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Introduction

Networks can be seen in real-world complex systems such as biological networks [Girvan
and Newman, 2002] [Assenov et al., 2008], transportation networks [Bell and Iida, 1997],
communication networks [Schwartz, 1977] and many more [Kelly, 2011]. These networks can be
analyzed under two different dimensions: first is the structural dynamics and second is the diffusion
dynamics on networks. An inter-dependency between the two is observed and can be utilized in
many ways. This thesis contributes in both the dimensions.

1.1 MOTIVATION AND APPLICATIONS
1.1.1 Network modeling

Understanding and modeling of complex network systems have received a lot of interest
in recent time due to its applications in many real world systems including transportation and
communication systems, WWW, Internet, power grid, etc. [Wang et al., 2011a; Albert et al., 1999;
Caldarelli, 2007; Albert et al., 2000, 2004; Arianos et al., 2009; Newman, 2010]. Real networks such as
Internet, social networks and transportation networks are large growing complex networks with
non-trivial connectivity pattern and structural properties. Collective dynamics of a network is
governed by local evolution processes. In order to model a real growing network, it is essential to
adapt the evolving process of real networks which possibly can be captured bymodel parameters.
Reasons for development of parametric network models include the following.

1. The structure of a real network is the outcome of processes which drive the structural
evolution of the network. A given real network can be possibly estimated by a combination
of different stochastic processes on it. Thus a network model could inherit properties of real
networks where the parameters involved in the model signify the contribution of individual
local stochastic processes.

2. Parametric models allow to infer the hypotheses regarding complex stochastic processes
associated with network evolutions. Correlation among the structural properties of real
networks and model networks verifies the novelty of the model and correctness of the
adopted hypotheses.

3. A parametric model can answer the question that how localized stochastic processes and
structures are responsible for global network patterns. In particular, whether such localized
processes are sufficient to obtain collective properties of real networks.

4. In general, it is believed that a deterministic approach to model real networks is not a good
idea to capture statistical properties of real complex networks. A more flexible and traceable
approach can work well in this context. A parametric model can be of great value if it
is able to provide closed form expression of structural properties of evolving networks.
Algebraic relations between the parameters can justify influence of these parameters in order
to determine specific structural properties in the corresponding model networks.
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5. A parametric model can work in two ways: firstly it can be used to produce the networks of
desired properties by setting the particular values of parameters, and secondly it can be used
for structural reconstruction of a real network by suitably choosing the parameter values
utilizing a structural property of the real network.

1.1.2 Structural reconstruction of networks
The structural reconstruction of a real network is concerned with reconstruction of a

real network by using both a network model and limited information of the real network. By
reconstruction, we mean that the model network should possess some collective structural and/or
spectral properties of the real network. For a parametric network model the question is how to
choose the values of the model parameters using limited information about the real network such
that for those values, the model network can capture collective properties of the real network.

A few reconstruction methods are introduced recently in literature for structural
reconstruction of networks. For example, a reconstruction method is proposed using betweenness
centrality in [Comellas and Paz-Sánchez, 2008], spectral reconstruction of complex network is
introduced in [Comellas and Diaz-Lopez, 2008], and evolutionary reconstruction of networks is
considered in [Ipsen andMikhailov, 2002]. Indeed a common feature in these proposed approaches
is the consideration of an initial (random) network and then the given network is reconstructed
by rewiring the edges of the initial network. Thus its application is limited since in general, real
networks are growing networks. These methods are also ad-hoc and lack intuition about the
evolution process during its formation as a growing network to achieve a particular structure in
the desired network.

As mentioned above, a pertinent question in the study of real networks is how to
reconstruct a real network when limited information about the network is given. If a method
can be accomplished for such a task then the problem of storing of large networks can also be
addressed. Indeed, the standard procedure to store a network is by storing the adjacency matrix
or edge list associated with the network having space complexity O(n2) and O(knn) = O(n1+ ),
respectively, where 1 > > 0, n is the size of the network and kn is the average degree of the
network. Instead, a suitable reconstruction method can reduce the space complexity by storing
only a statistical property (of space complexity O(n)) of the given network while preserving
other statistical properties. If parametric model networks can capture statistical properties of real
networks then any such model network can be used as a platform to analyze diffusion dynamics
on the corresponding real network. For example, information diffusion and epidemic spreading
on a real social network can be speculated by defining different protocols on the corresponding
model networks.

