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Parametric network generation model: Context dependent

preferential attachment

In this chapter we propose a growing random network model for generation of complex
networks which exhibit power-law in the tail of its degree distribution. Several such models in
literature start with an initial small network and a new node appears at each time step, and gets
linked with one or multiple existing nodes. One of the fundamental models in this direction was
first proposed by Albert and Barabasi in [Barabási and Albert, 1999a] that is called BA model. In
this model, the new node prefers to get connected with an existing node which has high degree.

In this context, the following question can be raised. Does a new node always wish to
form links with important (high degree) nodes or the choice get influenced by other factors also?
Moreover, if the choice gets influenced by other properties of the existing nodes, will the network
be having power-law degree distribution? An evidence of a phenomena that people’s choice
does not depend on only one property is given in [Tversky and Simonson, 1993] supported by
an empirical data (see [Tversky, 1972; Huber et al., 1982; Simonson, 1989] also). The data shows
that at the time of purchasing a product, a buyer considers the background (history) of the product
and relative attractiveness of the product with respect to other products in the same reference.
Thus, the concept of context preferential attachment was introduced in [Tversky and Simonson,
1993].

We propose a growing random complex network model where the probability of link
formation is determined by weighted local and global property of the existing nodes. We consider
that local and global properties of a node as degree and the relative average degree of the node
in the existing network. Thus, we call the proposed model, the context dependent preferential
attachment model (CDPAM) for complex networks. We prove that the degree distribution of
complex networks generated by CDPAM follow power law P(k) = L(k)k− where 2 ≤ ≤ 3 and
L(k) → (a constant which depends on the weights given on local and global property of the
nodes) as k→ ∞. We also prove that the expected diameter grows logarithmically with the size of
the new nodes added in the network, however the growth of the expected diameter is slower than
that of the BAmodel. The numerical simulations show that the expected diameter stabilizes when
alike weights are given to the local and global property which determine the preference of link
formation. In contrast to the conventional wisdom that diameter shows as a function of ln(lnN)
or lnN in real networks, the authors in [Leskovec et al., 2007] observed that the diameter stabilizes
or shrinks as a network grows. The proposed model reveals how shrinking and increasing of
diameter are related to the weights on local and global property of the nodes during expansion of
the network.

A variety ofmathematical and statisticalmeasures have been proposed in literature in order
to characterize global and local structure of complex networks. We derive clustering coefficient,
assortativity, number of triangles, algebraic connectivity and spectral radius for different complex
networks generated by CDPAM and compare them with the same obtained from the complex
networks generated by BAmodel. We show that CDPAM replicates properties of real networks for
all these measures when alike weights are given to local and global property. Finally, we observe
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that the BA model is a limiting case of CDPAM when new nodes tend to give large weight to the
local property compared to the weight given on the global property during link formation.

3.1 CONTEXT DEPENDENT PREFERENTIAL ATTACHMENTMODEL (CDPAM)
In this section, we propose a random complex network model which relies on the fact that

the network is open i.e. a network continuously grows in timewith the addition of new nodes in to
a fixed small network chosen in the beginning of the process [Barabási et al., 1999]. It is important
to notice that the link formation in BA model is biased as the link formation depends only on the
high degree (importance) of the existing nodes. However, in real life individuals prefer to form
relationship (link) with important (global property) people in society but also give importance to
background (local property) of the people before making the relation. Inspired by this thought, we
introduce the model as follows.

1. Growth: Starting with a small network having m0 nodes, at every timestep add a new node
with m ≤ m0 edges such that degree of any node in the initial network should lie between m
to 2m.

2. Context preferential attachment: Assume that V (t) denotes the node set of the network after
t-time step. When a new node j appears at time t+1, it will get connected to a node i ∈V (t)
with probability pij(t+1) given by

pij(t+1) =
fB(i)+ g(i,V (t))

∑i∈V (t)( fB(i)+ g(i,V (t)))
(3.1)

where fB(i) quantifies the background (local context) of node i, g(i,V (t)) determines the
relative advantage (global context) of a nodes over others in the network G(t), and , (< )
are the positive control parameters for the property of the nodes in V (t).

