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A Robust Algorithm for Segmentation of Heart Signal

Sound using Tunable Quality Wavelet Transform

As observed in the previous chapter, the proposed motion noise cancellation method
and DWT based denoising algorithm suppresses the external noises efficiently and also mur-
murs in most of the cases. However, the need of improvisation was observed in the DWT
based method for few pathological cases where the murmur overlaps the FHS significantly.
This shortcoming of the method was due to the limitation of wavelet, in which the Q-factor
(ratio of centre frequency to bandwidth) cannot be tuned according to the oscillatory be-
haviour of the FHS. To address the issue, in this chapter, we present a robust algorithm for
the segmentation of PCG signal using Tunable Quality Wavelet Transform (TQWT), which
provides the ability to tune the Q-factor and, hence, adequate separation of FHS andmurmur
can be achieved.

5.1 INTRODUCTION
As discussed in the previous Chapter, the primary task in the heart sound signal anal-

ysis is its segmentation [Moukadem et al., 2013]. However, segmentation is a challenging task
in view of the following issues [Kao and Wei, 2011; Patidar and Pachori, 2013].

• Variable length of the cardiac cycle, induced due to heart rate variability and due to
arrhythmia [Oliveira et al., 2014].

• Variation in the amplitude of the components from beat-to-beat [Jiang and Choi, 2006].

• Contamination of noise which may occur due to motion or speaking of the subject and
environmental noises. These noise sources exhibit a very broad range of spectral char-
acteristics, duration and loudness.

• In the case of abnormality, the presence of murmur sounds and extra peaks such as
S3 and S4 may overlap the FHS in time and frequency, both [Yuenyong et al., 2011].
Moreover, the frequency range of the FHS also varies from one pathological case to
another.

As a consequence of the above-mentioned challenges, various segmentation algorithms for
the heart sound signal have been proposed in the literature. Autocorrelation based methods
have been used to predict the length of the cardiac cycle and then the signal is segmented
[Kao and Wei, 2011; Yuenyong et al., 2011]. However, these algorithms suffer in the presence
of noise and due to the variation of cardiac cycle duration, which varies due to the heart rate
variability and due to arrhythmia. In another approach, a dynamic clustering based method
has been proposed to segment the PCG signal using a density function and that makes the
method robust to noise [Tang et al., 2012]. The main problem with this method is the re-
quirement of prediction of the cardiac cycle, which is difficult in most cases of pathologies.
Therefore, the performance of the method is unsatisfactory in such cases.

Themost commonly used approach for the PCG signal segmentation is based on enve-
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lope method. Envelope of the PCG signal has been obtained using Shannon entropy [Yadol-
lahi and Moussavi, 2006], NASE [Gavrovska et al., 2014; Ramos et al., 2013], HT [Atbi et al.,
2013], Homomorphic filtering [Yuenyong et al., 2011; Gupta et al., 2007], Short-term log en-
ergy [Zia et al., 2011], Rényi entropy [Boutana et al., 2011], and Blanket fractal dimension
[Paskaš et al., 2014]. In [Jiang and Choi, 2006], a newmethod has been proposed to obtain the
envelope of the PCG signal called as CSCW, which is based on the single-degree-of-freedom
model of a spring-mass system. The performance of CSCW, Shannon energy, and Hilbert
transform was analysed to obtain the envelope of the PCG signal and found that the CSCW
relatively better emphasise the FHS [Choi and Jiang, 2008]. Some researchers obtained the
envelope using combinations of multiple time domain features [Ramos et al., 2013; Kumar
et al., 2006] and morphological features [Safara et al., 2012]. Viola integral method and short-
time Hilbert transform were integrated for this purpose in [Sun et al., 2014]. However, the
envelope obtained by time-domainmethods gets significantly affected due to the presence of
noise and due to the presence of murmur [Ramos et al., 2013].

To address challenges faced in the time-domain analysis, as stated above, researchers
first transformed the signal into a domain where S1 and S2 are emphasised [Ahlström, 2008]
and then the envelope is obtained. Several choices of the transformation have been presented
over the years, such as S-transform [Moukadem et al., 2013], pseudo-affine Wigner-Ville Dis-
tribution (WVD) [Gavrovska et al., 2014; Kudriavtsev et al., 2007], STFT [Boutana et al., 2011],
and empiricalmodedecomposition [Bajelani et al., 2013]. The envelope has also been obtained
by correlating the Morlet wavelet to the signal [Yuenyong et al., 2011; Rajan et al., 2006]. In
another approach, a singular spectrum analysis basedmethod has been proposed to separate
murmurs from the FHS [Sanei et al., 2011]. WT has been used extensively to emphasise the
FHS by retaining only the low-frequency components related to the FHS [Yuenyong et al.,
2011; Kumar et al., 2006; Vaisman et al., 2012; Song et al., 2012; Kumar et al., 2007]. WT based
method is able to suppress the out-of-band noise aswell as in-band noise from the FHS. How-
ever, it provides little ability to tune the quality factor (ratio of centre frequency to bandwidth)
of the wavelet according to the oscillations of FHS [Selesnick, 2011]. It imposes limitations on
WT based methods in pathological cases where murmur overlaps the FHS severely in the
frequency domain.

