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Noise Removal Algorithms for the Heart Sound Signal

As discussed in Chapter 3, the noise components may contaminate the signal record-
ing in real-life scenarios. The noise components may overlap the frequency band of Funda-
mental Heart Sound (FHS) and consequentially it may affect the diagnostic accuracy. Thus,
there is a requirement of an efficient noise removal algorithm, which can suppress the in-
band noise from the FHS. For this, a DWT based adaptive thresholding method for the heart
sound signal is presented in this chapter. Moreover, in view of the importance of analysis of
the heart sound signal in ‘walking’ scenario, an algorithm to removenoise components gener-
ated due to footsteps is also presented. The algorithm records heart sound signal and footstep
signature using multiple axes accelerometer. The unwanted footstep signature present in the
heart sound signal is removed judiciously. Thus, both the above-mentioned algorithms are
proposed to be used sequentially to remove in-band noise as well as noise components gen-
erated due to footsteps.

In this chapter, first, the description of the DWT based denoising algorithm is pro-
vided and then the noise removal algorithm using multiple axes is discussed.

4.1 ADAPTIVE THRESHOLDINGMETHOD FORWAVELET TRANSFORMBASED DENOISING OF THE
HEART SOUND SIGNAL

In view of the requirement of an efficient denoising algorithm, a DWT based adaptive
thresholding algorithm has been proposed and described as follows.

4.1.1 Introduction
Automatic analysis of the heart sound signal is generally performed in two steps; seg-

mentation and classification [Jain and Tiwari, 2014; Moukadem et al., 2013]. In the segmen-
tation step, FHSs are identified and then the signal is segmented into systole and diastole
periods [Moukadem et al., 2013]. Systole is the time duration from S1 to S2 and the dias-
tole is the time duration from S2 to next S1 [Jain and Tiwari, 2014]. In the classification step,
the signal is classified as normal or abnormal having a particular disease. Thus, the primary
task in the heart sound signal analysis is its segmentation [Moukadem et al., 2013]. How-
ever, the signal is highly susceptible to various noises generated due to the motion of subject,
speech of subject, movement of the sensor, lung sounds, and ambient sources [Chourasia
et al., 2014; Moukadem et al., 2013; Gradolewski and Redlarski, 2014]. Furthermore, patholo-
gies may cause the presence of extra sound in the signal, called as murmur [Jain and Tiwari,
2014]. The presence of these components makes the segmentation task difficult. Therefore,
to emphasise the S1 and S2, segmentation is often preceded by denoising to minimize the
contamination level of noise and to remove the murmurs from the signal [Naseri et al., 2013;
Patidar and Pachori, 2014]. However, the presence of murmurs in systole or diastole period
and their time-frequency characteristics leads to a diagnosis of heart valvular diseases [Sanei
et al., 2011; Dokur and Ölmez, 2008]. For example, murmur due to aortic stenosis, mitral re-
gurgitation and pulmonary stenosis occur in systole period and aortic regurgitation and mi-
tral stenosis occur in the diastolic period [Jain and Tiwari, 2014]. The features related to the
murmurs can be extracted from the segmented cardiac cycles more efficiently as compared
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to the signal with a number of cycles [Patidar and Pachori, 2014]. Therefore, once the signal
is segmented into cardiac cycles, pathological features, if present, are extracted from these
cycles [Patidar and Pachori, 2014].

Various denoising algorithms for the heart sound signal in time domain and fre-
quency domain have been proposed [Leng et al., 2015]. In the time domain, denoising al-
gorithms have been proposed based on conventional filters such as Chebyshev IIR filter [Bai
and Lu, 2005], ANC, and autocorrelation method [Manikandan and Soman, 2010]. The con-
ventional filters are limited to suppress the noise which is out of the frequency band of the
signal components. On the other hand, ANC based algorithms such as LMS [Song et al., 2012;
Tan et al., 2015], suppress the noise in an adaptive manner and, hence, suppress in-band
noise as well. The major drawback of the ANC algorithms is that they need a reference (noise
source) signal, which is not available in most cases of the real-life scenarios. Manikandan and
Soman [Manikandan and Soman, 2010] proposed a computationally efficient denoising algo-
rithm based on lag-1 autocorrelation method. However, the performance of these algorithms
significantly degrades as the level of noise increases.

In the frequency domain based denoising algorithms, the time domain signal is first
transformed into the frequency domain using a specific transform function such as Fourier
transform and WT, and then the transformed signal is processed. Analysis of the sound sig-
nal in frequency domain provides the information about the spectral characteristics of the
components presented in the signal and, hence, more efficiency in noise removal can be ob-
tained as compared to the time domain. Sanei et. al. proposed an approach to separate the
murmurs from the heart sound signal using singular spectrum analysis [Sanei et al., 2011].
Patidar and Pachori proposed an algorithm to remove murmurs using constrained tunable-
Q wavelet transform [Patidar and Pachori, 2013]. However, both the algorithms require high
computational time.

The most widely used method for the denoising of the heart sound signal is based on
the DWT [Gradolewski and Redlarski, 2014; Vaisman et al., 2012; Debbal and Bereksi-Reguig,
2008b] due to the fact that the DWT coefficients of the heart sound signal components will be
large and they will be confined to specific frequency band, while the coefficients for the noise
components will have small amplitude and scattered in different frequency bands [Donoho
and Johnstone, 1994]. Thus, denoising can be achieved by suppressing the small coefficients.
However, the performance of the DWT based denoising algorithm significantly depends on
the choice of the parameters: 1) Mother wavelet, 2) Number of decomposition levels and the
levels to be processed, 3) Threshold value, and 4) Threshold function [Gradolewski and Red-
larski, 2014].

For the denoising, mother wavelet should be orthogonal, which allows perfect recon-
struction of the signal [Messer et al., 2001]. For the heart sound signal denoising, various
orthogonal wavelets have been suggested such as Coiflet [Vaisman et al., 2012; Liu et al.,
2012a], Symlet [Dokur and Ölmez, 2008] and Daubechies [Cherif et al., 2010; Naseri and
Homaeinezhad, 2012]. In [Chourasia et al., 2014], Chourasia et. al. developed a new wavelet
for the PCG signal of a foetus.

