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Preliminaries and literature survey

In this chapter, we survey the existing literature regarding the problems considered in this
thesis followed by a brief review of standard concepts in network science that are used in the thesis.
The chapter consists of three major parts: first part contains basic definitions of terminology and
notations, second part provides a review of existing network models and network reconstruction
techniques, and the third part is related to the existing diffusion protocols on networks.

2.1 BASIC DEFINITIONS
In this section, we recall some basic notations in network theory following [Newman, 2010].

We also introduce the notations that are used throughout the thesis.

2.1.1 Graph theoretic concepts
A graph or network G= (V,E) is defined as a collection of nodes and edges, whereV is the

set of nodes and E ⊆V ×V is the set of edges. The number of nodes and edges in the networkG are
denoted by |V | and |E| respectively. |V | is called the size of the network. A network can be stored
in the form of an edge list or a matrix known as adjacency matrix A, defined as follows. The i jth

entry ai j of A represents the existence of an edge between the nodes i and j. Thus ai j = 1 if nodes i
and j are linked otherwise ai j = 0. Obviously A is a |V |× |V |matrix.

Directed and Undirected network- If the edge set contains a set of ordered pair of nodes
then it is called directed otherwise the network is called undirected. For instance, if (i, j) ∈ E in a
directed network then there is an edge from i in to the direction j. We consider only undirected
network in the thesis unless mentioned otherwise. In case of undirected network, the adjacency
matrix associated with a network is a symmetric matrix i.e. AT = A or ai j = aji for all 1 ≤ i, j ≤ |V |.

Complete network- A network is said to be a complete network if any two distinct nodes
in the network are linked by an edge. Thus the i jth entry of the adjacency matrix A, that is ai j = 1
if and only if i= j. We denote a complete network on n nodes as Kn. The number of edges in Kn is
n(n−1)/2.

Degree-Degree of a node i in a network, denoted by ki, is the number of nodes adjacent to
it. Degree vector of a network is denoted by d = A1, where A is the adjacency matrix associated
with the network and 1 denotes the all one vector of compatible dimension.

Degree distribution-The degree distribution ofG is p(k)which equals the fraction of nodes
in G of degree k. In other words, for any node i in the network picked uniformly at random,
P(ki = k) = p(k), i.e. the probability that the degree of node i is k equals p(k).

Path- A path (self-avoiding path) in a network is a sequence of distinct nodes such that
every consecutive pair of nodes in the sequence is linked by an edge in the network.

Connected network-A network said to be connected if there exist a path between any pair
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of distinct nodes in the network.

Clustering coefficient (CC)- The clustering coefficient of a node i in a network is defined
by

CC(i) =
(A3)ii

ki(ki−1)
,

where (A3)ii defines the ith diagonal entry of A3. CC(i) represents the average probability that a pair
of i s friends are friends of one another. Clustering coefficient of a network is defined as

CC = ∑
i

CC(i)
|V | .

Spectrum of a network- The spectrum of a network is the multi-set of eigenvalues of the
adjacency matrix associated with the network. Since A is a symmetric matrix, all the eigenvalues
of A are real and can be ordered as 1(A)≥ 2(A)≥ . . .≥ n(A). The maximum eigenvalue 1(A) of
the network is called the spectral radius (SR) of the network.

Scree plot- It is the plot of the eigenvalues (or singular values) of the adjacency matrix of a
network, versus their rank [Leskovec, 2008].

Network values- Entries of the leading eigenvector which is defined as the eigenvector
corresponding to maximum eigenvalue of the adjacency matrix associated with a network are
known as the network values.

Algebraic connectivity- Let A be the adjacency matrix of a network and D is a diagonal
matrix such that Dii = ki. The graph Laplacian of the network is defined by

L= D−A.

