Zhang et al. [Zhang and Bae, 2012] proposed 1 dilation and 1 erosion
based morphology operator sets. However, the effectiveness of these algorithms depends on
the selection of three structural components of the operator, shape, length, and amplitude.

T wave delineation is crucial as prolongation of T wave to end of the T wave is asso-
ciated with ventricular pre-arrhythmicity and sudden cardiac death. Noriega et al. [Noriega
et al., 2012] analysed respiration effect on Twave. Atrial Fibrillation (AF) is associatedwith an
increased risk of cardiovascular and coronary artery disease, hypertension, etc. AF is typically
diagnosed by analysing irregular RR intervals. Huang et al. [Huang et al., 2011] proposed an
algorithm to classify AF by analysing RR interval.

(b) Phonocardiography
As discussed previously, PCG signal consists of two FHS (S1 and S2) and two other

sounds (S3 and S4). Characteristics (intensity, frequency, and duration) of these sound com-
ponents change due to the presence of CVDs. Additionalmurmur soundsmay also be present
in the PCG signal due to the presence of CVDs. Although PCG can indicate abnormalities
caused by important CVDs, it is used extensively for diagnosis of valvular diseases as sound
components are produced by the valvular activity [Boutana et al., 2011]. Heart sound classifi-
cation algorithms first partition the PCG signal into S1, S2, systole, and diastole intervals, by
identifying the FHS. After the segmentation, classification of the PCG signal is performed by
analysing the characteristics of these components. Thus, the primary task in automatic analy-
sis of the heart sound signal is the segmentation of it. However, segmentation is a challenging
task due to the presence of noise and murmur sounds. Moreover, the length of the cardiac
cycle varies with time due to physiological and pathological cases.

As a consequence, various segmentation algorithms for the PCG signal have been pro-
posed in the literature. Autocorrelation based methods have been used to predict the length
of the cardiac cycle and then the signal is segmented [Kao and Wei, 2011; Yuenyong et al.,
2011]. However, these algorithms suffer in the presence of noise and also the cycle duration
varies from each beat-to-beat due to Heart Rate Variability (HRV) and due to arrhythmia.
Tang et al. [Tang et al., 2012] proposed a dynamic clustering based method to segment the
PCG signal. The main problem with this technique is that it requires prediction of the car-
diac cycle, which is difficult in most cases of pathologies. Therefore, the performance of the
method degrades in such cases.

Another approach is based on envelope method, which has been used extensively for
the segmentation of PCG signal. Envelope of the PCG signal has been obtained using Shan-
non entropy [Yadollahi and Moussavi, 2006], Normalized Average Shannon Energy (NASE)
[Gavrovska et al., 2014; Ramos et al., 2013], Hilbert Transform (HT) [Atbi et al., 2013], Homo-
morphic filtering [Yuenyong et al., 2011; Gupta et al., 2007], Short-term log energy [Zia et al.,
2011], and Blanket fractal dimension [Paskaš et al., 2014]. Jiang and Choi [Jiang and Choi,
2006] proposed a new method to obtain the envelope of the PCG signal called as Cardiac
Sound Characteristic Waveform (CSCW), which is based on the single-degree-of-freedom
model of a spring-mass system. In another work [Choi and Jiang, 2008], they compared the
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performance of CSCW, Shannon energy, andHilbert transform and found that the CSCW rel-
atively better emphasise the FHS. Few researchers obtained the envelope using combinations
of multiple time domain features [Ramos et al., 2013; Kumar et al., 2006] and morphological
features [Safara et al., 2012]. Sun et al. [Sun et al., 2014] integrated two envelope techniques,
Viola integral method and short-timeHilbert transform. However, extraction of the envelope
significantly affected due to the presence of noise and presence of murmur sounds [Ramos
et al., 2013]. Themain challenge for the envelope extraction based algorithm is the selection of
the threshold value. A higher value of threshold missed the S1 and S2, while the lower value
of threshold detects spurious components and inaccurate S1 and S2. To resolve this problem,
Atbi et al. [Atbi et al., 2013] proposed a two-step thresholding scheme. In the first step, the
threshold is selected to detect S1 and S2 and in the next step, to detect murmurs. Envelop
extraction based algorithms are computationally low complex. However, the performance
of these algorithms depends on the morphology of the PCG signal. Furthermore, it becomes
difficult to detect FHS, where murmurs are merged with them.