Here we mention that network reconstruction (NR) methods are proposed in the context of
accessing the dynamics on the nodes of a network. This approach approximately determines the
interaction pattern between the nodes during a dynamical process on the network [Angulo et al.,
2015; Shen et al., 2014]. However, the authors in [Angulo et al., 2015] discussed the fundamental
limitations of NR. The structural reconstruction of a network is significantly different from
accessing interaction pattern between the nodes of a real network during the dynamic process on
it. In fact it can address the lack of adequate generative models for complex networks in literature
aiming to capture multiple structural properties of a given real-world network simultaneously.
Often the existing popular network generation models focus on creating mathematical models for
the generation of networks having community structure and/or heavy-tailed degree distribution
such as power-law without addressing its potential to mimic structural properties of a given
real network. In this context, we mention that the Graph500 benchmark [Murphy et al., 2010;
Jose et al., 2013] attempted to generate synthetic networks considered as graph benchmarks in
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high-performance computing. For example, the Recursive Matrix (R-MAT) model [Chakrabarti
et al., 2004] is used to generate benchmark graphs. However it fails to achieve realism [Kolda
et al., 2014]. This calls for the development of new parametric network generation models and
reconstruction methods that can produce model networks which replicate the structure of a given
real-world network.

1.1.3 Relation between Diffusion dynamics and network evolution
Most often the structural organization of a real network is influenced by a diffusion

phenomena on the network. As a large class of real networks are scale-free networks, it is of
paramount interest to investigate what type of diffusion dynamics gives rise of a power-law in the
degree distribution of a network. Randomwalk dynamics is often used to study different diffusion
dynamics. Dynamics of a randomwalker has been investigated in many contexts [Nash-Williams,
1959; Tetali, 1991], for example, navigation and centrality of networks [Perra et al., 2012; Starnini
et al., 2012], routing of packets in the Internet, and diffusion in communication networks. Traffic
in transportation networks can also be represented as phenomena of randomwalkers [Wang et al.,
2006]. Random walk dynamics has been applied to explore the dynamics of wealth’s distribution
in economic networks, gene expression pathways in biological networks and search (navigation)
strategies in Internet [Adamic et al., 2001; Tadić and Rodgers, 2002; Tadić and Thurner, 2004;
Kim et al., 2002; Rosvall et al., 2005; Germano and de Moura, 2006]. In random walks, a walker
positioned at a node i can move to any node j which is linked to the node i in the network with
equal probability. Thus the selection of a node for a move is uniform among the neighbors of the
current node occupied by a random walker [Akyildiz et al., 2000; Noh and Rieger, 2004].

Navigation or searching dynamics in a network can be modelled as random walker
dynamics in which a walker can travel from one node to other connected nodes via links. The
performance of the searching can be measured in the form of mean-first-passage-time (MFPT).
MFPT of a node is the average number of clicks to reach that node while searching started from
a random node. A node of lower MFPT value gets more visits in searching which increase the
importance of the node. Dynamics on the networks affects the structuralDynamics of the networks and
vice versa tomake the networked system sustainable [Aoki et al., 2015]. Real networks, for example,
WWW network exhibits scale-free behavior under preferential or biased growth (proposed by
Barabasi and Albert) which should be justified by randomwalk dynamics, as the interdependency
between diffusion and structural dynamics provide a boost to think in this direction. Now the
questions are following: What is the motivation behind the preferential or biased growth of the
networks like Internet or WWW? How can one justify the preferential or biased growth of the
networks using random walk dynamics, if Dynamics on the networks and Dynamics of the networks
are interdependent?

Assume that real-world networks follow random walk based diffusion dynamics and
grows preferentially. As it is observed that Dynamics on the networks and Dynamics of the networks
affect each other, so existing random walk dynamics should justify the preferential or biased
growth of the networks. Consider WWW network as an example which follows preferential
attachment [Barabási et al., 2000] and searching dynamics in the network is modeled as random
walk phenomena [Adamic et al., 2001]. In the preferential attachment, a node prefers to get linked
with highly connected nodes in the network [Barabási et al., 2000] while according to randomwalk
dynamics, average searching time also known as mean-first-passage-time (MFPT), of a node in
a network is inversely proportional to the degree of that node [Redner, 2001]. Thus low degree
node has high MFPT which does not justify the preferential growth of the network because if a
node has degree 1 (initial degree) then whether it is connected with a high degree node or low
degree node does not matter, it will have high searching time. We can conclude that degree based
preferential or biased growth and the standard randomwalk based searching are not consistent to
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explain the dynamics of real-world networks which follow power-law degree distribution. Other
existing studies on biased random walk dynamics are also not able to justify the preferential or
biased growth of the networks. From the above discussion, it is concluded that there is a hidden
dynamics of diffusion which can not be captured by the existing random walk dynamics (based
or unbiased)[Redner, 2001; Fronczak and Fronczak, 2009]. This calls for investigation of biased
navigation or random walk dynamics which can able to provide a possible justification of the
preferential or biased growth of the WWW and Internet.