It is easy to verify that L is a symmetric positive semi-definite matrix. Thus eigenvalues of L are
non-negative and can be ordered as 1(L) = 0 ≤ 2(L)≤ . . .≤ n(L). 2(L) is theminimumnon-zero
eigenvalue of the graphLaplacian of a connected networkwhich is knownas algebraic connectivity
(AC) of the network.

Geodesic path (Shortest path)- Geodesic path or shortest path between a pair of nodes i
and j is a path which connect them with minimum number of edges and denoted by dist(i j).

Diameter- The diameter of a connected network is the length of the longest geodesic path
(shortest path) between any pair of vertices in the network.

Expected diameter- Expected diameter of a network, denoted byDG is themaximum of the
average distance between any pair of nodes in the network defined by

DG = maxi j{li j},

where li j is defined as

li j =
∞

∑
k=1

k z(k),

where z(k) is the distribution of path length between a pair of nodes i and j.

Average path length-(APL) Average path length of a network is defined as the average
number of steps to reach a node from any other node via shortest route. Thus

APL= ∑
i j

dist(i j)
|V |(|V |−1)

.
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Small-world network- In general, a network is called a smallworld network if the diameter
of the network is small. In particular, if li j ∝ log |V | for any two nodes i = j in G then G is called
small world network, while clustering coefficient of G is not small.

Community structure- Communities in G are groups of nodes with high concentration
of edges in each of these groups and low concentartion of edges between any two such groups.
Communities are also called clusters or modules. The strength of community structure in a
network is measured by modularity index Q defined by

Q=
1

2m∑
i j

	
Ai j−

kik j
2m



cic j

where m is the number of edges in the network, ki and k j are the degrees of the nodes i and jwhich
belong to communities ci and c j respectively, and is the Kronecker delta function. Q varies from
−1 to 1.

Power-law- A function defined by

f (x) =C x

is called a power-law function. HereC and are constants and is called the power-law exponent
of f . Note that a power-law function is scale invariant i.e.

f (ax) =C(ax) =Ca x = a f (x) ∝ f (x).

Thus a real network is called a scale-free network if its degree distribution follows power-law in
its tail.

Triads- Triad is closed structure among three entities. Let v1, v2, and v3 be three nodes inG.
Then a triad (v1,v2,v3) exist, if vi and v j are linked for any i= j. Thus a triad is a complete network
on three nodes.

Assortativity- The Assortative Index (AI) of a network G is defined by

AI(G) =
∑i j(ai j−

kik j
2m )kikk

∑i j(ki i j− kik j
2m )kik j

where ai j is the i jth entry of the adjacency matrix associated with G, i j is the Kronecker delta
function. Obviously−1 ≤ AI(G)≤ 1.Apositive value of AI(G) signifies nodes with similar degrees
are linked whereas a negative value of AI(G) implies that similar degree nodes are not linked.

2.2 DYNAMICS OF THE NETWORKS
In this section, a brief review of some existing network models and network reconstruction

techniques.

2.2.1 Network models
There are two types of network modelling approaches in general. In the first approach,

the number of nodes is fixed before the formation of links in the network model whereas in the
second approach the model starts with a small graph (possibly with a node or a link) then new
nodes appear in the initial network and the process of link formation starts.
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In the following we first discuss two fundamental random network models in which the
number of nodes is fixed in the beginning of the formation of the network. Thesemodels are known
as ER (Erdős-Rényi) model [Erdös and Rényi, 1959], WS (Watts and Strogatz) model [Watts and
Strogatz, 1998a]. We follow ER random network from [Chung and Lu, 2006]

Classical ER randommodel
The classical ERmodel for randomnetworks has simple assumption that each pair of nodes

is equally probable to generate a link independently with probability p for some fixed value.
The mathematical notation of the model is G(n, p), where n is the number of nodes and p is the
probability to generate links. Classical ER model is effective to calculate expected properties of
model networks but not able to capture the properties of real networks. The generation of ER
model is as follows:

Consider a biased coinwhich has probability p, 0 ≤ p ≤ 1, of coming upheads. In a network
on n nodes under ER model, each link is determined by flipping the coin. If head comes, link is
formed between the considered pair of nodes. The process of flipping the coin is repeated for each
pair of nodes. The resulting network is a ER random network. For details see Chapter 5 in [Chung
and Lu, 2006].

