List of Figures

Figures	Title	page
1.1	Mortality due to CVDs, Worldwide	1
1.2	Anatomy of the human heart	3
1.3	Echocardiography	5
1.4	Single cardiac cycle represented by ECG	5
1.5	Single cardiac cycle represented by PCG	6
1.6	Single cardiac cycle represented by PPG	7
1.7	Single cardiac cycle represented by ICG	7
1.8	Single cardiac cycle represented by SCG	8
2.1	Heart monitoring system	13
2.2	Block diagram of Off-site heart monitoring system	14
3.1	Schematic diagram of the stethoscope	31
3.2	Schematic diagram of the MEMS accelerometer	33
3.3	Heart sound signal acquisition using PCG and SCG systems	33
3.4	System setup for signal acquisition using (a) PCG, (b) SCG, and (c) ECG	34
3.5	Time domain representation of signals: (a) ECG, (b) PCG, (c) SCG, (d) Ensemble	
	averaged PCG, and (e) Ensemble averaged SCG	35
3.6	Power spectrum of signals: (a) PCG signal and (b) SCG signal	36
3.7	(a) PCG signal, (b) Wavelet scalogram of PCG signal, (c) SCG signal, and (d) Wavelet	
	scalogram of SCG signal	38
3.8	Colour coding for the scalogram.	38
3.9	Signals for 'Clinical' scenario: (a) ECG signal, (b) PCG signal, (c) Filtered PCG signal,	
	(d) Averaged filtered PCG signal, (e) Detected points in PCG signal, (f) SCG signal,	
	(g) Filtered SCG signal, (n) Averaged filtered SCG signal, and (i) Detected points in	20
2.40	SUG SIGNAI	39
3.10	signal (d) Averaged filtered PCC signal (e) Detected points in PCC signal (f) SCC	
	signal (d) Filtered SCC signal (h) Averaged filtered SCC signal and (i) Detected	
	noints in SCC signal	40
3,11	Signals for 'walking' scenario: (a) ECG signal. (b) PCG signal. (c) Filtered PCG sig-	10
	nal. (d) Averaged filtered PCG signal. (e) Detected points in PCG signal. (f) SCG	
	signal, (g) Filtered SCG signal, (h) Averaged filtered SCG signal, and (i) Detected	
	points in SCG signal	41
3.12	Signals for 'motion of patient' scenario: (a) ECG signal, (b) PCG signal, (c) Filtered	
2	PCG signal, (d) Averaged filtered PCG signal, (e) Detected points in PCG signal, (f)	
	SCG signal, (g) Filtered SCG signal, (h) Averaged filtered SCG signal, and (i) De-	
	tected points in SCG signal	42
3.13	Signals for 'travelling' scenario: (a) ECG signal, (b) PCG signal, (c) Filtered PCG	
	signal, (d) Averaged filtered PCG signal, (e) Detected points in PCG signal, (f) SCG	
	signal, (g) Filtered SCG signal, (h) Averaged filtered SCG signal, and (i) Detected	
	points in SCG signal	43