Recently, Patidar and Pachori [Patidar and Pachori, 2013] proposed a Constrained
TunableQualityWavelet Transform (C-TQWT) basedmethod to suppress themurmur sounds.
TQWT has the ability to tune its parameters including the quality factor of the wavelet, ac-
cording to oscillations of the FHS. Authors in [Patidar and Pachori, 2013] optimised the pa-
rameters of TQWT using the GA such that the kurtosis of the approximation level (last sub-
band) is maximised. Such approach provides the adaptability of the parameters according
to the signal, however, needs high computational time as the signal is decomposed multiple
times at each intermediate generation of GA. kurtosis will be relatively larger for the FHS
as compared to the murmur sounds. It is because the distribution of FHS is nearly super-
Gaussian,whilemurmur sounds haveGaussianor sub-Gaussian like distribution [Sanei et al.,
2011]. The obtained results for various pathological cases show the effectiveness of themethod
to segment the PCG signal in most of the cases. However, in some pathological cases where
murmurs have sharp peaks, the kurtosis is unable to distinguish between the murmur and
FHS, consequentially the segmentation is adversely affected. Moreover, selection of approxi-
mation level makes the algorithm prone to real-life noises as these noises are dominant in the
low-frequency band [Gradolewski and Redlarski, 2014].

In view of the above-discussed issues with C-TQWT related to the computational cost
and vulnerability to real-life noises, we propose a TQWT based improved method. The pro-
posedmethod first denoises the signal using DWT and then decomposes the denoised signal
up to twenty levels using the TQWT. Then a particular level is selected adaptively from the
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detailed levels only, instead of selecting the approximation level as in [Patidar and Pachori,
2013]. Due to this approach, the proposed method provides two advantages: 1) it discards
the approximation level and hence discardsmost of the real-life noise components, and 2) the
computational time of the algorithm is reduced significantly because the signal decomposi-
tion is performed only one time as against multiple times required in [Patidar and Pachori,
2013]. Another contribution of this work is the exploration of a new quality parameter, called
as Fano factor, to overcome the issues related to kurtosis being unable to distinguish between
themurmur and FHS, as stated above. Fano factor is the ratio between the variance andmean
of the signal and provides a measure of relative variability [Fano, 1947]. The variance will be
higher for the clean signal at the same time mean value will be relatively low. Thus, the Fano
factor will be relatively larger for the signal with FHS as compared to the signal with a mur-
mur. In the case of sharp murmur sounds, due to the presence of extra components, themean
value will be relatively high and consequentially the value of Fano factor will be relatively
low. Thus, the Fano factor is expected to select a level with emphasised FHS. To further im-
prove the robustness of the method, the signal of the selected level is thresholded. For this
purpose, a threshold value is obtained adaptively based on the statistical parameters of the
signal under consideration. A new parameter Med75 is introduced, which is 75th percentile
value of the sorted absolute value of the coefficient vector. 75th percentile value is selected,
instead of 50th percentile value (median), because typically the sum of the time duration of
both FHS, S1 and S2, remains less than the 25% of the time duration of cardiac cycle [Singh
and Anand, 2007]. After thresholding of the signal, the envelope is obtained using the NASE
method [Gavrovska et al., 2014] and peaks are identified using a threshold value, obtained
by Otsu’s method [Otsu, 1979]. Finally, peak conditioning and identification are performed
based on the domain knowledge about the duration of the systole and diastole periods.

The rest of the chapter is organised as follows: Section 5.2 provides the theoretical
background of the tunable quality wavelet transform and the proposed method is described
in Section 5.3. Results of the proposed method are presented and discussed in Section 5.4.
Section 5.5 provides the concluding remarks of the work.

5.2 THEORETICAL BACKGROUND ABOUT TQWT
I.W. Selesnivk [Selesnick, 2011] developed a wavelet transform for discrete-time sig-

nals forwhich theQ-factor is easily tunable and denoted it as TQWT.Q-factor of thewavelet is
the ratio of its centre frequency to its bandwidth. Tuning of the Q-factor makes the transform
tunable according to the oscillatory behaviour of the signal under consideration. The TQWT
was implemented using the filter banks consisting of low pass and high pass filters, same as
in the case of DWT. However, in TQWT, filters are oversampled and thus have redundancy
that provides benefits of near shift invariance andmore flexibility to design the required filter
bank. TQWT provides facility to parameterize the redundancy factor along with the Q-factor.
For continuity, a brief description of the decomposition and reconstruction using the TQWT,
as given in [Selesnick, 2011], is given as follows.