In order to simplify the model, we consider

fB(i) = kiandg(i,V (t)) =
∑l∈V (t) ki− kl

|V (t)|

where ki denotes the degree of a node i and |V (t)| is the number of nodes in G(t). As we consider
that a single node appears at each timestep, after time t there will be t+m0 nodes in the network
and for a large value of t( m0), |V (t)| ≈ t. Consequently, we have

pij(t+1)≈
ki+ ∑l∈V (t)

ki−kl
t

∑l∈V (t) kl +∑l∈V (t)
(t+m0)kl−2mt−m0(m0−1)

t

≈ ki+ (ki−2m)
2m t

for a very small value of m0. Assuming ki to be a continuous real variable function and the rate of
change of ki is proportional to p j

i (t), we have

ki
t
= m

ki+ (ki−2m)
2m t

(3.2)

by applying mean field theory.

Further, by (3.2),

ki
t
= m

ki+ (ki−2m)
2m t

=
ki− c
( −1)t

, = 1+
2
+

,c=
2m
+
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solving which we obtain

ki(t) = (m− c)
t
ti

1/( −1)

+ c (3.3)

when the initial condition is given by ki(t0) = m. This yields

P(ki(t)< k) = P(ti > (m− c) −1(k− c)1− t).

Assuming ki(t) < k, we have ti > (m− c) −1(k− c)1− t, where ti is the time when ith node appears
in the network . Further, since it is assumed that a single node gets added at each timestep, it is
equivalent to a uniform distribution of ti, given by P(ti) = 1/(m0 + t). Consequently,

P(ki(t)< k) = P(ti > (m− c) −1(k− c)1− t)

= 1− t
t+m0

(m− c) −1(k− c)1− .

Thus, the degree distribution is given by

P(k) =
P(ki(t)< k)

k
=

t
t+m0

( −1)(m− c) −1(k− c)− = L(k)k−

where L(k)→ ( −1)(m− c)( −1) as k→ ∞. In particular, ≈ 2 if ≈ and ≈ 3 if .

Setting the initial network as the complete network (fully connected network) with 7 nodes,
i.e. m0 = 7 and m= 5, we plot degree distributions of complex networks of 10000 nodes generated
by CDPAM for different values of and given in Figs. 3.1(a) to 3.5(b). We also calculate the
p-value which is a measure of goodness-of-fit based on KS statistics, to validate the power-law
degree distribution of the networks [Clauset et al., 2009a]. The numerical simulations show that
the exponent is an increasing function of when is fixed.

(a) (b)

Figure 3.1 : Degree distribution of different networks of size 10000 generated by CDPAMwith different
values of when = 0.5. In (a) = 0.6 and in (b) = 1.2.

In order to show that the diameter of a complex network constructed by the CDPAM is
small, we proceed as follows. Suppose the nodes i and j appeared in the network at time ti and t j
respectively where ti < t j. Then the probability of the node j to be linked with the node i is given
by

pij =m
ki(t j)+ (ki(t j)−2m)

2m t j
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(a) (b)

Figure 3.2 : Degree distribution of different networks of size 10000 generated by CDPAMwith different
values of when = 0.5. In (a) = 1.8 and in (b) = 2.4.

(a) (b)

Figure 3.3 : Degree distribution of different networks of size 10000 generated by CDPAMwith different
values of when = 0.5. In (a) = 3 and in (b) = 6.
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(a) (b)

Figure 3.4 : Degree distribution of different networks of size 10000 generated by CDPAMwith different
values of when = 0.5. In (a) = 60 and in (b) = 300.

(a) (b)

Figure 3.5 : Degree distribution of different networks of size 10000 generated by CDPAMwith different
values of when = 0.5. In (a) = 600 and in (b) = 600000.
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where ki(t j) = (m− c) t j
t j

1/( −1)
+ c (see (3.3)) is the expected degree of the node i at time t j. Thus,

pij =
m− c

( −1)t1/( −1)
i t1−1/( −1)

j

+
m(1−2 )

2 t j
. (3.4)

Remark 3.1.1. It is evident from the above derivation that the control parameters and which represent
weights to the local and global property of the existing nodes respectively, determine the topology of the
network generated by CDPAM. A natural question would be: Does there exist a functional relation between
these parameters? To investigate how different values of these parameters affect the topology of the network,
we fix the parameter and vary in the sequel. Thus, now onward we set = 0.5.

