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Parametric model for signed networks: A 2-layered network

formation

The past of the research in the area of network science witnesses the domination of the
study of the unsigned ormore homogeneous structure of real-world networkswhich comprises the
study of unsigned undirected or directed networks [Boccaletti et al., 2006; Bornholdt and Schuster,
2002; Newman, 2010]. The study of the dynamics of social structure might be biased due to
the consideration of only positive relations between social objects (people). The evolution of the
structure of social network and the dynamics of diffusion processes on unsigned social networks
overrated by positive links while the studies in this area confirm the existence of multiple types
of relationships among the people which can be broadly categorized into three types according
to their nature of actions. For example, if the relationship between two persons affect the action
of each other positively then it is treated as a positive relation and represented by +1; negative
relations have opposite nature of actions between linked nodes and denoted by −1 and the third
one is the ignorance between two nodes that is represented by 0. Exemption of the negative
links on social networks does not provide the real picture of diffusion phenomena including
influence maximization, innovation adaptation, and information spreading. Negative ties also
play important role in influence propagation and innovation adaptation. In a simple example of
voting dynamics, two negatively added persons have a tendency to oppose each other. So to get a
more realistic picture of diffusion dynamics on social networks, consideration of negative links is
important. Thus a network is called a signed network if it has both positive and negative links.

For example, it was reported in [Zachary, 1977] that in the network of karate club the
division of the club members into two groups indicates the existence of negative relations that
is conflict between members of two groups which is a type of negative relationship that is ignored
while studying the structure of the network of karate club [Girvan and Newman, 2002]. The
process of group formation in karate club network redirects our thought of community formation
in social networks. Grouping can be explained as an effect of conflict between nodes which reform
the network into groups of people who share the similar thought of actions. In this dimension,
a community is a maximal group of people which have minimal conflicts. There are multiple
examples of social networks which have negative and positive relations between the nodes in
similar context [Leskovec and Krevl, 2014]. Youtube users may like or dislike the videos; facebook
users can do supportive or opposing comments on some topic or post. Ratings given by product
users have similar network structure between users and products. Lower ratings have a negative
impact on the selling of that product and higher ratings do the reverse. The network constructed
by these users and products have the different type of links which can be represented by+1, 0 and
−1.

In the context of signed networks, [Anchuri and Magdon-Ismail, 2012; Chiang et al., 2011;
Doreian, 2004; Doreian and Mrvar, 2009; Leskovec et al., 2010] Structural balance theory introduced
by Heider in 1940s [Heider, 1946a], first in the context of social psychology which is converted
in the graph-theoretic language by Cartwright and Harary [Cartwright and Harary, 1956a], has
played a pivotal role in to analysis of real-world signed networks. The theory follows that there
could be four type of triads which are defined as T0(−−−), T1(+−−), T2(++−) and T3(+++)
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where subscript represents the number of positive signed edges in the triad [Leskovec et al., 2010].
Later on Davis explores the theory of structural balance and formulated a variant of it, known
as weak structural balance [Wasserman and Faust, 1994]. In structural balance theory, T1 and T3
are considered as balanced triad which are permissible in the social networks and T0 and T2 are
unbalanced triads. Davis relaxed this assumption with the inclusion of T0 in balanced triad and
permissible in the social networks [Davis, 1967].

In [Leskovec et al., 2010], three real world signed networks, Epinions, Slashdot, and
Wikielection are considered for the analysis of these networks in the shade of balance theory and
status theory which has been introduced for directed signed networks [Guha et al., 2004]. Balance
theory deals with the structure of the triads formed by the nodes in a network and explains the
conflict among a social group of three connected people. Under the balance theory, two nodes
are connected positively, if they have no social conflict and vice versa. Similar to balance theory,
status theory defines the sign of links in the context of the social status of a node with respect
to other connected nodes. For example, if a person (a node) says that he/she is superior to a
set of people (called S1) and inferior to another set of people (called S2), then people from S1 are
positively connected and members of set S2 are negatively connected to that node. It is observed
that the distribution of different type of triads is not random, T3 has the high concentration as
compared to the random network of the same number of signed edges of each type, and the
counts of T0 is minimum [Leskovec et al., 2010]. In all the considered data sets, T3 has more density
than expected in the random network which has the random distribution of edges keeping the
fraction of positive and negative edges constant. These data sets have almost ∼ 20% negative
edges [Leskovec et al., 2010]. In [Hassan et al., 2012], authors did the sentiment analysis of text
shared by theparticipants of the online discussion forums andgenerated a signednetwork between
participants in the forums on the basis of the sentiment of their posts and comments. The signed
network is generated between the participants of the discussion and two are connected via a
positive or negative link based on the positive or negative sentiments of the replies given by
one to other. Based on the analysis of signed and unsigned network, it is advocated that the
existence of signed social networks is more realistic as compared to the unsigned version of the
same network. There are some other approaches to model and study the dynamics of signed
networks. In [Malekzadeh et al., 2011], a game theoretic approach is adopted to model a signed
network. In [Doreian, 2008], sign network is considered as the collection of blocks of positive edges
and these blocks are connected with negative edges for modeling signed networks. In another
approach, trust and distrust have been considered as positive and negative edges which are known
as low-rank modeling of signed network [Hsieh et al., 2012]. In [Ludwig and Abell, 2007], a social
balance theory based evolutionary model (EM) is discussed in which a random network of size
n nodes is considered. Link between a pair of nodes is formed by the probability p = (1+ )/2
where −1 ≤ ≤ 1 is the friendliness index. Then in the next step, a number of balanced triangles
attached with a node are redistributed according to balance index i =