WSmodel (small world model)
In 1998 Watts and Strogatz gave a hypothesis that networks are neither totally random

as ER model nor perfectly structured similar to lattice structure. They proposed that real-world
networks are the combination of both, the regular networks and the random networks. Regular
network maintains high clustering, while random network maintains the low average path length
and diameter. Thus WS model exhibits small-world phenomena. They provided a time line
structure of the networks to be produced in which one end is the perfectly structured regular
network and the other end is the totally random ER model. Real-world networks lie between
these two ends.

In the generation of the networks underWSmodel, a regular network of desired regularity
is considered first, then to introduce randomness in the network, each link is rewired with
probability p and the resulting network would be a WS model network which shows high
clustering and low average path length. In another approach, a WS model can be implemented
by considering a regular network Gre and combining with a random network Gra. The resulting
network G = Gre ∪ Gra exhibits the properties of WS model. The variation in the properties
depends on themixing parameter or rewiring probability p. WSmodel also shows binomial degree
distribution in contrast to many real-world networks which have power-law degree distribution
and modular structure. Still, WS model is widely implemented and known for significant
contribution in network science.

Scale-free network models
As defined earlier, a network is called a scale-free network if its degree distribution

follows power-law, at least asymptotically. In 1999 Barabasi and Albert introduced a preferential
attachment model for growing networks which exhibits power-law degree distribution with
power-law exponent 3. Consequently, several models have been proposed in literature for
scale-free networks. In the following we review some popular scale-free network generative
models.

We mention that if we characterize real networks on the basis of degree distribution, a
big class of real-world networks follow scale-free degree distribution [Newman, 2010; Barabási
et al., 2009; Eguiluz et al., 2005]. For example, power-law degree distributions have been observed
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in phones call graphs [Abello et al., 1998], the Internet [Faloutsos et al., 1999], the Web [Barabási
and Albert, 1999b; Huberman and Adamic, 1999; Kumar et al., 1999b], click-stream data [Bi et al.,
2001], and for a who-trusts-whom social network [Chakrabarti et al., 2004]. We mention that real
scale-free networks also exhibit small-world phenomenon in many contexts (see [Barabási and
Albert, 1999b; Bollobás and Riordan, 2004; Broder et al., 2000; Chung and Lu, 2002; Kleinberg, 2002;
Watts and Strogatz, 1998a]).

It is speculated that ‘rich get richer’ phenomena is responsible for scale-free behaviour of
the networks which have power-law degree distribution [Simon, 1955]. Most of the existing
network models use the preferential scheme for generation of scale-free networks [Chakrabarti
and Faloutsos, 2006]. To explain the evolution phenomena of growing networks, development
of the models based on preferential attachment mainly started in 1999 when Albert and Barabasi
applied degree based preferential attachment to explain the evolution of the networks like WWW
and citation networks [Barabási andAlbert, 1999b]. Indeedwemention thatHerbert Simon already
confirmed the existence of power law tail in [Simon, 1955] due to ‘rich get richer’ phenomena before
Barabasi et al.. Later Derek Price applied this idea in the context of networks [Price, 1976]. Here,
the basic idea behind the preferential attachment is that the probability of connection from a new
appeared node i to pre-existing node j is given by

pi j =
k j+ x j

∑ j k j+ x j
. (2.1)

where x j is a constant. Derek Price used it to generate a directed network in which each time a
node appears with constant out-degree and join the existing network using probability pi j in which
k j is the in-degree of node j and x j = 0 for all j. But initially, each node has zero in-degree that
prevents the growth of the network. To solve this problem Price replaced x j with constant k0 for all
j. Barabasi developed this model, known as BA model, to produce undirected networks in which
x j = 0 for all j because the network is undirected that’s why it does not confront the problem what
Price faced initially. BAmodel has constant value 3 of the power-law exponent and clustering of
network produced under this model has O(1/n)which closes to zero as the network grows.