5.2.1 Decomposition of the Signal using TQWT
As shown in Figure 5.1, decomposition of the signal is achieved by applying high pass

and lowpass filters to the signal and then the obtained coefficients are decimated. The process
of applying filters and scaling is described in the following steps.

STEP 1: Initialization of scaling parameters, and , as follow:

=
2

Q+1
; = 1−

r

where Q is the quality factor and r is the redundancy factor. Although redundancy is ben-
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Figure 5.1 : Decomposition of the signal using TQWT

eficial for shift invariance, to avoid high redundancy, the values of the individual scaling
parameters i.e. and should be less than one and, for the perfect reconstruction, + > 1.

STEP 2: Calculate the unitary Discrete Fourier Transform (uDFT) coefficients of the
N-length signal x(n) as follows [Selesnick, 2011]:

X(k) =
1√
N

N−1

∑
n=0

x(n)exp
�
− j

2
N

nk
�

for 0≤ k ≤ N−1.

STEP 3: Obtain three frequency bands: pass band (P), transition band (T ), and stop
band (S) for both the low-pass and high-pass filters. As shown in Figure 5.2, pass band of the
low-pass filter is 0−N1 and stop band is N0−N. For the high-pass filter it is the reverse of the
low-pass filter, i.e. pass band is N0−N and stop band is 0−N1. Transition band, N0−N1, is
same for both the filters. N0 and N1 are obtained as follows:

N0 = ×N ; N1 = ×N

Thus, the frequency band of each level depends on the values of and . The sum of the out-
put responses of both the filters in the transition band should be one. Such type of transition
band can be constructed using any 2 -periodic power-complementary function [Selesnick,
2011]. In [Selesnick, 2011], I.W. Selesnivk used the Daubechies function with two vanishing
moments, expressed as follows.

(n) =
1
2

�
1+ cos

�
n

N +1

���

2− cos
�

n
N +1

�
0≤ n< N

where 0≤ n< N. The centre frequency (Fc) of the level j can be obtained as:

Fc =
1
4

j−1(2− )Fs

where, Fs is the sampling frequency of the signal. The bandwidth of the level j can be obtained
as:

BW =
1
4

j−1 Fs

STEP4:The output responses of both the filters, highpass and lowpass, are decimated
with factor and , respectively, as shown in Figure 5.1. A detailed description of the scaling
operation can be obtained from [Selesnick, 2011].
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Figure 5.2 : Characteristics of the filters used in TQWT decomposition

5.2.2 Reconstruction using TQWT
To reconstruct the signal, the last level of approximation and detailed coefficients are

rescaled by the factor 1/ and 1/ , respectively [Selesnick, 2011]. Then the rescaled coeffi-
cients are passed through the synthesis filters, low pass filter and high pass filter. The sum-
mation of the output responses of these two filters works as the approximation coefficient for
the next level reconstruction. In this way, successively, the signal can be reconstructed.

5.3 METHODOLOGY
In the proposed method, the signal is decomposed using TQWT and then particular

level with emphasised FHS, based on Fano factor, is selected from detailed levels. The block
diagram of the proposed method is shown in Figure 5.3 and various steps are described in
the following subsections.

Figure 5.3 : Block diagram of the proposed method

5.3.1 Preprocessing
The signal acquisition systems available, off-the-shelves, generally sample the signal

at a much higher rate than the required rate for heart sound signals with its frequency, typ-
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ically, below 700 Hz [Gupta et al., 2007]. Therefore, the acquired signal is decimated such
that the effective sampling frequency of the signal is set to 1600 Hz, adequately higher than
the Nyquist sampling rate. Decimation reduces unnecessary large data processing and hence
reduces the execution time of the algorithm. The decimated signal is denoised using DWT
based method [Gradolewski and Redlarski, 2014]. According to it, the signal is decomposed
up to five levels using the ‘coif-5’ as a mother wavelet. Decomposition of the signal with 1600
Hz sampling frequency will result in five detailed levels (400-800, 200-400, 100-200, 50-100,
and 25-50 Hz) and one approximation level (0-25 Hz) [Singh and Anand, 2007]. Thus, the 3rd ,
4th, and 5th detailed levels and approximation level cover the frequency range 0-200 Hz and
hence cover the frequency range of the FHS, which is approximately 20-120 Hz [Singh and
Anand, 2007]. Therefore, denoising is achieved by reconstructing the signal using approxi-
mation coefficients and detailed coefficients at 3rd , 4th, and 5th levels. The filtered signal is
normalised to suppress the amplitude variation of FHS, as follows:

xnorm(n) =
x (n)

max (|x|)

5.3.2 Decomposition using TQWT
As discussed in the previous section, the quality parameter Q and redundancy pa-

rameter r control the frequency band of each level. The values of these parameters should be
selected such that the murmur sounds get separated out, as much as possible, from the FHS.
However, it is a challenging task due to the varying frequency range of the FHS across various
pathological cases [Meziani et al., 2012]. In [Patidar and Pachori, 2013], values of the quality
and the redundancy parameters were adaptively obtained by optimising for the kurtosis of
the approximation level signal using the GA [Man et al., 1996]. Thus, the decomposition is
performed multiple times for each intermediate generation of the scaling parameters created
by GA, which requires high computational time. Moreover, selection of approximation level
may degrade the performance of the algorithm in the presence of real-life noises as these
noises are more dominant in the low frequencies [Gradolewski and Redlarski, 2014].