∆+−∆−

∆++∆− , where ∆+ and ∆−

are the number of balanced and imbalanced triangles attached to the node i. In EM modeling
approach, we need the information of triangles’ distribution of real-world network to generate the
similar model network. Still, EM is neither a growing modeling approach (size of the network
grows with time) that is the fundamental property of the social networks nor a social dynamics
dependent model, for example, preferential attachment, internal growth or edge densification etc.
These are some handful attempts made by network scientist to model a signed network which
follow the structural balance theory of Heider [Heider, 1946a].

The problem of modeling of signed-social-network is considered in this chapter. The
question of ‘why model social networks?’ is answered in [Robins et al., 2007]. It can be said
that modeling of a complex system or network provides a comparatively easy understanding of
that system. We present a dynamic growing model for signed networks based on preferential
attachment and a random attachment having local growth with structural balance. In this model,
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we also consider that older nodes have the capability to initiate link formation with the other older
nodes based on preferences. The problem of signed network modeling is viewed as a multiplex
networkmodeling having two layers inwhich the first layer is assumed as the collection of positive
edges and the second layer consists of negative edges.

Multiplex network is defined as a networkwhich hasmultiple layerswith the samenumber
of nodes in each layer. Each node participates in making connections with other nodes in each
layer. We assume that in a multiplex network, there are two layers l1 and l2. As discussed in [Kim
and Goh, 2013], we consider the degree growth equation of a node i in the layer l1 at time t as

kl1i
t

= m1 11
kl1i
t
+ 12

kl2i
t

. (4.1)

where 11, 12 and m1 are constants. Similarly for layer l2

kl2i
t

= m2 21
kl2i
t
+ 22

kl1i
t

. (4.2)

where 21, 22 and m2 are constants.

In a network, 11 and 22 correspond to the effect of intra-layer connections in the evolution
of a node, while 12 and 21 control the inter-layer effect in the growth of a node. In a simple
example, consider a politician which has supporters as well as haters (both type of connections,
positive and negative). A new member can be supporter or hater. 11 and 22 signifies that if a
politician has more supporters (haters) then newmember will support (hate) him. In this case, 12
and 21 will be less effective as we can observe that a new supporter does not prefer to support
a politician on the basis of the count of his haters and vice versa. In another example, consider a
researcher who is connected with other researchers and investors to finance the research. In this
case also 11 and 22 has the similar effect but 12 and 21 has opposite effect as compared to the
previous example. If a researcher is connected with a big team of good researchers then he can get
a number of investors and vice versa.

Now Eqs. (4.1) and (4.2) can be combined in the form of a single dynamical system which
is represented by,

k̇i =
1
t
Cki. (4.3)

where m1 = m2 = 1, k̇i =
kl1i
t
,

kl2i
t

T

, ki = kl1i ,k
l2
i

T
and C = 11 12

21 22
. Consider that C

is a symmetric matrix with the condition ii > | i j| for i = j. Due to diagonal dominance, C is a
positive definite (PD) matrix. In the discussed model of multiplex network, if we assume that l1
represents a layer which contains all positive connections and l2 has all negative connections then
it would be a model corresponding to a signed network.

The rest of the chapter is organized in the following way. Next section provides a complete
picture of networkmodeling process adopted in this chapter and underlying assumptions. Section
4.2 is dedicated to showing the novelty of the model on the basis of compared properties of
real-world networks and corresponding model network defined in this chapter. The chapter is
completed by the discussion and conclusion of the work presented in this article.

35



4.1 THE MODEL
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Figure 4.1 : Example of signed network and its layers.