Several parametrized models for generation of complex networks have been proposed in
literature and a list of interesting network generative models can be found in [Chakrabarti and
Faloutsos, 2006; Bollobás and Riordan, 2003]. For example, Albert and Barabasi introduced a
parametrizedmodel using both randomand preferential attachment for evolving networks [Albert
and Barabási, 2000]. In Edge CopingModels (ECM) the nodes from an existing network are copied
and edges are added preferentially [Kleinberg et al., 1999; Kumar et al., 1999a, 2000]. Node Fitness
Model (NFM) is defined by introducing the fitness value i associated with each node i [Bianconi
and Barabási, 2001]. The linking probability in NFM is defined as pi j = jk j/∑ j( jk j) for any
two nodes i = j, where ki is the degree of node i in the network. In PageRank based preferential
attachment models, the crux is to match the PageRank distribution of a real-world network in
addition to the degree distribution [Pandurangan et al., 2002]. In randomwalker growing network
models, a new node is linked to a randomly selected node in an existing network. Then the new
node attempts to make links with one of the first neighbors of the randomly selected existing node
with some probability and the process stops if the attempt to make such a link fails [Vázquez, 2003;
Vazquez, 2001]. Dorogovtsev et al. proposed a variety of one parameter models, see [Dorogovtsev
and Mendes, 2001b,a; Dorogovtsev et al., 2000; Dorogovtsev and Mendes, 2013]. In [Dorogovtsev
et al., 2000], the model given by Dorogovtsev et al. (known as DMS model) considers initial
attractiveness A0 assigned to each node and the probability of link formation is defined by

pi j =
A0 + k j

∑ j(A0 + k j)
, (2.2)

which is similar to the Price model [Price, 1976]. They have shown that this model can produce
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networks whose degree distribution follow power-law in the tail and the power-law exponent
varies from 2 to ∞ depending on the initial attractiveness. Later, Broder et al. [Broder et al., 2000]
and Faloutsos et al. [Faloutsos et al., 1999] reported the increase of the average degree over time
on the Web and the Internet that motivated Dorogovtsev and Mendes to modify their model in
order to show a similar behavior in their proposed models [Dorogovtsev and Mendes, 2001a].
They introduced degree dependent and time dependent attractiveness to forcefully incorporate
the densification in network generated by their model. Here, they have shown that the number
of edges grows polynomially with the number of nodes which is called ‘accelerated growth’
[Dorogovtsev and Mendes, 2001a]. for Some interesting multi-parameter network models can be
found in [Xuan et al., 2007, 2006; Ravasz et al., 2002]. The above discussion describes the great efforts
made in literature for generation of network models which inherit properties of real networks.

Each of the above mentioned models captures some collective structural properties of real
networks. However, given a specific real network, the potential of these models to generate a
network which can capture the structural properties of the given network is largely unexplored.

A big chunk of network related empirical studies is devoted to finding the structural pattern
in a static network which is the snapshot of a dynamic network at some time, see a detailed
discussion in [Ntoulas et al., 2004]. Nevertheless, there are some exceptional studies that lead to the
analysis of dynamic networks inwhich thework of Katz [Katz, 2005] andRedner [Redner, 2004] are
primary. Katz has discovered the densification power law in citation networks, andRender studied
the evolution of the citation graph of Physical Review papers over the past century. Katz’s work
builds on his earlier research on power-law relationships between the size and the recognition
of professional communities [Katz, 1999]; his work on densification is focused specifically on
citations. In [Chung and Lu, 2006] (chapter 3), Fan Chung and Linyuan Lu presented a generative
model (called as Chung-Lu model) for scale-free networks which is also based on preferential
attachment scheme but the model includes internal growth of the network as well. During the
internal growth of the network, links can be generated without addition of new nodes. Chung-Lu
model is facing the same problem of community structure as most of the others.