In view of these issues, the proposed method decomposes the signal up to twenty
levels using TQWT for only one time as against approximately 55 times, according to the
mentioned parameter values of the GA in [Patidar and Pachori, 2013]. Hence, the computa-
tional time is reduced significantly. The value of quality parameter Q is set to one because Q
close to unity provides effectively separates FHS from murmur, as observed in [Patidar and
Pachori, 2013]. The redundancy parameter r controls the undesired excessive ringing in order
to localise the wavelet in the time domain [Selesnick, 2011]. For r < 3, time domain response
will not be well localised [Selesnick, 2011]. However, at a large value of r, a large number of
decomposition levels will be required to separate the FHS and low-frequency noise. In view
of this trade-off, a moderate value of the redundancy parameter r = 8 is set.

Values of the parameters Q = 1 and r = 8 result values of the and as 1 and 0.875,
respectively, according to Eq.5.1. Then the signal is decomposed up to twenty (J = 20) levels.
Using these values of the scaling parameters and sampling frequency of 1600 Hz, the centre
frequency of the detailed level at J = 20will be 31.63 Hz and the bandwidth will also be 31.63
Hz, according to Eq.5.5 and Eq.5.6. Thus, the detailed level (J = 20) covers the frequency band
15.82 Hz

�
Fc−BW

�
2
�
to 47.44 Hz

�
Fc +BW

�
2
�
and the approximation level covers the lower

frequency band. As discussed above, the approximation level is prone to real-life noises and
therefore, it is discarded from the consideration. The level with emphasised FHS is selected
from the detailed levels adaptively based on a quality index, called as Fano factor, described
as follows.
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5.3.3 Adaptive Selection of the Level Based on Fano Factor
As discussed above, a quality index is required to select a level from the decomposed

levels, such that the selected level has emphasised FHS. Authors in [Sanei et al., 2011] and
[Patidar and Pachori, 2013] used the kurtosis [Pearson, 1905] for this purpose. kurtosis is a
measure of whether the data are heavy-tailed or light-tailed relative to a normal distribu-
tion [Westfall, 2014]. It is used generally in the statistical field to describe the distribution of
observed data around the mean. The kurtosis (K) can be expressed as follows.

K =

1
N

N
∑

n=0
(x (n)−mean(x))4

�
N
∑

n=0
(x(n)−mean(x))2

�2

Generally, themagnitude of the FHS is larger and shorter in time duration as compared to the
murmurs [Sanei et al., 2011]. Hence, the FHSs have super-Gaussian distribution and sharper
peaks than themurmur sounds, which is nearly Gaussian or sub-Gaussian [Sanei et al., 2011].
Thus, the kurtosis for the signal having prominent FHS will be larger as compared to the
signal with murmur sounds and noise. This can be observed from the Figure 5.4 (case 1),
which shows the signal of the aortic regurgitation pathological case at two different levels
(l1 = 5 and l2 = 19), decomposed using TQWT. In this case, the murmur sound is present at
level l1 and has the sub-Gaussian distribution, and the FHS is present at level l2 and has nearly
Gaussian distribution. Therefore, the kurtosis is higher for the signal at level l2. However,
when the murmur sounds have sharp peaks and overlap the FHS predominantly as in the
case of aortic valve ejection, shown in Figure 5.4 (case 2), this assumption does not remain
valid. In this case, the signals at two different levels l1 = 5 and l2 = 18 (decomposed using
TQWT) are shown. The signal at level l1 has murmur sound, which has sharp peaks and the
signal at level l2 has the FHS. The kurtosis is larger for the signal at level l1 than at the level l2.
Thus, using the kurtosis as a quality parameter to select the level with emphasised FHS, the
signal at level l1 will get selected where the murmur sounds have dominance over FHS.

Due to the limitation of the kurtosis, as mentioned above, a new quality index called as
Fano factor [Fano, 1947] is explored. It is also known as the index of dispersion and variance-
to-mean ratio [Cox and Lewis, 1966]. In statistics, it is generally used to quantify whether a set
of observed occurrences is clustered or dispersed compared to a standard statistical model.
The Fano factor (F) can also be viewed as a kind of noise-to-signal ratio and it is obtained as
follows [Fano, 1947].