Networks with preferential attachment growth process have few nodes (called hubs) of
larger connectivity. In the proposed model, we combine three dimensions of growth of a network;
preferential attachment, random attachment with local growth, and internal growth of a network.
In the proposedmodel, two layers are considered; one is the collection of positive edges and second
is comprised of negative edges. An example is shown in Fig. 4.1. The growthprocess of the network
is as follows:
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Figure 4.2 : Step 2- Random attachment with local growth.

Step 1- Preferential attachment (PA). Under this step, a newly appeared node j gets
attached with a pre-existing node i either in l1 layer of positive edges or in l2 layer of negative
edges using the probabilities defined by

pl1i = 11
kl1i
t
+ 12

kl2i
t

, (4.4)

pl2i = 21
kl2i
t
+ 22

kl1i
t

(4.5)

where 11, 12, 21 and 22 are controlling parameters. 11 and 22 control the effect of intra-layer
connectionswhile 12 and 21 control the effect of inter-layer connections in the evolution of a node.

Step 2− Random attachment with local growth (RA-LG). A new node j gets linked with
a pre-existing node i via a positive or negative link randomly in the respective layer, and then
by probability p, it generates balance triangles with the immediate neighbors of node i. The
pictorial representation of the random attachment with local growth process is shown in Fig. 4.2.
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In Fig. 4.2(a), the random attachment is shown in which a new node j get attached via negative
edge with the node i. After that the node j attempts to connect with the neighbors of node i with
probability p. The connections made in such a way that the triangle formed by nodes i, j and a
neighboring node of i is balanced, see Fig. 4.2(b).

Step 3− Internal growth (IG). During the growing process of the network, it also grows
internally by adding edges preferentially without addition of any new node to the network.

These three steps are followed by each node in both the layers. In the proposed evolution
process of a signed network, a node appears with probability (1− ) at each time step and goes
for either step 1 with probability or goes for step 2 with probability (1− ). The network grows
internallywith probability without the addition of a new node. The combined process of network
growth is shown in Fig. 4.3 and defined by

PA (Step 1)

Figure 4.3 : Graphical representation of addition of a new node.

k̇i = (1− )
2t

11 12

21 22
ki+(1− )(1− )




.5+pkl1i

t
.5+pkl2i

t



+




kl1i
t
kl2i
t



 ,

Dynamics of higher degree nodes (high positive as well as negative degree) is given by,

k̇i ≈ (1− )
2t

11 12

21 22
ki+(1− )

(1− )

t
p 0
0 p

ki+ t
1 0
0 1

ki.

k̇i =
1
t
Cki. (4.6)

where C =
(1− ) 11/2+(1− )(1− )p+ (1− ) 12/2

(1− ) 21/2 (1− ) 22/2+(1− )(1− )p+
.

C is a diagonal dominant matrix and Eq. (4.6) represents a dynamical system similar to

Eq. (4.3) that has scale-free behaviour and power-law exponent is = 1+
1

1(C )
.
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Assume that at each time step either a node appears with probability (1− ) or network
grows internally under step-3. Newly appeared node makes connections with the pre-existing
nodes in the network. Let ti be the time when node i participate in network formation process.

The solution of the Eq. (4.6) is given by

ki(t) =
t
ti

1(C )

uT
1 k

0
i u1 +

t
ti

2(C )

uT
2 k

0
i u2. (4.7)

where ui is an eigenvector of the matrix C and i(C ) is corresponding eigenvalue. k0
i is an

initial condition.

Theorem 4.1.1. A system given by

ẋ= 1
t
C x, (4.8)

has unique solution given that x0 and t0 are initial conditions, where C is either a symmetric matrix or full
rank matrix.

Proof. Let x= uie i(C ) loge(t/t0) be the solution of Eq. (4.8), where ui is an eigenvector of the matrix C
and i(C ) is corresponding eigenvalue. Consider

ẋ= uie i(C ) loge(t/t0)
d ( i(C ) loge (t/t0))

dt
,

ẋ= uie i(C ) loge(t/t0) i(C )
t0
t
d (t/t0)

dt
,

ẋ= uie i(C ) loge(t/t0) i(C )
t0
t

1
t0
,

ẋ= 1
t i(C )uie i(C ) loge(t/t0),

ẋ= 1
t
Cuie i(C ) loge(t/t0),

ẋ= 1
t
C x.