In community guided attachment (CGA) model, community structure generated
recursively, community within community, and the probability of link between a pair of nodes
defined by an inverse function, also known as difficulty function, of standard tree distance of the
considered nodes. Branching factor decides themaximumheight of the hierarchical structureof the
network and recursive structure of communities. Forest-Fire-Model (FFM) is inspired by natural
phenomena of spreading of fire in a forest. In FFM, a new node gets attached with an old node
randomly, then selects neighbours of previous neighbours recursively until the processes die out.
A forward burning probability p, and a backward burning ratio r are selected for each node to generate
out-links and in-links respectively. For more details, see [Leskovec et al., 2007].

Community guided attachment model (CGA) [Leskovec et al., 2007], coping model
[Kleinberg et al., 1999; Kumar et al., 1999a, 2000], Forest FireModel (FFM) [Leskovec et al., 2007] and
Kronecker Graphs based model [Leskovec et al., 2005; Mahdian and Xu, 2007] are some examples
which contributed significantly in the field of study of dynamic networks. In [Seshadhri et al., 2012],
Block Two-Level ER model (BTER model) is presented which is based on the idea that networks
are the collection of ER communities. In this model first nodes are divided into small groupswhich
are converted into dense ER sub-networks and finally dense ER sub-networks (communities) are
linked. BTER model is well fitted to represent the structure of real networks. Indeed the BTER
model accommodate the growth process which are observed in real networks.
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2.2.2 Structural Network reconstruction
A few reconstruction methods are introduced recently for structural reconstruction of

networks. For example, a reconstruction method is proposed using betweenness centrality in
Comellas and Paz-Sánchez [2008], spectral reconstruction of complex network is introduced in
Comellas and Diaz-Lopez [2008], and evolutionary reconstruction of networks is considered in
Ipsen and Mikhailov [2002]. Indeed a common feature in these proposed approaches is the
consideration of an initial (random) network and then the given network is reconstructed by
rewiring the edges of the initial network. Here we mention that network reconstruction (NR)
methods are proposed in the context of accessing the dynamics on the nodes of a network.
This approach approximately determines the interaction pattern between the nodes during the
dynamical process Angulo et al. [2015] Shen et al. [2014]. However, the authors in Angulo et al.
[2015] discussed the fundamental limitations of NR.

In [Comellas and Diaz-Lopez, 2008; Comellas and Paz-Sánchez, 2008; Ipsen andMikhailov,
2002], the authors have attempted to reconstruct a network by incorporating a given structural
or spectral property of the network. Francesc Comellas et al. have proposed to reconstruct a
network by using its Laplacian eigenvalues. The structural reconstruction is done by considering
an initial random network on which edge rewiring process is applied to match the Laplacian
eigenvalues of the given network [Comellas and Diaz-Lopez, 2008]. The process of rewiring
terminates when a stopping criteria is met. They introduce a cost function and use the tabu
search combinatorial optimizationmethod to investigate the performance of the proposedmethod.
A similar process called simulated annealing is used in [Comellas and Paz-Sánchez, 2008] for
structural reconstruction of a network from the values of the betweenness centrality of the network.
The method starts with an initial random network and at each time step rewiring of an edge is
accepted if betweenness of the network after rewiring gets closer to that of the original network.
In [Ipsen and Mikhailov, 2002], a Metropolis algorithm is used to reconstruct networks from their
Laplacian spectra. The reconstruction of a given network is done by first selecting an arbitrary
initial network and then mutation and selection process is applied. Indeed a node is selected
randomly from the initial network with zero degree (incident edges of the selected node are
deleted) and then new edges incident to this node are formed to create a mutated network.
Comparing the spectral distance between these networks a criteria for accepting a mutation is
defined and if the criteria is not met, the mutation process is applied to an another node until
the desired result is obtained.