F =
2
w

w

where 2
w and w are the variance and themean of the signal over awindowwith finite length

w. For the signal with noise, themean value of the absolute signal will be relatively larger than
the clean signal and hence the value of Fano factor will be lower. Therefore, in case 1 (Figure
5.4) the value of Fano factor is lower for the signal at level l1 than the value at level l2. In
the second case (Figure 5.4), where the murmur has sharp peak, the variance will be higher
for the signal with the murmur at level l1 as compared to the signal with FHS at level l2.
However, the mean value increases relatively more compared to the variance, which results
in smaller value of Fano factor for the signal at level l1 as compared to the level l2. Thus, using
the Fano factor as a quality factor, the signal at the level l2 will get selected which have more
emphasised FHS as compared to the signal at level l1.

To show the efficacy of the quality index, the characteristics of the denominator and
numerator terms of both quality indices, kurtosis and Fano factor, are analysed for the sig-
nal contaminated with AWGN. Figure 5.5 shows the relationship between denominator and
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Figure 5.4 : Analysis of quality indices in two different cases of pathological signals at twodifferent
levels, decomposed using TQWT

numerator terms of both quality indices with varying SNR of the signal. In the case of Fano
factor, as the SNR of the signal decreases, the denominator term ( ) increases exponentially
and the numerator term ( 2) decreases only a little. On the other hand, in the case of kurtosis,
as the SNR value of the signal decreases the numerator term decreases a little and the denom-
inator term remains almost constant. Thus, as the SNR of the signal decreases, the Fano factor
decrease exponentially as compared to kurtosis. Therefore, the Fano factor may be a useful
parameter to select a relatively clean level among various decomposed levels using TQWT.

Figure 5.5 : Analysis of denominator and numerator terms of Fano factor and kurtosis for signal
with various SNR, due to AWGN

5.3.4 Suppression of Low Amplitude Components
The previous step provides a signal with the emphasised FHS. Although, it may con-

tain unwanted components with lower amplitude than FHS, due to the murmurs and noise.
These components may affect the peak detection algorithm and, therefore, it is important to
remove them. For this purpose, the signal is thresholded using a threshold value, which is ob-
tained adaptively based on the statistical parameters of the signal. A new parameter, med75,
is proposed based on the domain knowledge about the heart sound signal that the sum of
the time duration of S1 and S2 remains less than 25% of the time duration of a cardiac cycle
[Singh and Anand, 2007; Naseri and Homaeinezhad, 2013; Atbi et al., 2013]. med75 represents
75th percentile value of sorted absolute values of detailed coefficients in ascending order. The
threshold value is estimated using variance (v) and mean (m) of the absolute of the signal, as
follows:

T =






med75× [1− (v−med75)] i f (med75 < v) Case:1

med75
i f ((med75 > v)
&&(med75 < m))

Case:2

med75 + (med75−m) i f (med75 > m) Case:3
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The threshold is obtained according to the level of noise present in the signal. In the first case,
when the med75 is lower than the variance (v) and mean (m), the noise level is very low and
therefore the threshold value should be low. The second case represents a signal contaminated
with a moderate level of noise. The third case represents a high level of noise.

The obtained threshold is applied to the signal according to the soft threshold function
[Luo and Zhang, 2012]. In this function, if the absolute value of the signal, |x[n]|, is less than
the threshold value (T ), then it is forced to zero, otherwise, it is shrunk by the threshold value
(T ) as follow.

xT
s [n] =

�
sign(x[n])(|x[n]|−T ) i f |x[n]|> T
0 otherwise

5.3.5 Peak Detection and Conditioning
Envelope extraction methods emphasise FHS by attenuating the noise and averag-

ing operation provides smoothness to the envelope [Choi and Jiang, 2008]. In the proposed
method, the envelope of the signal is obtained using the NASE [Choi and Jiang, 2008]. Shan-
non energy emphasises the medium amplitude components more effectively as compared
to the high amplitude components. It also attenuates the low amplitude components. Thus,
Shannon energy based envelope method helps to identify the FHS with medium amplitude,
especially in pathological cases where one of the FHS may have a lower amplitude than the
other one. NASE is obtained as follows [Choi and Jiang, 2008].

NASE (n) =
ASE (n)−mean (ASE)

standard deviation(ASE)

ASE is average Shannon energy, over the window length N, obtained as follows:

ASE (n) =− 1
N

n+N/2
∑

i=n−N/2
x2 (i)× log

�
x2 (i)

�

In the proposed method, window length N is set to 32 that corresponds to signal duration
of 0.02 seconds with the sampling rate of 1600 samples/second. The averaging operation
smooths the envelope, which helps in near correct peak detection [Messer et al., 2001].