1.2 THESIS OVERVIEW AND CONTRIBUTIONS
In this thesis we propose a few parametric network formation models and develop a

reconstruction method for structural reconstruction of real scale-free networks by utilizing the
degree sequence/degree distribution of the real network. We also introduce a biased randomwalk
on networks and show its potential to justify preferential growth of the networks during diffusion
on the networks. Diffusion protocols on both static and dynamic networks are proposed that can
be used for link failure detection for real networks. Finally, a reconstruction technique for real
networks is described by utilizing diffusion dynamics on the networks.

Thesis consists of theoretical contributions in theory of network models including
application in network reconstruction from statistical properties of scale-free networks, and
diffusion on networks including applications such as link failure detection, and inference of
network structure from diffusion data. Chapters 3−6 deal with different models of networkswith
different perspective such a context dependency in selection, nucleation as network formation,
choice and chance based link formation, and finally in Chapter 6, it is shown that the proposed
parametric model for complex networks can be utilized for structural reconstruction of scale-free
real networks. Chapters 7−9 are focused on study of diffusion dynamics on real networks and its
applications for detection of link failure in real networks, justification for heterogeneous growth
of real networks, and reconstruction of networks using diffusion data. Chapter 7 raised a question
about the existing random walk diffusion protocols which are not able to justify the growth of
networks and a new biased random walk is proposed that justifies the observed property (biased
growth or preferential growth) of real networks. Thesis contributes in the domain of network
modeling and diffusion on networks. A brief overview of the thesis (chapter by chapter) is as
follows:

1.2.1 Network Models
Parametric network generation model: Context dependent preferential attachment (Chapter 3)

In this chapter we propose a parametric growing network generation model based on
context dependent preferential attachment. It can be observed in real social networks that a newly
joined node forms a link with an existing node based on contexts. Consider an example of a
matrimonial site. While selecting a bride or groom, one looks for multiple attributes of a lass
or lad, for example, family background, job, physical appearance, etc. Similarly, in the case of
buying a product, a person thinks about the price and quality. So we can observe that our selection
process is not one-dimensional but we considermultiple dimensions. We adopt context dependent
node selection for growth or link formation among the participating nodes. We propose “Context
dependent preferential attachment model” (CDPAM) for generation of growing random networks
which inherit observed properties of real networks.

In the proposed network model, the preference of a new node to get attached with an old
node is determined by the local and global property of the old node. We consider that local and
global properties of a node as the degree and relative average degree of the node respectively.
We prove that the degree distribution of complex networks generated by CDPAM follow power
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law with exponent lies in the interval [2, 3] and the expected diameter grows logarithmically
with the size of new nodes added to the initial small network. Numerical results show that the
expected diameter stabilizes when alike weights to the local and global properties are assigned
by the new nodes. Computing various measures including clustering coefficient, assortativity,
number of triangles, algebraic connectivity, spectral radius, we show that the proposed model
replicates properties of real networks when alike weights are given to local and global properties.
Finally, we observe that the BA model [Barabási and Albert, 1999a] is a limiting case of CDPAM
when new nodes tend to give large weight to the local property compared to the weight given to
the global property during link formation.

Parametric model for signed networks (Chapter 4)
Often modeling of networks are considered in which all the connected pair of nodes

have similar kind of relations, for example, friendship. However, it is well known that there
are multiple examples of real-world networks which have different type of relations among the
participating nodes. Broadly, three types of relationships are categorized: one is positive, for
example friendship, second is negative, for example, enmity, and third is neutral that can be seen
as no relationship at all. These type of relations are represented by +1, −1 and 0, respectively.
A network in which existing links are denoted by positive and negative edges, for example,
friendship and enmity respectively, is called a signed network.