Besides, the configuration model is extended to incorporate the degree-dependent
clustering and degree-degree correlations in [Serrano and Boguná, 2005] and [Weber and Porto,
2007] respectively. Here random networks are generated with additional structural properties.
Pusch et al. have provided a random network generation method that incorporates both the
degree-degree correlations and degree-degree clustering [Pusch et al., 2008]. Further, these
approaches are exploited in [Karalus and Krug, 2016] for reconstruction of evolved dynamic
networks.

However, the above mentioned methods require a lot of verification in each step of the
algorithm and thus may need a little bit of luck in order to reconstruct a given network within
a given time frame. These methods are also adhoc and lack intuition about the evolution process
during its formation as a growing network to achieve a particular structure in the desired network.
These limitations in solving the problem of structural reconstruction of networks trigger-off the
following question. Can structural reconstruction of network be done with the help of parametric
modeling approach? This calls for development of parametric network generative models such
that a network with pre-determined structural properties can be constructed by choosing suitable
values of the parameters involved in the model.
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2.3 DIFFUSION PROCESSES ON NETWORKS
In this section, we briefly review three existing models of diffusion protocols on networks.

Diffusion on networks is a process in which a diffusive material spread from regions of high
intensity or density to the regions of low and affected bymany factors such as structural properties
of networks and applied diffusion protocols. It could be the spreading of an idea, information or
disease.

2.3.1 Agreement protocol
Consider a connected network G = (V,E) of size n = |V | in which observers or sensors are

attached to each node that are also called as agents. Here V = {1, 2, 3, ... ,n} and E ⊂V ×V is the
set of connected pairs of nodes in the networkG. Let xi(t) be a variable associated with an observer
i at time t. Here on, we use node in place of observer to avoid ambiguity. Let xi(t) is the status of
a diffusive material in the node i at time t. The diffusion dynamics at node i depends on the status
of its neighbours which is given by

ẋi(t) =∑
j
ai j (x j(t)− xi(t)) .

where ai j is i jth entry of the adjacency matrix A corresponding to the network. Thus the collective
dynamics of the networked system is given by

ẋ(t) =−Lx(t). (2.3)

where x(t) = [x1(t), x2(t), ...xn(t)]
T , and L=D−A is the Laplacianmatrix of the networkG. Solution

of Eq. (2.3) is given by
x(t) = e−Ltx0,

where x0 = [x1(0), ,x2(0), , ... xn(0)]T is initial state vector of the network. In an undirected network,
if vi is an eigenvector of the matrix L corresponding to the eigenvalue i(L) then the collective
dynamics of the networked system defined by Eq. (2.3) at time t is

x(t) = ∑
i∈V

e− i(L)t(vTi x0)vi.

It is well known that 1(L) = 0 is the smallest eigenvalue of the Laplacian matrix L and v1 =
1√
n
1

is corresponding unit eigenvector irrespective of network structure, where 1 is all one vector of

length n. In a connected network, as t → ∞, x(t) → x01 where x0 =
1
n

∑xi(0) is the average of the
initial states of the nodes of the network.

The converging state of any connected networked system is invariant irrespective of the
topology of the underlying network under the agreement protocol given by Eq. (2.3). Convergence
rate of the agreement protocol is key to many real-time applications. Time of reaching consensus
(agreement) depends on the second smallest eigenvalue of the graph Laplacian L that is known
as algebraic connectivity of the network. Apparently, consensus problem reduces to the spectral
analysis of Laplacian of network G. Other variants of consensus problem are also examined in
[Olfati-Saber and Murray, 2004; Ren and Beard, 2004; Moreau, 2003; Hatano and Mesbahi, 2005;
Eren et al., 2002].