Peak detection is performed using a threshold value obtained by Otsu’s threshold
method [Otsu, 1979]. Otsu’s method calculates a threshold value to classify data into two
classes such that the interclass variance will be maximized and intra-class variance will be
minimized. This matches with the requirement for the heart sound signal as the amplitude
of the FHS will lie in one class with high amplitude, while noise components, mostly, will
lie in another class with low amplitude. However, few false peaks may be identified due to
high amplitude of noise and therefore, peak conditioning is performed to remove these false
peaks. False peaks are removed based on the duration between detected peaks, as described
in [Liang et al., 1997]. If two peaks appearwithin 50ms,which is the largest split normal sound
interval, the peak with higher energy is retained and another one is discarded. After the peak
detection and conditioning, peaks are identified based on the biological information i.e. the
systole duration remains lower than the diastole and the systolic period is fairly constant than
the diastole period.

5.4 RESULTS AND DISCUSSION
Experiments are performed using MATLAB® (MathWorks, Inc.) on the dataset ob-

tained from the heart sound series produced by the Texas Heart Institute at St. Luke’s Epis-
copal Hospital [Institute]. The dataset contains the PCG signals of normal cases and vari-
ous pathological cases. Furthermore, the performance of the proposed method is tested on
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these PCG signals contaminated with simulated noise. For the simulation, white Gaussian
noise, pink noise, and red noise models are considered. Pink and red noise models are con-
sidered because the Gradolewski and Redlarski [Gradolewski and Redlarski, 2014] observed
that the characteristics of a real-life noise match to these noises, which are generated through
MATLAB® code created by Hristo Zhivomirov [Zhivomirov].

Theperformance of the proposedmethod is comparedwith recently proposedmethod
C-TQWT [Patidar and Pachori, 2013] and anotherWT based popular method used to empha-
sise the FHS [Yuenyong et al., 2011; Vaisman et al., 2012], as discussed in Section 1. The perfor-
mance of WT based method significantly depends on the selection of its parameters such as
mother wavelet, the number of levels, and thresholding rules. In order to determine the opti-
mum parameters, Gradolewski and Redlarski [Gradolewski and Redlarski, 2014] performed
experiments on the PCG signals contaminated with various types of noises. The determined
optimum parameters in [Gradolewski and Redlarski, 2014] are used to obtain the results for
comparison.

The results are compared subjectively using plots and objectively in term of the seg-
mentation rate (%). Segmentation rate is obtained as:

SR(%) = 100× Number o f segmented cycles
Number o f total cycles

The cycle is considered to be segmented if both S1 and S2 are correctly identified. The perfor-
mance of the proposed method is also compared with other methods with respect to compu-
tational efficiency.

5.4.1 Impact of Quality Indices: Kurtosis Vs Fano Factor
The proposed method uses Fano factor, as the quality index, to select the level with

emphasised FHS, instead of the kurtosis used in [Patidar and Pachori, 2013; Sanei et al., 2011].
To show the efficacy of the quality indices, the performance of the proposed method is anal-
ysed using both the indices, separately. White Gaussian noise, pink noise, and red noise were
added to the PCG signal of a normal case (shown in Figure 5.6) and the obtained results are
presented in Figure 5.7. From the figure, it can be observed that the use of Fano factor results
in emphasised FHS as compared to the one obtained using kurtosis.

Figure 5.8 shows the obtained results using both indices for various types of noise
at various SNR. At each SNR, the results of multiple instances (10 times) were averaged out
to find the performance at the given SNR. The Figure 5.8 depicts that the segmentation rate
is higher using the Fano factor as compared to the one obtained using kurtosis in all cases
of noise. In the case of AWGN, the results using the kurtosis degrades significantly mainly
due to the Gaussian nature of the noise. In the case of pink noise, segmentation rate is slightly
reduced using both the indices, although it is higher using the Fano Factor. Results using both
the indices are more satisfactory in the case of red noise as compared to the pink noise. It is
because red noise is mainly dominant in lower frequency [Gradolewski and Redlarski, 2014],
as compared to pink noise, which is discarded by not considering the approximation level.

Figure 5.6 : PCG signal of a normal case
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Figure 5.7 : Obtained results using the proposedmethodwith different quality indices for the PCG
signal contaminated with various types of noise: (a) noisy signal, (b) Results using kur-
tosis, and (c) Results using Fano factor. The Roman numbers (i) and (ii) represent re-
constructed signal at a selected basis level and its envelope using NASE, respectively

Figure 5.8 : Obtained segmentation rate (%) using the proposed method with kurtosis and Fano
factor, for the signal contaminated with various types of noise at various levels.