We consider modeling of social networks as signed networks based on observed social
phenomena, preferential attachment and random connection formationwith the structural balance
of local groups. A multilayer network model based approach is adopted to model it in which two
layers are considered, one is of positive edges and another of negative edges having the same
number of nodes in both the layers. We show that the degree distribution of the signed networks
generated by the proposed model follow power law on aggregation with power-law exponent

= 1+
1

1(C )
where 1(C ) is the largest eigenvalue of the inter-layer correlationmatrix C . The

novelty of the model is validated by comparing the properties of model networks and real-world
signed social networks using different metrics. The networks generated by the proposed model
exhibit the behavior of real-world signed social networks more closely as compared to other
consideredmodeling approaches in the literature. Internal growth and the theory of social balance
are also considered while proposing the model.

Parametric network model inspired by nucleation process (Chapter 5)
In the previous chapters, we considered the adaptation of social theories to model the

growth processes for networks. In this chapter, the well known nucleation process is observed
and studied as network formation which is also adopted for social network modeling. Events of
small duration, for example interactions among participants of workshops and conferences can be
modelled as a nucleation process in the form of networks.

In nucleation, individual entities move in the solution or vacuum in Brownian motion.
In the process, two or more entities come in physical proximity and thereby produce temporal
combined units or clusters. Depending on the prevailing physical conditions and the size of the
unit, the unit gains in terms of volume free energy and looses surface free energy. Such clusters,
called embryos, may also gather additional units by similar way and loose units by dissolution.
If they travel across an energy hill by gathering additional units, the volume free energy gain
dominates over surface free energy effect after a certain size. At this stage, embryos give birth
to a nucleus which is qualified to grow without dissolution. On the other hand, an embryo may
travel in the opposite direction in the energy axes and dissolve completely or partially. In other
words, the entities in the solution form network, they have reward and penalty on formation of
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network which depends on the prevailing conditions and the unit size, and an individual embryo
behaves stochastically which is similar to a network formation.

We consider the nucleation phenomena in the formation of groups of participants having
similar research interest in a workshop organized in an institute. Here, we assume that the nodes
represent researchers in the institute and V denotes the set of all researchers among them who
are participating in the workshop. Thus, for the network formation, we assume N( |V |) is the
total number of researchers available in the institute. We assume that the workshop schedule
includes k parallel sessions focused on different sub areas of research in each such session. The
speakers in each session at a given instant can be considered as the initiators for the resultant
network formation, in which, the closeness of a researcher (node) can be defined by considering
his research interest or social acquaintances with fellow researchers. The resultant network can be
thought of as an outcome of the crystallization process.

Structural network reconstruction using parametric modeling approach (Chapter 6)
Here, we consider the following problem: given the degree sequence and/or degree

distribution of a network G, can one construct a model network which can capture or replicate the
structural properties of G? For parametric complex network generation models such as [Pandey
and Adhikari, 2015; Dorogovtsev et al., 2000], the question can be posed as follows. How to choose
the values of the model parameters that can generate a networkwith desired structural properties?
We call this problem as structural network reconstruction (SNR) problemwhich can be interpreted
as an inverse problem of network generation. In this chapter, we consider SNR for scale-free
networks, that is, we develop a parametric growing network generation model which can inherit
various properties of a given scale-free network depending on the values of the model parameters.

We use the preferential attachment and random attachment with local growth techniques
for the generation of networks. We validate the proposed model for certain real world
networks and show that the networks generated by the proposed model can replicate various
properties of the given real-world networks. We provide a sufficient condition for the model
parameters satisfying which the model can generate networks which follow edge-densification
and densification power-law. Computable expressions for the expected number of triangles
and expected diameter are also obtained. Finally, we numerically establish that the proposed
model can generate networks with shrinking diameter andmodular structure when specific model
parameters are chosen.

In order to verify the novelty of the proposed parametric model in comparison to other
existing parametric network models, we consider solving the SNR problem by using DMS model
[Dorogovtsev et al., 2000], context dependent preferential attachment model (CDPAM) [Pandey
and Adhikari, 2015], forest fire model (FFM) [Leskovec et al., 2007] and community guided
attachment (CGA) model [Leskovec et al., 2007]. The results show that performance of both
DMS and CDPAM to solving SNR problem is not satisfactory. FFM and CGA model are able
to capture a few properties of the real-world networks for a specific choice of domains of its
parameters but have more time complexity compared to the proposed parametric model. Degree
distribution, distribution of clustering, hops, triangles, network values, singular values, and
algebraic connectivity are considered to verify the performance of different considered parametric
models and proposed model to solve the problem of SNR.