Frequency domain transformation techniques such as Fourier transform, discrete co-
sine transform, auto-regressive based spectral analysis techniques provide frequency charac-
teristics of PCG signal components. However, time-frequency domain analysis is more suit-
able for the PCG signal analysis due to the diagnostic significance of timing and frequency of
the components. Time-frequency analysis of the PCG signal has been done using Short Time
Fourier Transform (STFT) [Boutana et al., 2011; Balasubramaniam and Nedumaran, 2010],
WT [Balasubramaniam andNedumaran, 2010; Syed et al., 2007]. Boutana et al. [Boutana et al.,
2011] classifiedmurmurs by analysing the Renyimarginal entropy of STFT coefficients. Renyi
marginal entropy remains high for murmurs and low for FHS. While, Balasubramaniam and
Nedumaran [Balasubramaniam and Nedumaran, 2010] implemented the PCG analysis algo-
rithm using STFT and wavelet on digital signal processing board. In [Syed et al., 2007], first,
PCG signal is segmented into intervals associated with cardiac cycle. Then intervals were
grouped together based on similarities between their STFT coefficients.

PCG signals have been classified using Artificial Intelligence (AI) algorithms such as
Hidden Markov Model (HMM) [Kwak and Kwon, 2012] and neural network [Reed et al.,
2004; Barschdorf et al., 1995]. Extracted features from the PCG signals using time-frequency
analysis tools such as wavelet, are used as feature points for these AI techniques [Reed et al.,
2004; Barschdorf et al., 1995]. Use of themachine learning algorithms reduces tedious envelop
analysis and its disadvantage in case of murmurs can be avoided but at the cost of having to
prepare the training dataset. To prepare the training dataset for PCG signal, Ahlstrom et al.
[Ahlstrom et al., 2006] proposed a feature subset selection algorithm from features of different
domains, including Shannon energy, wavelet, fractal dimension, and recurrent quantification
analysis.

PCG signal modelling is also performed to generate test data to analyse efficacy of
the developed algorithms [Sava et al., 1996; Zhang et al., 1998]. Modelling of the PCG signal
has been done using exponential damped sinusoidal model [Sava et al., 1996] and matching
pursuitmethod [Zhang et al., 1998]. Thesemethods provide complete parameterization of the
signal but require a large number of components.Whereas linear chirp signalmodelling is not
suitable for PCG signal because components of PCG signal do not have a linear relationship
with time. To achieve better accuracy, Xu et al. [Xu et al., 2000] proposed non-linear chirp
signal modelling of the heart sound components.

(c) Seismocardiography
SCGmeasures mechanical vibrations produced by heart during each cardiac cycle. As

discussed in Chapter 1, the SCG signal is composed of many waves. Each wave is associated
with a particular event of the cardiac cycle. Using these cardiac cycle events, several diagnos-
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tically important cardiac cycle periods have been obtained, such as LVET [Tavakolian et al.,
2014; Rienzo et al., 2013b], PEP [Tavakolian et al., 2014], systole and diastole [Tavakolian et al.,
2013], and quiescent phase [Wick et al., 2012, 2015].

In [Sun et al., 2010], Sun et al. studied the relationship between the cardiac event posi-
tion in SCGwith ultrasound signal and shown SCG as an accurate indicator of cardiac events.
Thus, SCG signal can be used todetect cardiac cycle boundary, heart rate [Nguyen et al., 2012],
HRV [Ramos-Castro et al., 2012]. SCG signals have been also used to obtain Systolic Blood
Pressure (SBP) [Imtiaz et al., 2013]. It was shown that SBP has the correlation with starting
point of the SCG signal in x-axis to the midpoint of the z-axis. However, SCG has been used
for the heart monitoring purpose, but its sensitivity to motion noise imposes limitation on its
wide use.

Characterization of the relation between the SCG signal and the ECG signal provides
significant information related to heart functionality. Wick et al. [Wick et al., 2012] analysed
relation between the R wave of the ECG and the AC wave of SCG signal. The R-AC period
varies across two individual and also for the same person at different heart rate. This study
strongly suggested the cardiac events also vary in the samemanner. Tavakolian et al. [Tavako-
lian et al., 2012] analysed period between the R wave of the ECG and the AO wave of SCG
to analyse the myocardial contractility. This period is called as PEP. Increment in the PEP
indicates reduction in contractility of myocardial.

SCG also have been used to diagnose several CVDs such as CAD [Wilson et al., 1993;
Korzeniowska-Kubacka et al., 2005, 2007], myocardial ischemia [Salerno et al., 1991], haemor-
rhage [Tavakolian et al., 2014]. It has shown more reliability and accuracy to diagnose CVD
[Salerno et al., 1991], CAD [Wilson et al., 1993], and to extract cardiac periods [Tavakolian
et al., 2013; Wick et al., 2012, 2015], compared to the other systems.