We recall the following lemma from [Fronczak et al., 2004].

Lemma 3.1.2. If A1,A2, ...An are mutually independent events and their probabilities fulfil the relations
P(Ai)≤ for all i then

P
n

i=1

Ai = 1− exp −
n

∑
i=1

P(Ai) −Q

where 0 ≤ Q< ∑n+1
j=0(n ) j/ j!− (1+ )n.

LetV (t) be the set of all nodeswhich have been added in to the initial network up to timestep
t during the growing process of the network formation. Thus, |V (t)|, the number of nodes inG(t), is
the size of new nodes added in the network formed by CDPAMup to timestep t. For any i, j ∈V (t),
an event Ak is defined as the existence of a path of length l between i and j. The total number of such
events possible is |V (t)|l−1. Thus, as given in [Fronczak et al., 2004], the probability of the existence
of a path between i and j of length not more than l is given by

Pi j(l) = P




|V (t)|l−1

k=1

Ak





= 1− exp −
|V (t)|

∑
v1=1

. . .
|V (t)|

∑
vl−1=1

pv1
i . . . pj

vl−1
.

(3.5)

We use this result to obtain the following corollary.

Table 3.1 : Theoretically and numerically calculated values of of the networks of size 10000 generated
by CDPAMwith different values of when = 0.5

( = 0.5) (calculated Numerically) p-value (Theoretical)
0.6 1.94 0.170 2.090
1.2 2.50 0.090 2.411
1.8 2.62 0.220 2.565
2.4 2.70 0.490 2.655
3.0 2.78 0.135 2.714
6 2.84 0.025 2.846
60 2.82 0.600 2.980
300 2.82 0.996 2.996
600 2.82 0.290 2.998

600000 2.81 0.017 2.999
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Corollary 3.1.3. The probability of the existence of a path between two vertices i, j ∈V (t) of length not more
than l is given by

Pi j(l) = 1− exp − KlHl−1
n

t1/( −1)
i t1−1/( −1)

j

where K = ( +0.5)(m−c)
2 ,Hn = ∑|V (t)|

k=1
1
k and c= m

+0.5 .

Proof: Using (3.4) and (3.5) the result follows.

Corollary 3.1.4. The expected value li j of the distance between two nodes i, j ∈V (t) is given by

li j =
1− 1

−1
lnt j+

1
−1

lnti+ lnHn− r

ln(KHn)
+

1
2
.

Proof: The result follows from the fact that

li j =
∞

∑
l=0

F(l)

where F(l) = 1−Pi j(l) (see [Fronczak et al., 2004]).

It follows from the corollary 3.1.4 that the expected distance li j between two nodes i, j ∈V (t)
is an increasing function of ti and t j when other parameters are fixed. This implies that the diameter
of the network is the expected distance between the first node and the last node added in the
network. Hence, setting t j = |V (t)| and ti = 1 we obtain the following result.

Corollary 3.1.5. The expected diameter of a complex network generated by CDPAM is given by

DG =

1− 1
−1

ln |V (t)|+ lnHn− r

ln(KHn)
+

1
2
.

Thus it follows from the above corollary that the expected diameter of the network depends
on the logarithmic value of the size of new nodes added in the network. In Fig. 3.6, we
calculated the expected diameter for CDPAM and the approximate diameter given by BA model
(∼ ln |V |/ lnln |V |) where |V | denotes the size of the entire network [Cohen and Havlin, 2003].
However, numerical simulations show that the expected diameter of CDPAM stabilizeswhen alike
weights are assigned to both the local and global propertieswhich determine the preference of link
formation. In contrast to the conventionalwisdom that diameter is a function of ln(ln |V |) or ln |V | in
real networks, the authors in [Leskovec et al., 2007] observed that the diameter stabilizes or shrinks
as a network grows. The CDPAM reveals how shrinking and increasing of diameter are related to
the weights on local and global property of the nodes during expansion of the network.