1.2.2 Diffusion on Networks
Biased random walk and information diffusion (Chapter 7)

It is well known that the links of real-world networks are dynamic. There are examples of
real-world networks in which links between nodes are due to their interactions and the frequency
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of interactions defines the communicability or transition probability of that link. Consideration
of weight of interactions can provide more insight into diffusion dynamics. In this chapter we
consider the heterogeneity of link activity to study the diffusion or random walk dynamics. A
biased random walk is proposed in this chapter which supports the biased growth of real-world
networks. Practically, searching in a network or information diffusion are not continuous long
lasting processes. These processes stop after some time and a new thread of similar processes can
start in the same network which can be modelled as discontinued truncated random (or biased)
walk dynamics.

In this chapter we provide an analytical explanation for preferential growth of networks
by defining and analyzing diffusion dynamics on the networks in the form of biased random
walks. Diffusion phenomena on networks are studied in many scenarios and contexts such as
information diffusion and random walk in searching strategies. We analytically show that the
proposed biased random walk supports that ‘being a friend of a rich person is beneficial’ in terms
of mean-first-passage-time (MFPT). Hence an analytical reasoning in support of the preferential
growth of real-world networks is established. Observing the fact that all most all the random walk
processes truncate at a finite time, we introduce two discontinued truncated biased random walk
processes which are inspired by information diffusion in real world networks. These processes
have applications in truncated searching on complex networks. The dynamics of these processes
reveal the importance of local structure (degree distribution of first neighbors) in diffusion and
searching. Repeated truncated random walk also known as a random walk with jumping
phenomena is applied to calculate PageRank efficiently.

Diffusion protocols for link failure detection and resource utilization (Chapter 8)
In this chapter we propose a diffusion protocol by utilizing the structural property of the

network that can help to identify the structural irregularities of the network. Thus, identification
of link failure, distribution of resources, and avoidance of underutilization of resources are few
practical problems which can be considered in an effective way.

Several applications in a large network depend on diffusion of information from one node
to others. We propose a diffusion protocol for networked multi-agent systems based on both
the structure of the network and the priority of agents. The agents (nodes) interact with their
neighbors for the diffusion of information based on the weighted difference of the resources
available at the neighboring nodes. We observe that the system finally reaches to a weighted
agreement which is proportional to the priority of every node, or the degree of the nodes. We
also perform the convergence analysis of the proposed protocol. The analysis has been done on
both static networks as well as dynamic networks. We propose three different applications where
such diffusionprotocols can be used: (i) in the detection of link failure, (ii) for ensuring security and
utilization of network resources, and (iii) to come up with a static fixed point convergence over a
dynamic network. The impact of stability and convergence of the proposed diffusion protocol are
also analyzed through simulation results under different test scenarios. Simulated results validate
the theoretical findings of the diffusion protocol and its applicability under different applications.

Network reconstruction using diffusion dynamics (Chapter 9)
From various studies; it is evident that diffusion pattern in a network is directed by the

diffusion rules and underlying network topology. In this chapter we do analysis of network
structure retrieval from the diffusion pattern. In other words, we can say reverse engineering
of diffusion dynamics to identify the connectivity pattern of nodes in a network. A framework is
proposed to extract network structure from the given data of SIS diffusion dynamics.

Uncovering the heterogeneous connection pattern of the networked systems from the
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available status-time-series (STS) data of a dynamical process on the network is of great interest in
network science and known as a reverse engineering problem. The outcome of the dynamics on a
network is related to the structure of the network. Information of the structure of the network can
help to devise the control of dynamics on the network. In this chapter, we consider the problem of
network reconstruction from the available status-time-series (STS) data using matrix analysis. The
proposed method of network reconstruction from the status-time-series data is tested successfully
under SIS diffusion dynamics on the real-world and computer-generated benchmark networks.
The connection (adjacency) matrix is reconstructed using the corresponding matrix generated by
STS data. High accuracy and simplicity of the reconstruction procedure from the status-time-series
data define the novelty of themethod. Our proposedmethod outperforms the compressed sensing
theory (CST) basedmethod of network reconstruction using STS data. Further, the same procedure
of network reconstruction is applied to the weighted networks. The ordering of edges in the
weighted network is identified with high accuracy.

…
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