Now the general solution of the Eq. (4.8) will be

x= ∑
i
aiuie i(C ) loge(t/t0),

where ai is a constant. By satisfying the initial conditions (x0 and t0), we get ai = uT
i x0, ∀i.

x= ∑
i

uT
i x0 uie i(C ) loge(t/t0), (4.9)

It proves that a solution exist and it is a unique solution (proof is given inChapter 1, page-13,
Theorem 1) [Brockett, 2015].
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Put x= ki, x0 = k0
i and t0 = ti in Eq. (4.9), and we get the Eq. (4.7). If node i has total degree

ki = 1Tki at time t then

ki = a1
t
ti

1(C )

+a2
t
ti

2(C )

.

where a1 = (uT
1k

0
i )(1Tu1) and a2 = (uT

2 k
0
i )(1Tu2). If 1(C )> 2(C ) then for older nodes, t

ti
will

be large and

ki ≈ a1
t
ti

1(C )

this leads to

P(k)≈ 1
a1

k
a1

−
.

where = 1+
1

1(C )
, 1(C ) is the largest eigenvalue of the matrix C .

Note: C should have positive eigenvalues.
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Figure 4.4 : Degree distribution of signed network generated by the model defined by Eq.(4.6).

Example 4.1.2. An example of model network named as Signed-Social-Network (SSN) is considered by
setting the values of parameters: = 0.4, = 0.005, p= 0.1, 11 = 0.83, 22 = 0.42, 12 = 0.6× 11 and

21 = 0.6× 22. The produced matrix C has eigenvalues 1(C ) = 0.27 and 1(C ) = 0.10 for the given set
of parameters. Cumulative degree distribution of the generated model network is plotted in the Fig.4.4 that
is showing a strait line in the upper tail of the distribution. It corresponds to power-law behaviour of degree
distribution of the network generated by the model proposed in this chapter.

As we know that the behavior of the SSN depends on the settings of the parameter
values. Further, we considered some specific cases to analyze the behavior and dependency of the
power-law exponent in the parameters. Some special case is discussed with their special structure
of the matrix C . These cases are summarized in Table 4.1.

Case-1 It is considered that network does not grow internally. Preferential attachment
scheme which is explained in step-1, is the only process applied in the network formation. It is
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assumed that the connections in one layer do equal contribution in the growth of other layers
(linking probability). The specified dynamics is obtained by setting = 0, = 1, 11 = 12 =

21 = 22 = ≤ 0.5 in Eq. (4.6), corresponding to which the matrix C = /2
1 1
1 1

. Matrix C has

eigenvalues , 0 and corresponding eigenvectors are u1 =
1
1
, u2 =

1
−1

respectively. Networks

generated by the given settings of parameters have power-law exponent 1+1/ .

Table 4.1 : Some special cases

Parameter settings
= 0, = 1, 11 = 12 = 21 = 22 = ≤ 0.5 1+ 1

= 0, = 0 1+ 1
p

= 0, = 1, = 21 = 12 = 0, 11 = 22 = ≤ 1 1+ 2

= 0, = 1, = 21 = 12 = r , 11 = 22 = ≤ 0.5 1+ 2
(1+r) , r ≤ 1

= 0, = 1, = 21 = 12 =− /2, 11 = 22 = ≤ 1 1+ 4

= 0 1+ 1
+(1− )p

Case-2 It corresponds to the second row of the table in that a network does not grow
internally and it follows only the local growth scheme of balanced triangles. The preferential
attachment has zero contribution to the evolution of the network. The whole dynamics is obtained

by setting = 0, = 0, corresponding to which the matrix C = p
1 0
0 1

. Matrix C has both the

eigenvalues p, and corresponding eigenvectors are u1 =
1
1
, u2 =

1
−1

respectively. The networks

generated by the given settings of parameters have power-law exponent 1+1/p.

Case-3 This case is given in the third row of the table. Here also, network does not grow
internally. It follows only the preferential attachment scheme in individual layer. Connections in
a layer does not affect the dynamics of other layers. The complete explained dynamics is obtained
by setting = 0, = 1, 21 = 12 = 0, 11 = 22 = ≤ 1, corresponding to which the matrix C =

/2
1 0
0 1

. Matrix C has both the eigenvalues same, /2, and corresponding eigenvectors are

u1 =
1
1
, u2 =

1
−1

. The networks generated by the given settings of parameters have power-law

exponent 1+2/ .

Case-4 In this case also, network does not grow internally, it follows only the preferential
attachment scheme in both the layers. The connections from one layer has fixed contribution in
the growth of other layers. The inter-layers dependency of growth process is defined by 1 ≥ r > 0.
The specified model is obtained by setting = 0, = 1, 11 = 22 = , 21 = 12 = r , ≤ 0.5,

corresponding towhich thematrixC = /2
1 r
r 1

. MatrixC has eigenvalues (1+r) /2, (1−r) /2

and corresponding eigenvectors are u1 =
1
1
, u2 =

1
−1

respectively. The networks generated by

the given settings of parameters have power-law exponent 1+2 −1/(1+ r).