(d) Photoplethysmography
PPG signal contains sufficient parameters to measure heart rate, arterial oxygen sat-

uration, and information related to respiratory system [Venema et al., 2013; Li and Warren,
2012; Venema et al., 2012]. As discussed in the previous chapter, PPG measures variation in
intensity of light, reflected or transmitted, induced by variation in the amount of blood in
blood vessels. Respiration information can be extracted using three vital parameters; PPG
amplitude, variation in SpO2, and respiratory sinus arrhythmia [Venema et al., 2013]. Now a
day, pulse oximeters (variant of PPG) are being used extensively for heart monitoring [Ven-
ema et al., 2013; Li andWarren, 2012; Venema et al., 2012; Gil et al., 2013]. It measuresmultiple
PPG signals at different wavelengths viz., red (660nm) and infrared (940nm). Pulse oximeters
have been used for sleep apnea detection [Venema et al., 2013], pulse wave velocity calcula-
tion [Li and Warren, 2012], hypoxia detection [Venema et al., 2012], HRV analysis [Gil et al.,
2013]. The pulse oximeters have been developed as an in-ear sensor for cardiovascular moni-
toring [Venema et al., 2013, 2012]. This setup of sensor could offer three important advantages:
1) comfortable to wear and hence, suitable for long-termmonitoring, 2) the tight-fitting could
reduce interference from motion artefacts, and 3) robustness to conditions such as tempera-
ture or skin perfusion.

However, PPG signals get contaminated primarily due to ambient light, motion arte-
facts and other physiological process. To extract information from the contaminated PPG
signals, Madhav et al. [Madhav et al., 2013] proposed an MSPCA based algorithm. In this
algorithm, noise suppression from the PPG signals was achieved using wavelet decompo-
sition and reconstruction. Selection of coefficients to reconstruct relatively clean signal was
done based on twomeasures, energy contribution level and Kurtosis. After reconstruction of
the clean signal, Principal Component Analysis (PCA) was performed to extract information
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about the respiratory system. Li andWarren [Li andWarren, 2012] developed a sensor circuit
in which photodetecters are radially distributed around the LED to increase the sensing area.
This set-up improved the signal quality without filtering algorithm. Whereas, Stuban et al.
[Stuban and Niwayama, 2012] analysed optimal corner frequency of low pass filter for PPG
signal. Setting the corner frequency to the fundamental frequency of the PPG signal resulted
in decreased noise, and consequently, decreased standard deviation. Haan et al. [Haan and
Jeanne, 2013] analysed robustness of the chrominance based algorithms to separate motion
induced distortion from rPPG signals in case of modest and vigorous motion.

2.7 USE OFMOBILE
The latest generation of mobile phones (smartphones) is increasingly used for health

monitoring, due to their powerful on-board computing capability, largememory, large screens
and open operating systems that encourage application development. Technical features of
mobile phone including text messaging, camera, internet access, inbuilt sensors, make it an
appropriate platform for improving health care services [Klasnja and Pratt, 2012]. Wireless
technologies, including GPRS, GSM, 3GSatelite, Wireless and LAN networks have been used
for wireless transmission of the heart signal [Kyriacou et al., 2009]. Mobile phones are also
suitable platform to develop a heart monitoring system because of (1) the widespread adop-
tion of phones, (2) people’s tendency to carry their phones with them everywhere, and (3)
context awareness features [Klasnja and Pratt, 2012]. Furthermore, visible representation of
the health status of the patient on mobile, encourage to be attentive to health promoting be-
haviour.