The second parameter is the number of decomposition levels. The number of decom-
position levels should be selected precisely such that the useful signal components and un-
wanted components lie at different levels. The frequency range of each level depends on the
sampling frequency of the signal. As the sampling frequency increases the frequency range
of particular level increases [Meziani et al., 2012]. Therefore, different choices for a number
of decomposition levels are reported in the literature [Messer et al., 2001; Gradolewski and
Redlarski, 2014]. After the decomposition, levels to be processed should be chosen appropri-
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ately. In literature, most of the algorithms processed all the decomposed levels [Messer et al.,
2001; Gradolewski and Redlarski, 2014; Liu et al., 2012a; Agrawal et al., 2013], which requires
unnecessary high computation. In other approaches, the signal is reconstructed using coeffi-
cients at a few selected levels, while discarding others [Cherif et al., 2010; Dokur and Ölmez,
2008; Naseri and Homaeinezhad, 2012]. These approaches removes only out-of-band noise.
To suppress the in-band noise, the levels associated with the signal components should also
be processed [Vaisman et al., 2012]. Researchers have also proposed algorithms for the appro-
priate selection of the levels based on the energy and the frequency range of the PCG signal
[Safara et al., 2013; Choi, 2008].

The third parameter, threshold value, plays a crucial role in DWT based denoising. A
large value of threshold affects the useful signal components, while a low threshold valuewill
be ineffective to suppress the unwanted signal components [Naseri et al., 2013]. For the heart
sound signal, mostly used threshold estimationmethods are ‘rigrsure’ [Chourasia et al., 2014;
Vaisman et al., 2012; Zhao, 2005], ‘heursure’ [Messer et al., 2001; Gradolewski and Redlarski,
2014], ‘sqtwolog’ [Agrawal et al., 2013], and ‘minimaxi’ [Gradolewski and Redlarski, 2014;
Liu et al., 2012a]. The ‘sqtwolog’ is a fixed form method and does not take into account the
content of the signal, but only depends on the length of the signal [Chourasia et al., 2014]. It
provides a threshold value larger than other methods and hence it may result in over thresh-
olding. ‘minimaxi’ is also a fixed form threshold method, in which the threshold value is
estimated such that the maximum risk of estimation error is minimized [Messer et al., 2001].
The ‘rigrsure’ method determines a threshold value to minimize the Stein’s Unbiased Risk
Estimation (SURE). ‘rigrsure’ and ‘minimaxi’ methods estimate threshold value to minimize
the risk estimation and results in the low threshold value [Cai and de B. Harrington, 1998].
The ‘heursure’ method selects one of the methods from the ‘sqtwolog’ and ‘rigrsure’ meth-
ods, based on the comparison between the SURE estimation and SNR [Messer et al., 2001].
Naseri and Homaeinezhad [Naseri andHomaeinezhad, 2012] devised a threshold estimation
method based on theweighted variance of the noisewhile Kumar and Saha [Kumar and Saha,
2014] calculated the threshold as the 20% of the weighted maximum energy of the coefficient
vector. However, values of parameters used in these methods were obtained heuristically.

The fourth parameter is the threshold function, which defines the way to treat the
wavelet coefficients using the estimated threshold value. Soft andhard are twoexisting thresh-
old functions used extensively for the denoising of heart sound signals [Chourasia et al., 2014;
Vaisman et al., 2012; Liu et al., 2012a]. In soft threshold function, the coefficients lower than
the threshold are replaced by zeros while other coefficients get shrank by the threshold value
[Chourasia et al., 2014]. In hard threshold function, the coefficients lower than the threshold
are replaced by zeros, as in soft threshold, while larger coefficients remain unchanged. Hard
threshold function may cause discontinuities in the reconstructed signal and make it oscillat-
ing [Messer et al., 2001]. In soft threshold function, shrinkage of the wavelet coefficients by
threshold reduces the effect of singularities and transients that cannot be addressed by the
hard threshold function [Luo and Zhang, 2012]. However, hard threshold function produces
a larger SNRvalue than the soft threshold function. Zhao [Zhao, 2005] proposed a generalized
threshold function although it needs a selection of parameter, which controls the performance
of the algorithm.

To address the issues discussed above related to threshold estimation and threshold
function, we propose a new DWT based denoising algorithm for the heart sound signals. We
used ‘Coif-5’ wavelet as a mother wavelet and performed five levels of decomposition of the
signal sampled at 2 kHz.When a signalwith 2 kHz sampling frequency is decomposed, the 4th

and 5th levels cover the frequency range 31-125 Hz, approximately [Singh and Anand, 2007],
and hence cover most of the frequency range of the S1 and S2, which is 25-120 Hz [Singh
and Anand, 2007]. Therefore, in the proposed algorithm, only these two levels are processed.
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Removal of the coefficients of lower detailed levels also removes the out-of-band noise. To
further improve the performance of the denoising, we propose a novel adaptive threshold
estimationmethod using statistical properties of the DWT coefficients. The proposedmethod
uses the domain knowledge that the sum of the length of the S1 and S2 remains less than 25%
of the length of a cardiac cycle [Naseri andHomaeinezhad, 2013; Atbi et al., 2013]. Therefore, a
new parameter, med75 is calculated instead of traditional median value. The med75 represents
the 75th percentile value in the sorted absolute values of a coefficient vector in ascending
order. Further, to address the issue of threshold function, we also propose a new method
called as ‘non-linearmid’ function for the heart sound signal. Furthermore, its parameters are
optimizedusing the genetic algorithm, to improve its performance for the heart sound signals.
Thus, the proposed algorithm adaptively shrinks the wavelet coefficients of the signal.

4.1.2 Methodology
The proposed algorithm calculates a threshold value adaptively and the same is ap-

plied to the wavelet coefficients of selected levels. The proposed algorithm performs in three
steps as described below.

(a) Decomposition of the Signal
The first step in DWT based denoising is the decomposition of the signal into ap-

proximation (A) and detailed (D) coefficients. These coefficients can be obtained by applying
analysis filters: low pass filter (H) and high pass filter (G). To obtain the coefficients at the
next level, the output of the lowpass filter, called as approximation coefficients, and output
of highpass filter, called as detailed coefficients, are decimated by a factor of two and then
both the analysis filters are applied to the decimated approximation coefficients. These two
steps are applied recursively to obtain coefficients at higher levels, as shown in Figure 4.1.
This decomposition algorithm is called as Mallat algorithm and the constructed tree is called
as Mallat decomposition tree [Mallat, 1989].