Case-5 Here, network follows only preferential attachment scheme in both the layers
without internal and local growth. The connections from one layer have negative effect in the
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growth of other layers. The inter-layers dependency of growth process is defined by 0 > r ≥ −1.
The specified model is obtained by setting = 0, = 1, 11 = 22 = , 21 = 12 = r , ≤ 0.5,

corresponding to which the matrix C = /2
1 r
r 1

. C has eigenvalues (1 + r) /2, (1 − r) /2

and corresponding eigenvectors are u1 =
1
1
, u2 =

1
−1

respectively. The networks generated

by the given settings of parameters have power-law exponent 1+ 2 −1/(1− r). If r = −1/2, then
= 1+4/ (Fifth row in Table 4.1).

Case-6 In this case, network evolution process considers only local growth with balanced
triangles in both the layers having internal growth. Preferential attachment scheme does not
contribute anything in the network formation. The specified model is obtained by setting =

0, corresponding to which the matrix C = ( +(1− )p)
1 0
0 1

. C has both ethe eigenvalues

( +(1− )p), and corresponding eigenvectors are u1 =
1
1
, u2 =

1
−1

respectively. The networks

generated by the given settings of parameters have power-law exponent 1+1/( +(1− )p).

4.2 RESULTS
In the previous section, a mathematical representation of considered social activities

is modeled with the discussion of 6 special cases. In this section, we are providing a
comparison between the structural properties of the considered real-world signed social network,
corresponding network generated using the model defined in the previous section and networks
generated under the evolutionary model (EM) without considering the balance index given in
[Ludwig and Abell, 2007]. We do not consider other discussed model to compare with SSN.
SSN is a dynamic model while others are not. EM is an evolutionary model but does not
capture the dynamics of new node addition in a network. The model defined in this chapter is
growing random network model for signed networks which is based on observed characteristics
of real-world social networks, for example, real-world networks follow balance theory, internal
growth, and preferential attachment. Other considered models only focus on balance theory for
signed networks. We considered some basic properties, for example, distribution of different type
of balanced and unbalanced triangles, and some othermeasures to analyze the structure of a signed
networks from the perspective of characteristics of the nodes. We define two quantities that are
stability s, and diversity Φ of the nodes in the network for the same purpose. Before that, we
discuss the notion of the degree in the signed networks. Two notions are adopted to measure the
degree of a node in a signed network, one is unsigned-degree in which all the connections of a node
is counted irrespective of sign of the edge attached to the node, and second is signed-degree that is
the summation of the signed weights of the edges attached to a node.

Definition 4.2.1. If A is the adjacency matrix of a signed network G and A = abs(A), then the stability of
a node i in the network G is defined by

si =
(A3)i,i
(A 3)i,i

.

It represents the contribution of node i in the balance triangles.

Definition 4.2.2. If A is the adjacency matrix of a signed network G and A = abs(A), then the diversity of
a node i in the network G is defined by

Φi =
(A 1)i−|(A1)i|

max(A 1) .
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Stability measure of a node i (which is also known as balance index in [Ludwig and
Abell, 2007]) is the relative excess of balance triangles attached to that node. A node of high
stability has neighbors of less social conflict. The diversity of a node i is the relative difference
of unsigned-degree to the absolute value of signed-degree of the node. A node is highly polar that
have an equal number of friends and enemies, and less polar if it has either friends or enemies
only.

Nature of the edges and their pattern in the network has the important role in the stability
of the structure of the networks. Structural balance of the triangles and their distribution play a key
role in the study the dynamics of the signed-networks. Nodes are the actors in the networks and
the growth of networks depend on the actions taken by these nodes. They participate in stabilizing
the structure of networks by sharing balanced and unbalanced triangles. In these networks, nodes
have positive as well as negative connections which drive the dynamics of nodes that is different
from unsigned networks.

In this section, we are presenting a comparative study of a considered real world network,
corresponding model network generated by Eq.(4.6) and another considered model, EM. A real
world signed network is considered and by tuning the values of the parameters of the models,
signed networks are generated. Networks are compared on the basis of triangle distribution, the
degree of balance of the network and other properties of the networks already defined in this
section.

Table 4.2 : Fraction of balanced and imbalanced triangles of different types in the voting network of
Wikielection, network generated using (4.6) and EM network is given in [Ludwig and Abell,
2007]. In case of model networks, all the provided values are averaged over 10 networks of
same size and same parameter values.