Mobile phones are being used for long-term heart monitoring at home for both on-site
monitoring and off-site monitoring. Smartphone based software applications can help clini-
cians in identifying acute symptoms, decreasing unnecessary tests to understand principles
of disease diagnosis, and communication facility among clinicians [Klasnja and Pratt, 2012;
Mosa et al., 2012]. In addition, mobile applications have been used for remote coaching, pub-
lic health research, primary care, emergency care, health information for self, drug reference,
medical training, to encourage for primary care check-up, and many more. Mobile phone
based healthmonitoring systems have been discussed in [Mosa et al., 2012]. Some of them are
as follows: (1) ‘Cardiomobile’ is comprised of a heart and activity monitor, single lead ECG,
GPS receiver, and programmed smartphone. The smartphone sends ECG rate,walking speed,
heart rate, elapsed distance, and patient location to a secure server for real-time monitoring
by a qualified exercise scientist. (2) Pulmonary Rehabilitation is an application for Chronic
Obstructive Pulmonary Disease (COPD) rehabilitation and self-management, developed for
smartphones. (3) ‘mVisum’ is a specialized application for cardiology communications that
monitor ECG data, alarm the user in abnormal case, and transmit data to clinician. (4) ‘iCPR’
is a Cardio-Pulmonary Resuscitation (CPR) training application. This application measures
the chest compression rate and gives audiovisual feedback, improving the performance of
chest compression by helping the user to achieve the correct chest compression rate. Another
smartphone based healthmonitoring system ‘BioSign’ is reviewed in [Tarassenko et al., 2006].
‘BioSign’ system alerts the patient in case of abnormality. It represents the health status of the
patient as a patient status index, which is calculated based on five vital parameters, heart rate,
breathing rate, blood pressure, arterial oxygen saturation, and skin temperature.

To enhance the user acceptability, Skully et al. [Scully et al., 2012] proposed a reflection
photoplethysmography based on imaging by mobile phones. In this approach, the palmer
side of the left index finger was placed over the camera lens of mobile with its flash turned
on. Then variation of intensity in captured video indicates the heartbeat. This approach does
not require any extra hardware. However, sensitivity of device get affected due to motion
and pressure variation of the finger. Another approach proposed by Poh et al. [Poh et al.,
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2012] integrate reflective photo-diode into earphone which are unobtrusive, and low in size
and weight. Then, the acquired signal was sent to mobile phone for monitoring purpose.
Major challenges for smartphone based health care systems include cost, network bandwidth,
battery power efficiency, small screen size, computer viruses etc. [Mosa et al., 2012].

2.8 CONCLUSIONS
The chapter provided a detailed review of recent advancements in portable heart

monitoring systems, ECG, PCG, SCG, and PPG. These systems are reviewed for their fea-
tures of adequate diagnostic capability, robust against noise, convenient to subject and unob-
trusiveness, and following are the conclusions.

ECG signal contains information about the electrical activity of the heart. Thus, pro-
vides better insight on the issues related to electrical conduction abnormality of the heart. On
the other hand, the PCG signal acquires acoustic sounds produced by the heart valves (me-
chanical action) and thus useful in the diagnosis of the valvular diseases. Due to the different
source of producing these signals (ECG and PCG), the diagnosis of a problem (e.g. Structural
abnormalities) from the PCG signal does not imply the same problem diagnosed from the
ECG signal, and vice versa. The combination of ECG and PCG has been used to assess the
E-Mwindow. As SCG signal is produced by the acceleration of the heart and the acceleration
is the second derivative of the displacement, such signal carries more diagnostic informa-
tion about the heart as compared to the PCG signal. The PPG signal provides only limited
information about the heart. It measures the blood variation in the blood vessels. Although,
the combination of PPG with ECG or PCG has been used for the assessment of Pulse Transit
Time (PTT), which is an important diagnostic parameter in case of obstructive sleep apnea
detection and blood pressure measurement.

For clinical use, all abovemethods are suitable as Signal-to-Noise Ratio (SNR) remains
high. At home, in the presence of the environmental and motion noise, the robustness of the
sensor to the noises is a major issue. In the case of ECG, wet sensors are robust to noise while
dry and capacitive sensors are vulnerable to noise. PCG is more vulnerable to patient’s mo-
tion noise and environmental noise compared to the ECG. On the other hand, SCG is robust
against environmental noise and against motion noise up to an extent.

ECG has limitations in long-term monitoring of heart due to the requirement of skin
contact of electrodes and use of gel, which sometimes causes itching problem. Moreover, for
signal acquisition, attachment of electrodes to different points on the body restricts patient’s
mobility. PCGhas advantages over ECG in terms of comfort of the patient and easy to operate.
SCG is superior to both PCG and ECG in terms of comfort because of the low weight (<3g)
accelerometers. PPG is also comfortable in terms of wearability and therefore usedwidely for
continuous heart monitoring. To increase the unobtrusiveness, in the case of ECG and PPG,
researchers have proposed sensors that do not require skin contact.

As discussed above, the heart sound signal based systems, PCG and SCG are com-
fortable to the user and provides ample diagnostic features to monitor the health status of
the heart. Moreover, the heart sound signal provides an early diagnostic marker for valvular
diseases which are increasing every year. In view of this, analysis of heart sound signal is
of paramount importance. However, these systems are vulnerable to environmental noises.
Therefore, the following chapters address the issue of noise contamination of the heart sound
signal.

…
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