In the proposed algorithm, ‘Coif-5’ wavelet is chosen as the mother wavelet because
it gives better performance for the denoising of heart sound signal as compared to other
wavelets [Gradolewski and Redlarski, 2014; Messer et al., 2001; Liu et al., 2012a]. Using the
‘coif-5’ wavelet, the signal is decomposed up to five levels. Decomposition of the signal with
2 kHz sampling frequency will result in five detailed levels (500-1000, 250-500, 125-250, 62-
125, and 31-62 Hz) and one approximation level (0-31 Hz) [Singh and Anand, 2007]. Thus,
the 4th and 5th detailed levels cover most of the frequency range of FHS, which is typically
25-120 Hz [Singh and Anand, 2007] and hence FHS are prominently present in these two
levels, as shown in Figure 4.2. Therefore, only these two levels are processed further while
other detailed level coefficients and approximation coefficients are discarded. Non-inclusion
of lower level detailed coefficients also suppress the murmurs from the signal because fre-

Figure 4.1 : Block diagram of the DWT based denoising algorithm
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quency range of most of themurmurs is higher than the frequency range of S1 and S2 [Debbal
and Bereksi-Reguig, 2008a]. The suppression of the murmurs is required to emphasise the S1
and S2. However, the characteristic features of the murmur are needed for the diagnosis of
the heart valve diseases. Hence, these features will be required and the same can be extracted
after the signal is segmented into cardiac cycles.

Figure 4.2 : Reconstructed signal at various detailed levels and approximation level

(b) Thresholding of the Coefficients
The second step is thresholding of the wavelet coefficients, in which the coefficients

are modified based on a threshold value. Generally, thresholding of the coefficients is per-
formed in three steps [Gradolewski and Redlarski, 2014], described in following subsections.

Estimation of the threshold
As stated in the introduction section, the existing methods are either not adaptive to

the SNR of the signal or try tominimize the risk for theworst case. The threshold value should
be a function of the SNR of the signal so that the noise can be suppressed efficiently without,
or minimally, affecting the useful signal components. In view of this requirement, a novel
method of threshold estimation based on characteristics of the signal is proposed and given
as follows.

In this method, a new parameter is obtained to estimate the noise level based on the
time domain information of the heart sound signal. A detailed time-domain analysis of mul-
tiple heart sound signals is provided in [Singh and Anand, 2007]. According to it, the sum of
time duration of S1 and S2 remains less than 25% of the time duration of a cardiac cycle. Same
observations are also reported in [Naseri and Homaeinezhad, 2013; Atbi et al., 2013] for nor-
mal and various pathological cases. Thus, 75th percentile value of the absolute values of the
signal, sorted in ascending order, indicates the level of noise present in the signal, as shown
in Figure 4.3(a). Furthermore, the 75th percentile value gives effective indication of the noise
level as compared to the 50th percentile value (median), as shown in Figure 4.3(b). Therefore,
we propose a newvariablemed75, which represents 75th percentile value of the sorted absolute
values of coefficient vector in ascending order, and used for the estimation of the threshold
value.
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Figure 4.3 : Statistical parameters for the signal with addedwhite Gaussian noise: (a)med75 at two
different SNR values and (b) med75 and median values at various SNR values

Figure 4.4 provides the analysis of the med75 parameter and statistical parameters,
mean (m = mean(|Dj|)) and variance (v = variance(|Dj|)), of the absolute of the coefficient vec-
tor (Dj) contaminated with noise at three different levels, low, moderate, and high. As shown
in the figure, in the first case, when the med75 is lower than the variance (v) and mean (m),
the noise level is very low and therefore the threshold value should be low. In this case, the
difference between the med75 and variance (v) is proportional to SNR of the signal, as shown
in Figure 4.5. The second case, when the med75 is larger than the variance (v) and smaller
than the mean (m), represents a signal contaminated with a moderate level of noise. In the
third case, where noise level is very high, the med75 is larger than the mean (m) and variance
(v) both. Therefore, the threshold value should be high. In this case, as shown in Figure 4.5,
difference between the med75 and mean (m) increases with decrease in SNR. Based on these
observations of the relationship between three parameters, mean (m), med75, and variance (v),
the threshold estimation is proposed as follows:

T =






med75 × [1− (v−med75)] i f (med75 < v) Case : 1

med75
i f ((med75 > v)
&&(med75 < m))

Case : 2

med75 +(med75 −m) i f (med75 > m) Case : 3

In the first case, the threshold is obtained by multiplying med75 and (1− (v−med75)),
as given in Eq.(4.1), to obtain a small value of threshold. In this case, the multiplying factor
(1 − (v−med75)) will increase with the decrease in SNR and consequentially the threshold
value will increase. As the value of med75 reaches close to the variance (v), the multiplying
factor tends to be one and hence threshold becomes close to med75 value. In the second case,
the threshold value is set equal to the med75. As the level of noise increases further, the med75
will also increase (shown in Figure 4.5) and consequentially the threshold value will increase.
In the third case where threshold value should be high, difference between the med75 and
mean (m) increases with decrease in SNR, as discussed above. Therefore, the threshold is
obtained by summing the med75 and the difference of the med75 and mean (m), as given in
Eq.(4.1).

Threshold Rescaling
After the estimation of the threshold value, it is rescaled according to the level of noise

present in the signal. The Multiple-scale dependent (mln) [Misiti et al., 1996] rescaling ap-
proach is used to rescale the estimated threshold value T . According to it, the variance of
the noise is estimated for each level and the threshold value is rescaled i.e multiplied by the
variance of the noise. Since the noise variance ( ) is unknown in most cases, it is estimated as
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Figure 4.4 : Statistical parameter analysis for the wavelet coefficients (detailed level-4) in three
different cases (a) Low level of noise, (b) Moderate level of noise, and (c) Highly noisy

follows [Chourasia et al., 2014]:

=
MAD{Dj[n]}

0.6745

where MAD{Dj} represents the median of absolute value of detail coefficients at level j.

Applying Threshold to the Coefficients
The third step is to apply the scaled threshold value to the wavelet coefficients using

a threshold function. Mostly used threshold functions for the heart sound signal are ‘soft’
and ‘hard’ functions [Luo and Zhang, 2012]. As discussed in Section 1, the hard function
produces a larger SNR value than the soft function. However, the hard function may cause
discontinuities in the denoised signal. To overcome these shortcomings, another threshold
function, called asmid function [Phinyomark et al., 2012] is explored to use for the heart sound

Figure 4.5 : Statistical parameters (mean, Med75, and variance) of the wavelet coefficients (de-
tailed level-4) of signal contaminated with white Gaussian noise at various levels
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signals. As shown in Figure 4.6, it uses two threshold values, T1 and T2, given as follows:

T1 = ×T

T2 = ×T

The wavelet coefficients are treated in three partitions: 1) retain the coefficients with large
values unchanged, 2) coefficients with small values are set to zero, and 3) linearly shrink
moderate value coefficients by the threshold, as follow.