5.4.2 Result for the Normal Heart Sound Signal with Simulated Noise
The proposed method and two other methods, WT and C-TQWT, are applied to the

PCG signal contaminated with the simulated noise, as before. The obtained results are pre-
sented in Figure 5.9. From the figure, it is manifested that in all three types of noises, the
proposed method suppresses the noise significantly, which shows the effectiveness of the
use of the Fano factor to select the level with low noise. The figure also depicts the effective-
ness of the proposed adaptive thresholdingmethod for the suppression of the low amplitude
noise. WT method also suppressed the noise significantly, however, it is comparatively less
effective. On the other hand, the results of the C-TQWT method leaves a lot of scope for the
noise removal. It is because C-TQWT method selects the approximation level where these
noises have dominant energy.

To demonstrate the robustness of the proposedmethod, experiments are carried out at
various levels of additive noises (white Gaussian, red, and pink). Results obtained atmultiple
instanceswere averaged out to find the performance, same as before. These results are plotted
in Figure 5.10, which shows that the proposed method outperforms the other two methods,
WT and C-TQWT. In the case of AWGN, where noise has a uniform distribution over all
frequencies, the main reason behind the robustness of the proposedmethod is the use of Fano
factor, which efficiently selects the level with low noise. In the case of pink and red noise,
the proposed method efficiently segments the PCG signal because the approximation level
was discarded, where these noises have dominance. WT method produced better results as
compared to the C-TQWT method. The performance of the C-TQWT method is significantly
inferior in the case of pink and red noise. The reason behind it is the selection of approximation
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level, as discussed above.

Figure 5.9 : Obtained results for the PCG signal contaminatedwith various types of noise: (a) noisy
signal, (b) Results usingWTmethod, (c) Results usingC-TQWTmethod, and (d) Results
using proposed method. The Roman numbers (i) and (ii) represent reconstructed sig-
nal at selected basis level and its envelope using NASE, respectively

Figure 5.10 : Obtained segmentation rate (%) using various methods for the signal contaminated
with various types of noise at various levels

5.4.3 Result for Pathological Cases Without and With Simulated Noise
Experiments are also performed on the PCG signals of various pathological cases ob-

tained from the dataset [Institute], without and with simulated noise. Results obtained using
the proposed method and other two methods, WT and C-TQWT, for the PCG signal of few
pathological cases without simulated noise are presented in Figure 5.11. The figure depicts
that the proposed method efficiently suppresses the murmur sounds and hence emphasised
the FHS. Furthermore, the performance of the proposed method is superior in comparison to
WT and C-TQWT methods. The main reason behind this efficiency is due to the use of Fano
factor, which selected the signal with emphasised FHS. It was observed that, in most of the
cases, Fano factor selected the best level in terms of emphasised FHS.

Obtained segmentation rates for various pathological cases using theproposedmethod,
WT, and C-TQWT methods are given in Table 5.2. The table contains the result for the sig-
nals without additive noise and with additive noise simulated using various noise models.
In the case of without additive noise, the table depicts that the segmentation rate obtained
using the proposed method is higher in most cases compared to other methods. However,
in a few cases, the performance of the proposed method is inferior to the C-TQWT method.
The reason for the same is as follows: In the case of third and fourth heart sound, the Fano
factor selected the lower frequency subband, which was relatively clean as compared to the
higher frequency subbands. However, the selected level contains third or fourth heart sound
because these sound components have low-frequency range and overlap the frequency range
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of FHS, dominantly [Kumar et al., 2007]. The presence of these extra components affected the
segmentation accuracy of the proposed method. The same problem also occurred in one case
of mitral opening snap diseases. In this case, the subband selected using the Fano factor was
cleaner as compared to other subbands. However, few components were missing in the se-
lected band.

The performance of the C-TQWT method is satisfactory for most of the cases, due
to the adaptive decomposition of the signal using TQWT. The reason behind the low per-
formance of the WT method is its limitation to tune its parameters, which does not allow
decomposition of the signal into fine-tuned frequency bands.

The results obtained using various methods for the PCG signal of pathological cases
with additive noise are also obtained and provided in Table 5.2. The results presented in the
tablemanifested that the proposedmethod outperforms the other two state-of-art methods. It
shows the effectiveness of the quality index, Fano factor, to select the subbandwith a low level
of noise. However, in a few pathological cases such as aortic stenosis and pulmonary valve
stenosis, where murmur sounds affected the FHS severely, the performance of the proposed
method also degraded significantly. In the case of the signal with third heart sound, the WT
based method produced better segmentation rate as compared to the proposed and the C-
TQWT methods.

On the other hand, the performance of the C-TQWTdegrades significantly in the pres-
ence of additive noise, especially in case of pink and red noises. It ismainly due to the selection
of approximation level, which is prone to these types of noises.