Triad Ti p(Ti) p(Ti)Model (4.6) p(Ti)Model (EM)
T3 (+++) 0.67 0.7647 0.4752
T1 (+−−) 0.09 0.1159 0.1100
T2 (++−) 0.22 0.1178 0.4043
T0 (−−−) 0.01 0.0017 0.0105

We considered the data of voting in Wikielection to study the distribution of stability and
diversity of social actors in social networks. In the network, users are the nodes and edges are the
positive or negative votes given by users to promote or demote another user for the selection of
admin. The network is considered as undirected and signed that has strong positive correlation
≈ 0.6 between positive and negative degrees of the nodes. In Fig. 4.6(a), stability has broad range of
distribution in which some nodes are perfect stable (si = 1) and some are perfect unstable (si =−1).
Themajority of the social actors have the positive score of the stability which indicates the stability
of the social network. Diversity distribution also supports the balancedness of the social networks.
Fewer people are highly polarized and a large number of people are less polar. Diversity and
stability, both have the same conclusion on balancedness of the signednetworks. Now the question
can be raised that the same results from the measures, diversity, and stability, can be due to the
similarity in measures. There is a very less positive correlation (0.0529) between the measures,
stability, and diversity, which indicates that there is no interdependence between s and Φ. These
are independent quantities but tell the similar story of balancedness in social networks.

For the comparative study, networks of size 5000 nodes is generated using the model
defined in this chapter by setting the parameter values, = 0.4, p = 0.2, 11 = 0.6, 22 = 0.35,
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12 = .6 11, 21 = .6 22 and = 0.04. In 12 = .6 11 and 21 = .6 22, the multiplier 0.6 is considered
from the correlation between positive and negative degrees of the nodes in the voting network of
Wikielection and another EM model networks of size 7000 considering 0.56 as friendliness index.
The comparison of stability distribution (in Figs. 4.6(a), 4.6(b) and 4.6(c)), diversity distribution (in
Figs. 4.5(a), 4.5(b) and 4.5(c)), distribution of different type of balanced and imbalanced triangles
in (Figs. 4.7(a), 4.7(b) and 4.7(c)) shared by the nodes and the correlation (in Table 4.3) between
the distribution of different type of triangles are compared. Behaviour of the plots of different
considered structuralmeasures in themodel network (SSN) are similar to the considered realworld
network, Wikielection. EM network has highly polar nodes as compared to SSN andWikielection,
see Fig. 4.5. SSN has similarity to Wikielection which have a small fraction of highly polar nodes,
see Figs. 4.6(a) and 4.6(b). Distribution of s or balance index, in Fig. 4.6 shows that EM has highest
number of perfectly unstable nodes, s=−1. SSN andWikielection have small fraction of unstable
nodes which have negative value of measure s, see Figs. 4.6(a) and 4.6(b).
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Figure 4.5 : Distribution of diversity of nodes, Φ, in network of (a) Wikielection (b) model network
defined in the chapter and (c) EMmodel network given in [Ludwig and Abell, 2007].

Both the networks, Wikielection and SSN, have a larger fraction of balanced triangles,
0.76 and ∼ 0.88 respectively and a small fraction of imbalanced triangles (second and third
column in Table 4.2, Figs. 4.5(a) and 4.5(b)), while EM has almost equal amount of balanced
(∼ 0.58) and imbalanced (∼ 0.41) triangles. Details are given in Table 4.3. The model is able to
capture the structural properties of the real world signed network. The distribution of balanced
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Figure 4.6 : Distribution of stability of nodes, s, in network of (a) Wikielection, (b) model network
defined in the chapter and (c) EM network given in [Ludwig and Abell, 2007].
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Figure 4.7 : Distribution of triangles shared by nodes in the network of (a) Wikielection (b) model
network defined by Eq. (4.6) and (c) EM network given in [Ludwig and Abell, 2007].
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Table 4.3 : Correlation between the distribution of balanced and imbalanced triangles of different types
in the voting network of Wikielection, corresponding model network generated by 4.6 (in
small bracket) and EM network (in square bracket).