3.2 PROPERTY OF COMPLEX NETWORKS GENERATED BY CDPAM
In this section, we numerically calculate various measures which include clustering

coefficient, assortativity, algebraic connectivity, and spectral radius of the complex networks
generated by CDPAM. These measures determine various topological features of a network and
enable to compare how the proposed model captures the property of different real networks. We
also compare values of these measures with that of complex networks generated by BA model.
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Figure 3.6 : Growth of the diameter of networks. Horizontal-axis represents the logarithm of the
number of nodes (ln |V |) and the vertical-axis represents diameter (D). As decreases to
= 0.5, the growing rate of the diameter reduces.

All the measures below are calculated for networks generated by CDPAM and BA model
while the initial network is considered as the fully connected network having m0 = 7 nodes. In the
growing process, at each timestep, one node is added to the existing network with k= 5 new links
made by the new node for different values of when = 0.5. We have used MATLAB R2012a for
the numerical simulations.

3.2.1 Clustering coefficient
Clustering coefficient (CC) of a node signifies the local edge density among the neighbors

of the node. The CC of a network is the average of CC of all the nodes. Thus, for a network G,

CC(i) =
2|Ei|

ki(ki−1)
andCC(G) =

1
|V | ∑i

CC(i)

where |Ei| denotes the number of links adjacent to a node i of the network [Watts and Strogatz,
1998b]. It is evident that 0 ≤CC(G)≤ 1 for any network G. In Fig. 3.7, we plot the CC of different
size of complex networks generated by CDPAM with different values of and = 0.5. It shows
that as the value of increases the CC of the network decreases and eventually when is very
large, the CC is close to zero which is a phenomena for networks generated by BAmodel. The Fig.
3.8 shows that the CC gets close to 0.8 as log gets close to zero. Thus, we conclude that, in CDPAM
model, if links are formed by giving similar weights to both the local and global properties of the
existing nodes then the CC gets close to 0.8 which is a property of a large class of real networks like
ego-Facebook network, ego-Gplus network, ego-Twitter network [Leskovec and Mcauley, 2012].

3.2.2 Assortativity index
The Assortative Index (AI) of a network G is defined by

AI(G) =
∑i j(ai j−

kik j
2m )kikk

∑i j(ki i j− kik j
2m )kik j

where ai j is the i jth entry of the adjacency matrix associated with G, i j is the Kronecker delta
function [Newman, 2002]. Obviously −1 ≤ AI(G) ≤ 1. A positive value of AI(G) signifies nodes
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Figure 3.7 : Average clustering coefficient is plotted for different size of networks with different values
of and = 0.5. Horizontal-axis represents the number of nodes of a network and the
vertical-axis represents average clustering coefficient of the network.

Figure 3.8 : Average clustering of the networks having 1000 nodes generated by CDPAMwith different
values of when = 0.5. Horizontal-axis represents log and the vertical-axis represents
average clustering coefficient of the network.
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Figure 3.9 : Assortativity index is plotted for different size of networks generated by CDPAM with
different values of when = 0.5. Horizontal-axis represents the number of nodes of the
networks and the vertical-axis represents assortativity index of the networks.

with similar degrees are linkedwhereas a negative value of AI(G) implies that similar degree nodes
are not linked.

Observe that the degree of a node is a decreasing function of the timestep at which it gets
added, follows by (3.3). Further, if a node j is added at the t j timestep then the probability pij
to get it linked with an existing node i appeared at ti < t j is a decreasing function of both ti and
t j, see (3.4). These indicate, the probability of having a link between high degree nodes is larger
compared to the probability of having a link in between low degree nodes. Therefore, we conclude
that the network is assortative for higher degree nodes and disassortative for low degree nodes.
Since the network has a few high degree nodes, overall the network shows disassortative mixing
behaviour. The plots given in Fig. 3.9 assert the same for different values of when = 0.5.
Wemention that the disassortative phenomena of networks occur in a large class of real networks
including World-Wide-Web [Barabási and Albert, 1999a], Marine food web [Huxham et al., 1996],
freshwater food web [Martinez, 1991].