Figure 5.11 : Results obtained for the PCG signal with murmur sounds: (a) PCG signal with murmur,
(b) Results using WTmethod, (c) Results using C-TQWTmethod, and (d) results using
proposed method. The Roman numbers (i) and (ii) represent reconstructed signal at
selected basis level and its envelope using NASE, respectively
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5.4.4 Time Complexity
The computational complexity of an automatic analysis algorithm becomes a crucial

factor when such system has to be used for long-term and when the heart is being moni-
tored at the Intensive Care Unit (ICU). Therefore, the proposed method has been compared
with the WT and C-TQWT methods with respect to computational time. The methods have
been implemented in MATLAB® (MathWorks, Inc.) version R2009b. The experiments have
been performed on a Dell personal computer consisting of the processor: Intel® core i5 CPU
760 @2.8 GHz, installed memory (RAM): 8.00 GB, and operating system: 64-bit Windows 7.
The computational time of all three methods for the signal with various lengths is provided
in Table 5.1. It is obvious that the WT method has a lowest computational time due to the
low number of decomposition level, which is six in this case. On the other hand, the pro-
posedmethod performs the decomposition up to twenty levels. However, as discussed in the
previous section, WT method is not efficient in pathological cases, which are the most im-
portant as they lead to a diagnosis of the health status of the heart. The proposed method is
approximately 25 times faster than the C-TQWTmethod. The reason behind this lower com-
putational time is that the proposed method decomposes the signal up to twenty levels, only
once as against the 55 times in C-TQWT method, as discussed in Section 5.1.

For the segmentation of heart sound signal, various methods based on envelope ex-
traction and transformation techniques have been discussed in Section 1. The time complex-
ity of the transformation-based methods is higher as compared to the time-complexity of the
envelope based methods. It is because, in addition to the computational cost of envelope ex-
traction, transformation-based methods include the computational cost required to transfer
the time-domain signal into another domain. The computational complexity of the DWT is
O(N), STFT is O(N2), S-transform is O(N2 log N), WVD is O(N2 log 2N) [Toole et al., 2005],
and TQWT is O(rN log2 N) where N is the length of the input signal, and r is the redun-
dancy factor [Selesnick, 2011]. Moreover, to perform the transformation, these methods re-
quire the buffering of samples of a certain time period. This requirement limits their use for
the real-time application. However, transformation provides a betterway to separate the FHS
from the murmur and noise and therefore most of the recently reported works are focused
on transformation-based methods.

Table 5.1 : Execution time (seconds) taken by the proposed method, WT method, and C-TQWT
method for aortic regurgitation case at various signal length

5.5 CONCLUSIONS
In this chapter, a TQWT based segmentation method, robust to noise and murmur

sound, is proposed for segmentation of PCG signal. There are three reasons that contributed
towards the enhancement of robustness of the method. First one is the discarding of the ap-
proximation level coefficients by which most of the real-life noise components get discarded.
The second reason is the use of Fano factor that effectively selects a level with the low level of
noise. The third reason is the adaptive thresholding of the selected level and that suppresses
the low amplitude noise components efficiently. The obtained results show that the proposed
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Table 5.2 : Obtained segmentation rate (%) using the proposedmethod, WTmethod, and C-TQWT
method for various pathological caseswithout additive noise andwith added noise sim-
ulated using white Gaussian , red, and pink noise models

� � �

100 90.32 61.29 48.39
93.75 93.75 43.75 56.25

100 100 100 100
100 100 100 100
76.92 61.54 61.54 53.85
93.75 93.75 75.0 87.50

88.00 48.0 44.0 52.0
91.30 52.17 26.09 26.09

100 76.92 61.54 69.23
100 83.33 83.33 75.0

93.55 80.65 90.32 83.87

100 86.21 82.76 75.86
100 80.0 83.33 70.0

100 100 100 100
92.31 92.31 89.74 74.36
91.30 82.61 84.78 73.91

100 81.82 63.64 81.82
100 100 100 100
100 100 92.86 100

94.44 88.89 77.78 88.89
100 66.67 55.56 66.67
100 68.75 56.25 68.75

100 100 93.75 100
100 100 71.43 100
75.0 66.67 66.67 66.67
100 91.67 83.33 100

100 100 100 100
100 100 100 100
100 100 91.18 79.14
100 100 91.43 88.57
100 100 88.37 90.70
100 100 77.78 96.30
100 100 94.74 100
100 96.30 85.19 92.59
95.0 85.0 60.0 75.0

100 94.44 83.33 88.89

100 86.96 78.26 82.61
100 91.30 82.61 86.96

100 68.75 37.50 50.0
100 64.29 67.86 64.29

90.90 90.91 81.82 90.91
96.66 93.33 80.0 86.67

96.29 59.26 81.48 74.07

100 75.0 80.0 95.0

100 100 95.24 100
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method outperforms the state-of-art methods in terms of segmentation rate. The method is
also compared with WT and C-TQWT based methods in terms of computational cost. Ob-
tained results show that the proposed method is computationally efficient as compared to the
C-TQWT,while, theWTbasedmethod ismore efficient as compared to the proposedmethod.
However, the performance of the WT method is limited in various pathological cases.

…
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