T3 T1 T2 T0

T3 (+++) 1 0.7160[0.11](0.91) 0.8592[0.09](0.97) 0.4713[−0.016](0.79)
T1 (+−−) − 1 0.9389[0.05](0.96) 0.8928[0.03](0.89)
T2 (++−) − − 1 0.7664[0.16](0.87)
T0 (−−−) − − − 1

and imbalanced triangles of different type have the same order, see in Fig. 4.7. Distribution of
different type of triangles is highly correlated (see Table 4.3) in considered real world network and
corresponding model network generated by Eq. (4.6). The network generated by EM model has
very low values of positive correlation as compared to other networks while T0 (all negative) and
T3 (all positive) has a negative correlation. The correlation of different type of triangles indicates
that the distribution of balanced and imbalanced triangles is uniform in the nodes of the considered
real world network and correspondingmodel network generatedunder Eq. (4.6). But EMproduces
the network of different properties as compared to Wikielection and SSN in which majority of the
contribution comes from balanced triangles. In Fig. 4.7, ranking of nodes according to the number
of triangles shared by them are plotted. Wikielection and SSN have same order of triangles’ plot
(|T3| ≤ |T2| ≤ |T1| ≤ |T0|) while in EM the order is different (|T1| ≤ |T2| ≤ |T3| ≤ |T0|) see in Fig 4.7(c).
Triangle type which has more positive edges is more probable in the Wikielection network and
similarly, in SSN, see second and third columns in Table 4.2. In EM network, balanced and
imbalanced triangles are almost equally probable, see fourth column in Table 4.2.

4.2.1 Balance in signed network
Balance is a very important concept in signed networks, it gives a notion of stability in

signed networks. The roots of balance lie in theories of social psychology dating back to the work
of Heider(1946,1958)[Heider, 1946b]. later Cartwright and Harary(1956) [Cartwright and Harary,
1956b][Davis, 1963][Harary et al., 1953][Easley and Kleinberg, 2010] generalized and extended this
concept in the language of graphs. The balance of signed network depends on the balance of cycles
(closed walks) it contains. A cycle (closed walk) is called balanced cycle(closed walk) if it contains
the even number of negative edges else it is called unbalanced cycle (closed walk). In Figs. 4.8(a)
and 4.8(b), examples of balanced and unbalanced cycles on four nodes are shown respectively.

Theorem 4.2.3. [Malekzadeh et al., 2011] A signed graph is balanced iff all cycles(closed walks) are
balanced.

Theorem 4.2.4. [Malekzadeh et al., 2011] A signed graph is balanced iff the vertex set of the graph can be
partitioned into two subsets such that each positive edge joins vertices in the same subset and each negative
edge joins vertices in different subsets.

An example of a balanced network is shown in Fig. 4.8(c). Most real-world networks are
not balanced [Estrada and Benzi, 2014]. In order to measure how much a signed network deviate
from balancedness, few measure is well established in the literature, they are as follows:
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(a) Balanced cycleC4 (b) Unbalanced cycle C4 (c) Balanced network

Figure 4.8 : Examples of signed networks. Dark, dotted edges represent positive, negative edges,
respectively.

Clustering Coefficient
Let +(G) is the number of balanced triangles and −(G)) is the number of unbalanced

triangles in a signed network G, then clustering coefficient cs(G) of signed network is given by
[Kunegis, 2014],

cs(G) =
∑u∼v∼w∼u (u,v) (v,w) (w,u)

{u,v,w ∈V |u∼ v∼ w}

=
+(G)− −(G)

{u,v,w ∈V |u∼ v∼ w} .

Where u∼ v denotes the existence of link between u and v. The signed clustering coefficient cs(G)
denotes to what extent the graph exhibits a balanced structure. Additionally, the relative signed
clustering coefficient S(G) is defined as follows:

S(G) =
∑u∼v∼w∼u (u,v) (v,w) (w,u)
{u,v,w ∈V |u∼ v∼ w∼ u}

=
+(G)− −(G)
+(G)+ −(G)

.

Closed walk based degree of unbalance
The total number of closed walks of length k in G is given by trAk(G), where tr is trace of

matrix A(G) [Estrada and Benzi, 2014]. A balanced weighted closed walk (BCW) is a closed walk
of length larger than zero with a positive sign. Similarly, an unbalanced weighted closed walk
(UCW) is a closed walk of length larger than zero with the negative sign.

Let us take weighted sum of walks as:

D(G) =
∞

∑
k=0

tr[A(G)k]/k!.

It converges to D(G) = tr(eA(G)) [Estrada and Benzi, 2014]. Here 1/k! is weight given to every cycle
of length k. Every BCW contributes positively to D(G) and every UCW contributes negatively to
D(G). We have tr(eA(G)) = B− | U | as the sum of weighted balanced(unbalanced)closed walks,
and |.| is absolute value. Similarly we can consider the same term in the underlying graph |G|
which results in tr(eA(|G|)) = B+ | U |. Let us define,
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Ke =
tr(eA(G))
tr(eA(|G|))

=
∑n

j=1 e j

∑n
j=1 e j

=
B−| U |
B+ | U | .