2.3.2 RandomWalk
Random walk dynamics is often used to study different diffusion dynamics. Dynamics of

a random walker has been investigated in many contexts [Nash-Williams, 1959; Tetali, 1991], for
example, navigation and centrality of networks [Perra et al., 2012; Starnini et al., 2012], routing of
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packets in Internet, and diffusion in communication networks. Traffic in transportation networks
can also be represented as phenomena of random walkers [Wang et al., 2006]. Random walk
dynamics has been applied to explore the dynamics of wealth’s distribution in economic networks,
gene expression pathways in biological networks and search (navigation) strategies in Internet
[Adamic et al., 2001; Tadić and Rodgers, 2002; Tadić and Thurner, 2004; Kim et al., 2002; Rosvall
et al., 2005; Germano and de Moura, 2006]. In random walks, a walker positioned at a node i can
move to any node j which is linked to the node i in the network with equal probability. Thus the
selection of a node for a move is uniform among the neighbors of the current node occupied by a
random walker [Akyildiz et al., 2000; Noh and Rieger, 2004].

Let pi(t) is the occupation probability of a node i at time t then,

pi(t+1) =∑
j
ai j

p j(t)
k j

,

and the collective dynamics of the random walking in a network is given, [Redner, 2001], by

p(t+1) = AD−1p(t), (2.4)

where ai j is the i jth entry of adjacencymatrix A of the network. ai j = 1, if nodes i and j are connected
otherwise 0, D is the degree matrix. Solution of the Eq. (2.4) is given by

lim
t→∞

p(t) = p∞ =
d
1Td

,

where d= D1 and 1 is a all-one column vector of appropriate length.

2.3.3 Susceptible-Infected-Susceptible (SIS) model
SIS is a simple model to study epidemics like diffusion. Here, we consider SIS diffusion

model at node level, assuming xi(t) is the probability that node i is infected at time t, the diffusion
model is given by

ẋi(t) = ∑
j
ai jx j(t)− xi(t),

where ai j is i jth element of the connection (adjacency) matrix A of the considered network. is the
diffusion probability of an edge and is recovery probability of an infected node that directly goes
to susceptible class. In this model, a node can be either in the susceptible state (S) or infected state
(I). xi(t) is the probability of the node i being infected or informed at time t. The collective dynamics
of SIS model is given by,

ẋ(t) = Ax(t)− Ix(t), (2.5)

x(t)= [xi(t), , ..., , xn(t)]
T is the state vector. For a given time series, x(t) and ẋ(t) are known. Eq. (2.5)

is linear in coefficient of matrix A.

2.3.4 Network reconstruction using diffusion dynamics
Previously, we discussed about the existingmethods for network reconstruction based on a

given structural property. In this section, we summarize the methods of reconstruction of network
topology using the diffusion dynamics on the network.

Many dynamical systems are studied in the context of network reconstruction [Han et al.,
2015; Zhang et al., 2016]. Methods based on phase synchronization [Shandilya and Timme,
2011], Lyapunov exponent [Aniszewska and Rybaczuk, 2008; Zhou and Lu, 2007; Comellas and
Diaz-Lopez, 2008], feedback control [Yu, 2010; Yu and Parlitz, 2011] and compressed sensing
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theory (CST) [Ma et al., 2015; Tang et al., 2015] have been developed previously to reconstruct the
underlying network [Han et al., 2016; Guo et al., 2016]. Reconstruction of network topology using
phase oscillator is based on deterministically known coupling strength and nodal dynamics in
advance. Later on, authors have considered someuncertainty as an improvement andmodification
of the network reconstruction procedures [Timme, 2007; Shandilya and Timme, 2011]. CST is used
to reconstruct the interaction pattern of a network of coupled oscillators and games from time
series [Wang et al., 2011c,d,b; Wu et al., 2016]. Further, CST is also used to uncover the interaction
pattern of nodes in a network given that the time series has only binary data [Shen et al., 2014]. In
[Li et al., 2014], network reconstruction is successfully done by phase synchronizationwith linearly
and non-linearly coupled systems based on Kuramoto phase oscillators.

…
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