3.2.3 Number of triangles
A triangle is a cycle with three nodes. The number of triangles is a fundamental building

block for many real networks. In a social network, if nodes are human beings and links are
described by friendship relation, then the existence of a triangle means friends of a friend are
friends. Often real networks consist of a huge number of triangles for example ego-Facebook
network, ego-Gplus network, ego-Twitter [Leskovec and Mcauley, 2012]. In Fig. 3.10, we show
that the complex networks generated by CDPAM contain huge number of triangles compared to
networks constructed by the BA model.

3.2.4 Algebraic connectivity
Algebraic connectivity of a network G is the second smallest eigenvalue of the Laplacian

matrix L=D−A associated with the network where D= diag{k1, . . . ,kn} denotes the degree matrix
and A is the adjacency matrix of the network [Fiedler, 1973]. Obviously, L is a symmetric positive
semi-definite matrix. It is well known that the second eigenvalue 2(L) of L is positive if and only
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Figure 3.10 : Number of triangles is plotted for different size of networks generated by CDPAM with
different values of when = 0.5. Horizontal-axis represents the number of nodes of the
networks and the vertical-axis represents number of triangles in the networks.

if G is connected. More importantly, 2(L) determines the robustness of a network i.e. larger
the value of 2(L), the more difficult to make the network disconnected by removal of nodes or
edges [Fiedler, 1973]. In particular, if (G) and (G) denote the vertex and edge connectivity
of a network G respectively, then 2(L) ≤ (G) ≤ (G). In Fig. 3.11, we show that the complex
networks generated by CDPAM setting ≈ have higher algebraic connectivity than that of
networks produced by the BA model.

3.2.5 Spectral radius
Spectral radius of a network is the maximum of the absolute values of eigenvalues of the

network. In [Jamakovic, 2008] it has been shown that the reciprocal of the spectral radius decides
the threshold of virus propagation in the network. The smaller the spectral radius is, the larger
the robustness of a network against the spread of viruses [Jamakovic, 2008]. In Fig. 3.12, we plot
the spectral radius of networks generated by CDPAM and by BA model. As it appears, CDPAM
produces networks with higher spectral radii compared to the spectral radii of the networks
generated by BA model. Thus, CDPAM is capable to inherit large spectral radius like many real
world networks including Dutch soccer team network [Jamakovic, 2008], Dutch roadmap network
[Jamakovic et al., 2006], Internet graph at the IP-level [Jamakovic and Van Mieghem, 2006] and the
Autonomous System level [Mühlbauer et al., 2006].

3.3 CONCLUSION
In the literature of social choice theory and management science it has been established

that the choice of a person gets influenced by a given offered set and ultimately, the choice is
determined by the local and global contexts of the items in the offered set. Inspired by this
concept, we introduced a preferential attachment model for growing complex networks when
the preference of a new node to get linked with old nodes in a network is determined by local
and global properties of the old nodes. We call the model, the context dependent preferential
attachment model (CDPAM). We proved that the complex networks generated by CDPAM have
power law degree distribution and expected diameter depends logarithmically with the size of
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Figure 3.11 : Algebraic connectivity of different size of networks generated by CDPAM with different
values of when = 0.5 and by BAmodel. Horizontal-axis represents the number of nodes
of the networks and the vertical-axis represents algebraic connectivity of the networks.

Figure 3.12 : Spectral radii for different size of networks generated by CDPAM with different values of
when = 0.5 and by BA model. Horizontal-axis represents the number of nodes of the

networks and the vertical-axis represents spectral radius of the networks.
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new nodes added in the network during the growth process. In contrast to the general intuition
that diameter grows with the addition of new nodes, we numerically showed that, in the CDPAM
model, the expected diameter stabilizes when the new nodes get linked by giving alike importance
(weight) to both local and global property of the old nodes.

In order to investigate how the complex networks generated by CDPAM and BA model
are related, we calculated clustering coefficient, assortativity, number of triangles, algebraic
connectivity and spectral radius for both themodels. We compared thesemeasures and concluded
that BA model is a limiting case of CDPAMwhen new nodes tend to give large weight to the local
property compared to the weight given to the global property during link formation.

…
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