DT
j [k]

mid
=






Dj[k] i f |Dj[k]|> T2

sign(Dj[k])(|Dj[k]|−T1) i f T1 ≤ |Dj[k]| ≤ T2
0 i f |Dj[k]|< T1

Thus, this threshold function overcomes the issue of soft threshold function by retaining large
coefficients without change, while reduces the issue of discontinuities by linearly shrinking
of the middle coefficients. However, the mid function also contains discontinuities as in case
of soft and hard functions. To resolve this issue of the ‘mid’ function, the linear behaviour of
the function in the range of T1 to T2 is transformed into the non-linear behaviour to form a
‘non-linear mid’ function as follows:

DT
j [k] =

non−linear mid






Dj[k] i f |Dj[k]|> T2

Dj[k]
3/T2

2) i f T1 ≤ |Dj[k]| ≤ T2
0 i f |Dj[k]|< T1

Figure 4.6 : Output response of the soft, hard andmid threshold functions.

Optimisation of parameters and

In [Phinyomark et al., 2012], value of was set to one and value of was set to two. In
this work, the values of and parameters are optimised to improve the performance of
the ‘non-linear mid’ threshold function for the heart sound signal. For the optimization, the
genetic algorithm (GA) is used because it is found to be more effective in global optimization
[Yuan et al., 2010]. The GA is an adaptive heuristic search algorithm based on the evolu-
tionary ideas of natural selection in which stronger individuals are likely be the winners in a
competing environment [Man et al., 1996]. The algorithm repeatedlymodifies a population of
individual solutions and, over successive generations, the population evolves toward an op-
timal solution [Man et al., 1996]. The algorithm is implemented with the help of MATLAB®
(MathWorks) global optimization toolbox. The objective function is to minimize the mean
square error (MSE) between the coefficients of clean signal and the thresholded coefficients,
as follows:

MSE =
1
N

N

∑
n=1

Dclean
j (n)−DT

j (n)
2

56



where N is the length of vector, Dclean
j is a coefficient vector of jth level of the clean signal,

and DT
j is thresholded coefficient vector of jth level of the noise contaminated signal. Based

on the obtained results of optimisation by the Genetic algorithm, the value of is found to
be one for all noise levels. This was an expected value as the coefficients having an amplitude
smaller than the threshold value (T ) should be zero and this will happen with = 1, as this
can be seen from Eq.4.8. On the other hand, the value of is obtained to be a function of noise
level. This is given as follows:

=
1.3 med75 ≤ v
1.4 med75 > v

In case of low noise (med75 ≤ v), the value of should be low. We expected the value of to
be large for the high noise case. However, since the value of estimated threshold (T ) itself is
large, the optimum value of the second threshold (T2 = ×T ) is obtained at a moderate value
of (in this case 1.4), as against 2 given in [Phinyomark et al., 2012].

(c) Reconstruction of the Signal
After thresholding of the coefficients, the signal is reconstructed from the thresholded

coefficients. To reconstruct, the highest level detailed and approximation coefficients are up-
sampled by two and passed through the high pass filter (G) and low pass filter (H), respec-
tively [Mallat, 1989]. The summation of the outputs of these two filters results in approxima-
tion coefficients for the next level reconstruction, as shown in Figure 4.1. G and H are called
as synthesis filters and they are orthogonal to the analysis filters. The synthesis filters have
relationwith the analysis filters such that all four filters, two analysis filters and two synthesis
filters, form quadrature mirror filters [Chourasia et al., 2014].

In the proposed method, detailed coefficients at level 4th and 5th are thresholded ac-
cording to the proposed thresholding method, as discussed previously. The coefficients at
detailed levels 1st , 2nd , and 3rd and the approximation coefficients are made zero. Thus, the
reconstructed signal contains the signal corresponding to the thresholded coefficients at 4th

and 5th levels.

4.1.3 Results and Discussion
The Experiments are performed on the heart sound signal contaminated with sim-

ulated white Gaussian noise. For the noise simulation, pink and red noise models are also
considered because Gradolewski and Redlarski [Gradolewski and Redlarski, 2014] observed
that the characteristics of real-life noise are similar to pink and red noises. Furthermore, the
performance of the proposed method is also analysed on the signal acquired in real-life sce-
narios. To show the efficacy of the method to remove the murmur sounds, it is applied to
various pathological signals obtained from publicly available database [eGeneralMedical].

Performance evaluation indices: For the quantitative evaluation of the methods, following
three parameters are used.

A) Signal-to-noise ratio (SNR): SNR is most commonly used parameter to evaluate the
performance of denoising algorithms. The expression for SNR is givenas follows [Gradolewski
and Redlarski, 2014].

SNRdB = 10× log10
Signal power
Noise power

B) Fit coefficient: Fit coefficient, proposed in [Gradolewski and Redlarski, 2014] for the
performance evaluation of denoising algorithm for the heart sound signals, shows if the in-
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formation about subject’s health is preserved. It is obtained as follows.

f it = 100× 1− ∑N
i=1 [ f2(i)− f 1(i)]

2

∑N
i=1 [ f1(i)−(1/N)∑N

j=1 f1( j)]
2

where f1 is clean signal and f2 is the denoised signal. This coefficient indicates the difference
in morphology of the denoised signal f2 with respect to the clean signal f1. Basically, it is
a normalized coefficient of determination in the range of 0% to 100% [Everitt and Skrondal,
2010]. It is used in the statistical model analysis to assess goodness of fit of amodel. The value
of fit will be 0% when signals are mismatched and the information is lost, and 100% when
there is a perfect match between the signals.

C) Detection rate of S1 and S2: To show the diagnostic significance of the method, the
detection rate of the FHS, S1 and S2, are obtained. The detection rate shows the percentage
of correctly detected components in the denoised signal using a particular method. Detection
of components is achieved by a threshold-based peak finding algorithm presented in [Liang
et al., 1997]. Figure 4.7 shows the PCGsignal, its envelope extracted using normalized average
Shannon energy, and the components detected by the algorithm [Liang et al., 1997].