3.14	Signals for 'in market' scenario: (a) ECG signal, (b) PCG signal, (c) Filtered PCG signal, (d) Averaged filtered PCG signal, (e) Detected points in PCG signal, (f) SCG signal, (g) Filtered SCG signal, (h) Averaged filtered SCG signal, and (i) Detected	
3.15	points in SCG signal 'Clinical scenario' signals: (a) ECG signal, (b) Filtered PCG signal, (c) S1 and S2 in	44
	PCG signal, (d) Rest of the cycle in PCG signal, (e) Filtered SCG signal, (f) S1 and S2	
	in SCG signal, and (g) Rest of the cycle in SCG signal	45
4.1	Block diagram of the DWT based denoising algorithm	52
4.2	Reconstructed signal at various detailed levels and approximation level	53
4.3	Statistical parameters for the signal with added white Gaussian noise: (a) med_{75}	<i></i>
	at two different SNR values and (b) med_{75} and median values at various SNR values	54
4.4	Statistical parameter analysis for the wavelet coefficients (detailed level-4) in	
	Highly poisy	55
15	Statistical parameters (mean Med_{25} and variance) of the wavelet coefficients	00
4.)	(detailed level-4) of signal contaminated with white Gaussian noise at various levels	55
4.6	Output response of the soft, hard and mid threshold functions.	56
4.7	Peak detection and identification: (a) PCG signal, and (c) envelope of the signal	
.,	with identified components	58
4.8	Denoising results for soft, hard, mid, and non-linear mid threshold functions with	
	various thresholds estimated by different methods: (a) 'sqtwolog', (b) 'rigrsure',	
	(c) 'heursure', (d) 'minimaxi', (e) and (f) proposed threshold estimation method	60
4.9	Results for PCG signals of different subjects with AWGN: (a) Detection rate of S1,	
	(b) Detection rate of S2, and (c) Number of false points	61
4.10	Obtained denoising results for the PCG signal contaminated with pink and red	
	noise: (a) Clean signal, (b) Noisy signal, (c) DWT-A, (d) DWT-B, and (e) Proposed method	62
4.11	SNR and fit values for the denoised PCG signal contaminated with pink and red noise	62
4.12	Detection rate of S1 and S2 and number of false points in the denoised PCG signal	60
	contaminated with pink and red noise.	62
4.13	methods: (b) DWT A (c) DWT B and (d) Proposed method	63
1 11	Denoising results for the recorded PCC signal in 'walking' scenario using various	05
4.14	methods: (b) DWT-A. (c) DWT-B. and (d) Proposed method	64
4.15	Results of various methods to remove murmurs from the PCG signal: (a) murmur	
	signal, (b) DWT- A method, (c) DWT-B method, and (d) Proposed method	64
4.16	Signals for speaking scenario: (a) Acquired z-axis signal, (b) Filtered z-axis signal,	
	(c) Acquired x-axis signal, and (d) Filtered x-axis signal	66
4.17	Signals for motion scenario: (a) Acquired z-axis signal, (b) Filtered z-axis signal,	
	(c) Acquired x-axis signal, and (d) Filtered x-axis signal	67
4.18	Signals for walking scenario: (a) Acquired z-axis signal, (b) Filtered z-axis signal,	
	(c) Acquired x-axis signal, and (d) Filtered x-axis signal	67
4.19	Block diagram of the proposed method	68
4.20	Noise components in z-axis due to footsteps: (a) Noise component, (b) Noise	
	component after the heart sound component, and (c) Noise component before	
	the heart sound component	69
4.21	Obtained results for 'in motion' scenario: (a) Acquired z-axis signal, (b) Acquired	
	x-axis signal, and (c-e) identified peaks in the filtered z-axis signal using DWT (c),	70
רר ⊿	Obtained results for 'walking' scenario: (a) Acquired z-axis signal (b) Acquired	10
7.22	x-axis signal, and (c-e) Identified neaks in the filtered z-axis signal using DWT (c)	
	polynomial smoothing filtering (d), and (e) the proposed method	70

5.1	Decomposition of the signal using TQWT	76
5.2	Characteristics of the filters used in TQWT decomposition	77
5.3	Block diagram of the proposed method	77
5.4	Analysis of quality indices in two different cases of pathological signals at two	
	different levels, decomposed using TQWT	80
5.5	Analysis of denominator and numerator terms of Fano factor and kurtosis for	
	signal with various SNR, due to AWGN	80
5.6	PCG signal of a normal case	82
5.7	Obtained results using the proposed method with different quality indices for	
	the PCG signal contaminated with various types of noise: (a) noisy signal, (b) Re-	
	sults using kurtosis, and (c) Results using Fano factor. The Roman numbers (i) and	
	(ii) represent reconstructed signal at a selected basis level and its envelope using	
	NASE, respectively	83
5.8	Obtained segmentation rate (%) using the proposed method with kurtosis and	
	Fano factor, for the signal contaminated with various types of noise at various levels.	83
5.9	Obtained results for the PCG signal contaminated with various types of noise:	
	(a) noisy signal, (b) Results using WT method, (c) Results using C-TQWT method,	
	and (d) Results using proposed method. The Roman numbers (i) and (ii) represent	
	reconstructed signal at selected basis level and its envelope using NASE, respectively	84
5.10	Obtained segmentation rate (%) using various methods for the signal contami-	
	nated with various types of noise at various levels	84
5.11	Results obtained for the PCG signal with murmur sounds: (a) PCG signal with	
	murmur, (b) Results using WT method, (c) Results using C-TQWT method, and (d)	
	results using proposed method. The Roman numbers (i) and (ii) represent recon-	
	structed signal at selected basis level and its envelope using NASE, respectively	85
6.1	Measurement of E-M window	90
6.2	The proposed system setup	91
6.3	System setup for signal acquisition using (a) PCG, (b) SCG and (c) ECG	91
6.4	The acquired signals (a) ECG, (b) SCG, and (c) PCG	92
6.5	The graphical user interface for the estimation of E-M window	93
6.6	Bland Altman plot between the SCG and the PCG: (a) to measure QS2-QT duration	
	and (b)to measure QT/QS2 ratio	94