Where j and j are the eigenvalues of G and |G|, respectively. So this means that the ratio
Ue of unbalanced to balanced CWs can be obtained as,

Ue =
| U |

B =
1−Ke

1+Ke
.

Degree of unbalance using triangle is defined in similar way. Let us define:

K =
+(G)− −(G)
+(G)+ −(G)

.

Then degree of unbalance using triangle is as follows:

U =
1−K
1+K

.

Algebraic conflict
Let L = D−A be laplacian matrix of G, where A is adjacency matrix of G and D is diagonal

matrix having Dii = ∑n
j=1 |A|i j. Let 1 ≥ 2 ≥ . . . ≥ n be the eigenvalues of L. n is zero exactly

when G is balanced. Therefore, the value n can be used as an invariant of signed graphs that
characterizes the conflict due to unbalanced cycles, it is called algebraic conflict of G [Kunegis,
2014].

Table 4.4 : A simple table

Balance criteria Real network Model network SSN EM model network
cs 0.0364 0.0423 2.03356×10−4

S 0.3217 0.2583 0.1768
U 0.5132 0.5170 0.7151
Ue 1 1 1
n 0.1830 0.1871 10.74

The values of above-explained measures are calculated for the considered real world
network and corresponding model network generated by Eq. (4.6) and EM. It is found that the
measured criteria of degree of balance and unbalance in both the networks (Wikielection and SSN)
are close enough, see the second and third column in Table 4.4 while EM has different values of
balancedness given in the fourth column of the Table 4.4.

The provided analysis concludes that the model presented in this chapter is capable of
capturing the properties of the given real world signed network and it is different from other
considered models in the growth process. The SSN model is a dynamic network model in which
nodes are continuously growing and growthprocess is based on observed phenomena on the social
networks.
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4.3 DISCUSSION AND CONCLUSION
The importance of consideration of social conflicts among the people in the society, the

existence of the non-trivial pattern of signed triangles motivated us to define the rules of evolution
of social network as a signed network. In the previous section, we discussed the differentmetrics to
measure the structural properties anddegree of balance of the signed network. A real world signed
network is considered to evaluate the novelty of the model defined in this chapter. Distribution of
different considered structural properties and degree of balance are calculated for the networks,
Wikielection, corresponding model network (SSN) and EMmodel network. Model networks play
a key role while simulating the diffusion processes over these networks to identify the pattern
of diffusion phenomena under different conditions that’s why modeling of social networks as a
signed network is important.

For example, let a signed network G. If G which has at least one negative edge, is
structurally balanced orweakly balanced, then it is positively disconnected. A balanced or weakly
balanced network can be divided into clusterswhich have positive intra-cluster edges and negative
inter-cluster edges [Davis, 1967]. It implies that clusters are not positively connected. It has a
negative impact ondiffusionprocesses. Tomake the diffusionwidespread in the balance networks,
it requires a number of seed nodes that makes the diffusion costly in highly balanced networks.
A highly balanced society has more conflicts between small groups which are known as clusters
[Davis, 1967]. It makes the society more polarized. In a more polarized society, clusters have a
tendency either to oppose the actions of other clusters or to compete with other clusters. It may
affect the diffusion in both ways. If clusters have a tendency to oppose the others then it creates
chaos in society and it is unhealthy for diffusion processes as innovation adoption, marketing of a
product. A sense of competition improves the output of the network of interest for example games
of different types in which different teams compete with each other to win the matches and this
way the performance of the teams get improve.

In a connected signed network G, if each edge is the part of a triangle type T3 or T2, it is
positively connected. There is a signed path between each pair of nodes and each edge is sharing
a triangle type T3 or T2. In both the type of triangle, all the three nodes are positively connected.
This is true for all edges. It leads to the positive connectivity of the network. In a signed network
that has all type of triangles, the distribution of unbalance triangle T2 plays an important role in
information diffusion if it is considered that negative link has a negative effect (opposite to positive
edges) on information sharing.

We see that consideration of negative relations among the social objects may affect the
scenario of diffusion patterns [Li et al., 2013b]. Realization of more realistic social network and
activities of their participants (nodes and edges)are important. It may provide more insight into
the evolution of social activities and interaction patterns among the participating agents (nodes).
In this chapter, we adopt a simple evolution process of social networks as a signed network on
the basis of observed social activities that are preferential attachment scheme and local balance
among the small group under random attachment scheme. The providedmodel of signed network
is capable enough to capture the structural behavior of the real world signed networks that are
shown in the previous section. It can be used as platform network to simulate process over the
signed networks.

…
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