A number of false detected components are also obtained. A small number of false
components with high detection rates of S1 and S2 show that the method is efficient to sup-
press the noise. If the number of false components is low and detection rate of the components
is also low, it means the threshold value is high and thus resulted in over thresholding. On
the other hand, a large number of false points shows the inefficacy of the threshold method
to suppress the noise.

Figure 4.7 : Peak detection and identification: (a) PCG signal, and (c) envelope of the signal with
identified components

Database used for experiments: The experimental results are obtained using two datasets of
PCG signals. First is taken from the eGeneralMedical [eGeneralMedical], which includes PCG
signal for normal and various pathological cases. This dataset does not include the PCG sig-
nals contaminated with real-life noise. Therefore, a second dataset is created by acquiring
PCG signals from ten subjects in clinical and noisy environments, each for 20 seconds dura-
tion. For both the datasets, the sampling frequency is set to 2 kHz. The sampling rate of 2 kHz
is sufficient for the PCG signal because its fundamental components and pathological sounds,
murmurs, lie below 800 Hz frequency [Moukadem et al., 2013; Gradolewski and Redlarski,
2014].

The proposed threshold estimation method uses med75, as discussed in the previous
section, to measure the level of noise in the signal. To be effective of med75, the signal under
consideration should cover at least one cardiac cycle. Therefore, in the proposed method, the
signal is segmented into non-overlapping windows and the length of the window is set to 2
seconds. This length will cover the one cardiac cycle until the heart rate does not go less than
30 beats per minute.
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State-of-the-art methods: Performance of the proposed method is compared with the perfor-
mance ofDWTbaseddenoisingmethods reported in literature [Messer et al., 2001; Gradolewski
and Redlarski, 2014; Liu et al., 2012a]. Messer et. al. [Messer et al., 2001], and Gradolewski
and Redlarski [Gradolewski and Redlarski, 2014] performed experiments to determine the
optimum parameters of DWT for denoising of the PCG signals. Based on the experimentally
determined optimum parameters, for the comparison, we used ‘Coif-5’ as mother wavelet,
‘mln’ as rescaling method and following two combinations of threshold estimation methods
and threshold function.

DWT-A: ‘rigrsure’ threshold with soft threshold function.
DWT-B: ‘minimaxi’ threshold with hard threshold function.

Approximation coefficients were discarded because they are out-of-frequency band of FHS,
as observed in Figure 4.2.

(a) Results for the PCG Signal with Added White Gaussian Noise
Although white Gaussian noise characteristics were not observed in real-life noise

[Gradolewski and Redlarski, 2014], the proposed method is applied to the PCG signal with
Additive White Gaussian Noise (AWGN) to analyse its efficacy to suppress it. Experiments
were performed on the PCG signals acquired from 10 subjects. These signals were acquired
in a clinical scenario and then multiple instances of white Gaussian noise were added at var-
ious input SNR. The obtained qualitative results using various methods, at -4.63 dB SNR, are
shown in Figure 4.8. This SNR value is obtained when thewhite Gaussian noise is addedwith
10 dB SNR per sample to the signal usingMATLAB® (MathWorks). The obtained quantitative
results are provided in terms of SNR and fit values in Table 4.1 as mean±standard deviation
and in terms of detection rates in Figure 4.9, for all subjects at various levels of SNR.

Results of the proposed threshold estimationmethodwith threshold functions includ-
ing soft, hard, mid and proposed mid are analysed and compared with all four threshold es-
timation methods (‘sqtwolog’, ‘rigrsure’, ‘heursure’, and ‘minimaxi’), separately.

Soft threshold function: The proposed threshold estimation method and all the four meth-
ods with soft threshold function are applied to the PCG signal with AWGN. From Figure
4.8(a)-(e), it can be observed that the proposed threshold estimation method is outperform-
ing all popular methods. ‘rigrsure’ and ‘heursure’ are also providing satisfactory results with
soft threshold function, while ‘sqtwolog’ method results into over thresholding.

From the Table 4.1, it can be observed that the SNR values are higher of the denoised
signal using the proposed threshold estimation method compared to other methods. The
same result can also be observed for the fit coefficient. At a low level of noise (SNR > 0.38
dB), ‘heursure’ method is giving similar performances as that of the proposed method. On
the other hand, at a high level of noise (SNR< 0.38 dB), ‘rigrsure’ method is producing higher
SNR and fit values than the ‘heursure’ method.

Hard threshold function: Similarly, experiments are performed with the hard threshold func-
tion. From the Figure 4.8(a)-(e), it can be observed that the proposed threshold estimation
method outperforms competitivemethods.However, the denoised signal has discontinuities,
which is expected in the case of the hard threshold function. Figure 4.8(a), in particular, shows
that ‘sqtwolog’ suppressed the noise significantly. However, it results in over thresholding
and consequentially, PCG signal’s useful components also got suppressed.

As shown in Table 4.1, at a high level of noise (SNR< 5.42 dB) the proposedmethod is
producing highest SNR values when compared to state-of-the-art methods. However, at low
levels of noise (up to 5.42 dB), ‘sqtwolog’ method is producing highest SNR values among all
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methods. But, ‘sqtwolog’may suppress the heart sound components and itmay lead towrong
diagnosis [Gradolewski and Redlarski, 2014]. Higher fit values for the proposed threshold
estimation method also demonstrate the superiority of it over the compared methods. In the
comparison of soft and hard threshold functions, the hard function produces higher SNR and
fit values than the soft function. However, the result of the hard function contains few noise
components. These results are in line with the reported works in literature [Luo and Zhang,
2012].

Mid and proposed non-linear mid threshold functions: The results are obtained using the pro-
posed threshold estimation method with mid and proposed mid threshold functions sepa-
rately, and plotted in Figure 4.8(f). From the figure, it can be observed that the threshold value
obtained by the proposed threshold estimation methodwith the mid function suppresses the
noise effectively. The quantitative effectiveness of the proposed threshold estimationmethod
in terms of SNR and Fit values can be found in Table 1. From the table, it can be observed that
the proposed threshold estimation method with mid function produces higher SNR and fit
values when compared to the values obtained using the soft and hard functions. These ob-
servations show that the mid function overcomes the issues related to both soft and hard
threshold functions. The proposed threshold estimation method also ensures that there is no
significant loss in PCG signal components and hence diagnostic information present in the
signal are preserved. However, there is some loss of information due to the use of the mid
function [Phinyomark et al., 2012], as can be seen in Figure 4.8(f) at time instant 2.7 sec, S2
component is suppressed. This loss of S2 is because the value of (two as in [Phinyomark
et al., 2012]) is high and consequentially the upper limit (T2) of coefficient shrinking is also
high. This issue is addressed in the proposed non-linearmid threshold function by tuning the
parameter , hence the results are improved as shown in Figure 4.8(f), second column.

Figure 4.8 : Denoising results for soft, hard, mid, and non-linear mid threshold functions with vari-
ous thresholds estimated by differentmethods: (a) ‘sqtwolog’, (b) ‘rigrsure’, (c) ‘heur-
sure’, (d) ‘minimaxi’, (e) and (f) proposed threshold estimation method
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The figure depicts that the proposedmethod (proposed threshold estimation method
with proposed mid function) is able to suppress the noise from the PCG signal with AWGN
at low SNR -4.63 dB. The SNR and fit values obtained using the proposed method given in
Table 4.1, are highest among all the methods. There is a significant improvement in SNR and
fit values for the proposed method at a higher level of noise.

Table 4.1 : Obtained SNR (in dB) of the denoised PCG signals (average of 10 instances± standard
deviation) contaminated with simulated white Gaussian noise

± ± ± ± ± ± ± ±

± ± ± ± ± ± ± ±
± ± ± ± ± ± ± ±
± ± ± ± ± ± ± ±
± ± ± ± ± ± ± ±
± ± ± ± ± ± ± ±

± ± ± ± ± ± ± ±
± ± ± ± ± ± ± ±
± ± ± ± ± ± ± ±
± ± ± ± ± ± ± ±
± ± ± ± ± ± ± ±

± ± ± ± ± ± ± ±
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Same results are also observed for the detection rate of S1 and S2 using the proposed
method, as shown in Figure 4.9 (a and b). The detected number of false points is also lowest
among all methods. These results show the diagnostic superiority of the proposed method
over state-of-the-art methods.

Figure 4.9 : Results for PCG signals of different subjects with AWGN: (a) Detection rate of S1, (b)
Detection rate of S2, and (c) Number of false points

(b) Results in Case of Pink and Red Noise
The proposed method is also applied to the PCG signals contaminated by simulated

pink noise and red noise, generated through MATLAB® code created by Hristo Zhivomirov
[Zhivomirov]. The obtained denoised signals are given in Figure 4.10. The figure shows the
superiority of the proposed method over state-of-art methods. To quantify the results, in ad-
dition to the waveforms given in Figure 4.10, we obtained SNR and fit values of the denoised
signal at various noise levels as shown in Figure 4.11. The figure elucidates that the proposed
method significantly improves the SNR values of the denoised signal and produces higher fit
values. Furthermore, as in the case of AWGN, our methods give higher detection rates of S1
and S2, as shown in Figure 4.12, and at the same time, gives a lower number of false points. It
shows that the proposed method is efficient to suppress the pink and red noises, which have
similar characteristics to real-life noise.
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Figure 4.10 : Obtained denoising results for the PCG signal contaminated with pink and red noise:
(a) Clean signal, (b) Noisy signal, (c) DWT-A, (d) DWT-B, and (e) Proposed method

Figure 4.11 : SNR and fit values for the denoised PCG signal contaminated with pink and red noise

Figure 4.12 : Detection rate of S1 and S2 and number of false points in the denoised PCG signal
contaminated with pink and red noise.
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(c) Results for the PCG Signal Recorded in Real-life Scenarios
As discussed in Section 4.1, the heart sound signal is vulnerable to various noises gen-

erated in real-life scenarios. Therefore, it is of paramount importance to analyse the efficacy
of the proposed method under such scenarios. For this purpose, signals are recorded from
different subjects when they were moving and speaking, while working in an office where
there were other sources of noise such as noise due to another person talking. Figure 4.13
shows qualitative, and Table 4.2 gives a quantitative performance evaluation of the results of
the proposed method as compared to the state-of-art methods. The figure shows the perfor-
mance superiority of the proposed method over the compared methods. The detection rate
of S1 and S2, and number of false points are presented in Table 4.2. The numbers quantify the
efficacy of the proposed method over state-of-the-art methods.

Figure 4.13 : Denoising results for the recordedPCG signal in noise scenariousing variousmethods:
(b) DWT-A, (c) DWT-B, and (d) Proposed method

Table 4.2 : Result for the PCG signals contaminated with noise generated in real-life scenarios

As discussed in the previous chapter, in ‘walking’ scenario, noise generated due to
footsteps contaminate the heart sound signal. It is also discussed that the patients with CVDs
or who are prone to CVDs should walk for at least 30 minutes daily. Thus, a system which
can perform effectively in ‘walking’ scenario would be very helpful. Therefore, the proposed
method is tested especially on the signal acquired when the subject was walking. Figure 4.14
shows the results obtained using various methods. From the figure, it can be observed that
the proposed method suppressed the noise components significantly as compared to other
methods. However, the noise components generated due to footsteps are presented (at time
instance (second) 3.2, 5.6, 7.2, 8.1, 9.3, 10.2, 11.6, 12.5, 16.4, 17.5, 18.5, 19.6) in the denoised
signal sing the proposed method.
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Figure 4.14 : Denoising results for the recordedPCG signal in ‘walking’ scenariousingvariousmeth-
ods: (b) DWT-A, (c) DWT-B, and (d) Proposed method

(d) Results for PCG Signal with Murmur Sound
In order to evaluate the efficacy of the proposed method’s ability to emphasise the S1

and S2 in the presence of murmurs, dataset [eGeneralMedical] comprising of variety of mur-
mur cases was used in the experiments. Figure 4.15 shows the obtained results of denoising
using various methods for few cases of murmurs. From the figure, it can be observed that
the proposed method suppressed the murmurs significantly in all cases. As expected, this
improved the accuracy of the segmentation as shown in Table 4.3. However, in the case of
aortic stenosis, mitral valve prolapse, pulmonary stenosis and tricuspid regurgitation, few
components were undetected and hence false points are observed. This is because the mur-
murs significantly overlap the frequency range of the FHS. In these cases, the signal needs to
be decomposed into narrow frequency bands.

Figure 4.15 : Results of various methods to remove murmurs from the PCG signal; (a) murmur sig-
nal, (b) DWT- A method, (c) DWT-B method, and (d) Proposed method
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Table 4.3 : Result for PCG signal with murmur

4.2 A METHOD FOR CANCELLATION OF MOTION ARTEFACTS FROM THE SEISMOCARDIOGRAM
SIGNAL

As discussed above, the proposed DWT based denoising algorithm efficiently sup-
presses the level of noise from the heart sound signal. However, it leaves a lot of scope to
improve the SNR particularly in case of walking scenario. These contaminationsmay corrupt
the diagnostic features in the signal. Therefore, cancellation of these noise components is im-
portant to improve the usefulness of heart sound signal, while the subject is walking. The
proposed method for motion artefact cancellation is discussed in the following subsections.

4.2.1 Introduction
Recently, an algorithm has been proposed to reduce the impact of motion noise from

the SCG signal, based on averaging theory [Rienzo et al., 2013a]. In another method, an LMS
based adaptive filter has been proposed to cancel the motion noise from the SCG signal [Yang
and Tavassolian, 2015]. However, these algorithms require a reference signal or manual in-
tervention to extract the cardiac cycles. In another approach, Pandia et al. [Pandia et al., 2010]
implemented a polynomial smoothing filter to remove motion artefacts from the SCG signal
generated due to walking. However, it only removes the low-frequency noise. DWT based
denoising algorithms are able to suppress the in-band noise [Cai andHarrington, 1998]. How-
ever, it also will not be helpful in the walking scenario, as the intensity of the noise compo-
nents is larger than the intensity of the heart signal components.

To address the issue of noise contamination in ‘walking’ scenario, a novel algorithm
is presented to remove motion noise from the SCG signal. The z-axis and x-axis signals were
recorded using a three-axis accelerometer, attached to the chest wall of the subject. The z-
axis is set to perpendicular to the chest wall, and the x-axis is set in ventral-dorsal direction.
Thus, heart signal components are presented prominently in the z-axis and the impact of
walking is presented in the x-axis. Thus, to remove the noise components from the z-axis,
locations of footsteps are identified from the x-axis. Then the corresponding noise from the
z-axis signal is removed. After the removal of the noise components, the fundamental heart
sound components, S1 and S2, are identified.

4.2.2 Impact of Noise on the x-axis and z-axis of the Accelerometer
The x-axis and z-axis signals were acquired in various real-life scenarios, including

subject in motion while working in the office, speaking, and walking. A three-axis MEMS
accelerometer (MMA-7361, Freescale Semiconductor) was attached to the chest wall, close
to the apex of the heart. The acquired signals are fed to a PC through its sound card. The
sound card significantly attenuates the signal below 10Hz frequency,which is suitable for the
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heart sound signal. The signals are then sampled at 2k frequency and stored in the PC. This
sampling frequency is sufficient for the heart sound signal as their components, including
fundamental and pathological, lie below 700 Hz [Debbal and Bereksi-Reguig, 2008a].

The acquired signals are filtered using a band-pass filter with 10-60 Hz band-pass fre-
quency. This range of the filter is set because the frequency range of FHSs lie in this range [Jain
et al., 2016]. The signals acquired in different scenarios are described in following subsections.

(a) Speaking
The SCG signals were recorded while the subject was speaking and plotted in the

Figure 4.16. From the Figure 4.16(a), it can be observed that, due to speech of the subject, the
acquired z-axis signal significantly affected. However, most of the contamination is out-of
the frequency band of the FHS. It can be attenuated using a band-pass filter, as shown in the
filtered signal (Figure 4.16(b)). There is negligible impact of the speaking of the subject on
x-axis signal, as shown in Figure 4.16(c).

Figure 4.16 : Signals for speaking scenario: (a) Acquired z-axis signal, (b) Filtered z-axis signal, (c)
Acquired x-axis signal, and (d) Filtered x-axis signal

(b) In Motion
The SCG signals were also recorded while the subject was in motion and working

in the office. The recorded signals and their filtered versions are shown in the Figure 4.17.
From the filtered z-axis signal, it can be observed that the heart signal is less affected due to
slow motion noise. This is due to the better attachment of the accelerometer to the body, as
discussed previously.

(c) Walking
The SCG signals were also acquired when the subject was walking and plotted in the

Figure 4.18. In the z-axis signal, Figure 4.18(a), there are two types of noise contaminations.
One is composed of low-frequency due to the motion and another is high-frequency com-
ponents, which occur due to the footsteps. From the filtered z-axis signal (Figure 4.18(b)), it
can be observed that the low frequency noise components can be attenuated by band-pass
filtering. However, some noise components (marked as a red square) are presented due to
footsteps, as shown in Figure 4.18(b). Figure 4.18 (c) and (d) show that the signature of the
footsteps is also manifest in the x-axis signal.
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Figure 4.17 : Signals for motion scenario: (a) Acquired z-axis signal, (b) Filtered z-axis signal, (c)
Acquired x-axis signal, and (d) Filtered x-axis signal

Figure 4.18 : Signals for walking scenario: (a) Acquired z-axis signal, (b) Filtered z-axis signal, (c)
Acquired x-axis signal, and (d) Filtered x-axis signal

4.2.3Methodology
The steps performed in the proposed algorithm are shown in the Figure 4.19. In the

first step, the acquired signals of both axes (z-axis and x-axis) are filtered using a band pass
filter with 10-60 Hz pass-band. Then, it is identified that footsteps are present or not, based
on kurtosis of the x-axis. Kurtosis measures, whether the data is peaked or flat relative to the
normal distribution [Pearson, 1905]. That is, data sets with low kurtosis tend to have a flat
top near the mean rather than a sharp peak and vice-versa. Thus, the kurtosis value will be
higher in case of footsteps are present, compared to the case when footsteps are not present.
Therefore, if kurtosis is greater than threshold value T , footsteps are identified. Empirically,
the value of threshold T equals to 10, found suitable.

If the footsteps are present, then their locations are identified in the x-axis signal using
a threshold Tx. The value of threshold, Tx, is estimated using Otsu’s method. Otsu’s method
estimates a threshold to classify a dataset into two classes such that the intraclass variance
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will be minimum [Otsu, 1979].

The next step is to make the sample values zero in the z-axis signal, corresponding to
the identified locations of footsteps in the x-axis signal. The extra (noise) component caused
by the footstep in the z-axis signal may overlap the FHS, as shown in Figure 4.20. The cor-
responding location of the identified footstep in the z-axis signal is shown as a red point in
this figure. If a windowwith fixed length is used to remove the noise components from the z-
axis, it may also remove the heart sound components when they overlap, as shown in Figure
4.20(b) and (c). Therefore, we calculate zero-crossing points around the location of footsteps
in the z-axis signal and thenmake values zero from two zero-crossing points before and after
it.

After noise removal, peaks are detected in the filtered z-axis signal using a threshold
value Tz, which is also estimated using Otsu’s method. If two peaks are identified in 150 ms
duration, then only one peak with higher amplitude is considered. This duration is selected
to avoid multiple peaks for single component as the typical time duration of S1 and S2 re-
mains 70-90 ms [Singh and Anand, 2007]. Then, the peaks are classified as S1 or S2 based on
medical domain knowledge that the amplitude of S1 is higher than the amplitude of S2 and
the duration between S1 to S2 is lower than the duration between S2 to S1 [Singh and Anand,
2007].

Figure 4.19 : Block diagram of the proposed method

4.2.4 Results and Discussion
The proposedmethod is applied to the acquired SCG signals in different noise scenar-

ios. In speaking and motion scenarios footsteps will be absent, while, there will be footsteps
in walking scenario.

The results of the proposed method are also compared with two state-of-art methods.
One is based on DWT [Messer et al., 2001] and another based on Savitzky Golay based poly-
nomial smoothing [Pandia et al., 2010]. In DWT based denoising algorithm, the signal is first
decomposed up to five levels using ‘coif5’ as a mother wavelet. Then ‘rigrsure’ threshold es-
timation method with soft threshold function is used to suppress the noisy coefficients. For
the peak detection, same method as in the proposed method is used. The obtained results for
both cases are described as follows.
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Figure 4.20 : Noise components in z-axis due to footsteps: (a) Noise component, (b) Noise com-
ponent after the heart sound component, and (c) Noise component before the heart
sound component

Case 1: Without Footsteps (Speaking / Motion)
The obtained results of the proposed method and compared methods are shown in

Figure 4.21, for the signal recorded in motion scenario. When there are no footsteps, the kur-
tosis value of the x-axiswill be low and thus it is identified that the signal is without footsteps.
The identified peaks in the filtered z-axis using theDWT, polynomial smoothing filtering, and
the proposed method are shown in Figure 4.21(c), (d), and (e), respectively. From the figure,
it can be observed that all three methods are able to suppress the noise from the signal, and
hence S1 and S2 are detected efficiently.

Case 2: With Footsteps
The obtained results of the proposed method and compared methods for walking

scenario are shown in Figure 4.22. The identified peaks in the filtered z-axis signal using the
proposed method and compared methods are shown in Figure 4.22(c-e). According to the
proposed method, first, the locations of footsteps are identified in the x-axis signal. Then,
the noise components corresponding to the footsteps are removed from the z-axis signal, as
shown in Figure 4.22(e). From the figure, it can be observed that the proposed method ef-
ficiently identified and remove the noise components (footsteps) from the z-axis and accu-
rately identified heart sound components. Both the compared methods suppressed the low-
frequency noise significantly. However, both methods could not remove the noise compo-
nents generated due to footsteps and results into noise peaks remained in the filtered signal.

The proposed method and the compared methods are applied to the acquired signals
from a number of subjects in various scenarios. The obtained results are given in Table 4.4.
From the table, it can be observed that the proposedmethod efficiently works in each scenario
and outperforms the competitive methods. However, there were few false peeks remained in
the filtered signal using the proposed method. It is due to the number of noise components
generated by a single footstep.

4.3 CONCLUSIONS
In this chapter, we have proposed a DWT based method for denoising of the heart

sound signal. Themain contribution of the work is to threshold the wavelet coefficients adap-
tively, according to thepresence of noise. For the estimation of the threshold value, themethod
uses the domain knowledge about the heart sound signal that the sum of the length of the S1
and S2 remains less than 25% of the length of a cardiac cycle. We also proposed a non-linear
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Figure 4.21 : Obtained results for ‘inmotion’ scenario: (a) Acquired z-axis signal, (b) Acquiredx-axis
signal, and (c-e) Identified peaks in the filtered z-axis signal using DWT (c), polynomial
smoothing filtering (d), and (e) the proposed method

Figure 4.22 : Obtained results for ‘walking’ scenario: (a) Acquired z-axis signal, (b) Acquired x-axis
signal, and (c-e) Identified peaks in the filtered z-axis signal usingDWT (c), polynomial
smoothing filtering (d), and (e) the proposed method
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Table 4.4 : Obtained detection rate of S1 and S2, and number of false points in various scenarios

mid threshold function and optimised its parameter for the PCG signal. The performance
of the method is analysed for various types of simulated noise including white Gaussian
noise, pink noise, and red noise. Performance is also compared for the signals recorded in
various real-life scenarios. The obtained results show that the proposed method outperforms
the state-of-the-art methods. However, it is observed that additional algorithm is required
to remove in-band noise signature due to footsteps when the subject is walking. In walking
scenario, it is observed that the undesired footstep signature of noise component has larger
amplitude compared to the FHS. To address this issue, a novel motion noise cancellation
method using the multiple axes of an accelerometer has been presented. The obtained results
show the effectiveness of the proposed method to remove the noise components generated
due to footsteps.

In the motion noise cancellation method, if footsteps are detected in the x-axis signal
then it removes the corresponding components from the heart sound signal (z-axis), and if
footsteps are not detected in the x-axis signal, it does not process the z-axis signal. Therefore,
we propose to use the motion noise cancellationmethod in combination with the DWT based
denoising algorithm to suppress the in-band noise aswell as noise generated due to footsteps.
Such method makes a system able to perform heart monitoring in real-life scenarios.

In addition to noise generated due to external sources, the noise removal method
should also be able to suppress the murmur from the FHS. Murmurs are the pathological
sound, which may overlap the FHS in time and frequency domain, both. Murmur should be
separated from the FHS to segment the heart sound signal into separate cardiac cycles. Seg-
mentation of the signal is important because the diagnostic features can be extracted more
accurately from the segmented cardiac cycles as compared to the signal without segmenta-
tion. Therefore, the proposed DWT basedmethod is also tested to suppress themurmur from
the FHS. The obtained results show that the method is able to emphasise the S1 and S2 in the
presence of murmurs as well. However, in few cases of murmurs when the murmur overlaps
the FHS significantly, the proposed method needs improvisation. Therefore, the future work
includes the decomposition of the signal into fine-tuned narrow frequency bands.

…

71




