
5
Parametric network model inspired by nucleation process

In the previous chapters (Chapter 3 and 4), we discussed about the modeling of the real
networks using social theories. Now the question is that: can we adopt network formation process
to explain some other processes such as chemical process? In this chapter, we attempt to model
nucleation as a network formation process and explore in the direction of modeling of social events
of short duration such as workshops and conferences. Recall that complex networks formalism
has been used in different and diverse field of academic disciplines including computer science,
physics, chemistry, biology, mathematics, and social sciences in order to design and explain
different complex systems in real world [Barrat et al., 2008; Harrison, 1999; Jackson et al., 2008;
Miyao et al., 2016; Newman, 2010; Prill et al., 2005; Rao et al., 2013] . Specifically, networking
approachhas been established to be a usefulmechanism for understanding a systemwhich consists
of a large number of interconnected systems. In this chapter, wemake an attempt to deliver a proof
of principle for nucleation as a networking process.

In nucleation, individual entities move in the solution or vacuum in Brownian motion.
In the process, two or more entities come in physical proximity and thereby produce temporal
combined units or clusters. Depending on the prevailing physical conditions and the size of the
unit, the unit gains in terms of volume free energy and looses surface free energy. Such clusters,
called embryos, may also gather additional units by similar way and loose units by dissolution.
If they travel across an energy hill by gathering additional units, the volume free energy gain
dominates over surface free energy effect after a certain size. At this stage, embryos give birth
to a nucleus which is qualified to grow without dissolution. On the other hand, an embryo may
travel in the opposite direction in the energy axes and dissolve completely or partially. In other
words, the entities in the solution form network, they have reward and penalty on formation of
network which depends on the prevailing conditions and the unit size, and an individual embryo
behaves stochastically which is similar to a network formation. Thus, nucleation can be thought
of as the formation of either a new thermodynamic phase or a new structure via assembly of
participating molecules. The rate of nucleation can be viewed as how long an observer has to
wait before significant number of the new phase or structure appears.

The foregoing discussion of ‘penalty’ and ‘reward’ in connection to network formation can
be related to the overall free energy gain for cluster formation which is given by

∆F =− s+ s2/3

where and are the volume and surface free energy of the cluster (network) composed of s
units respectively. Definite expressions of and are available for a given system. Usually, is a
function of the ratio of the number of units in the system (concentration) to the number of units that
shall not participate in the network formation (saturation concentration). The rate of nucleation is
an exponential function of ∆F is given by

Ṅ = k1 exp
	
−∆F
kT



.
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In order to interpret the crystallization process as a networking process we consider the
atoms (or ions or molecules) as nodes in a given system. We define a link between two nodes when
a node has in physical contact with an another node in the system. As we know that the number
of physical contacts for a node is limited to a number, which is called co-ordination number (Cn)
of the node, we declare that the degree of a node of the ‘to be formed network’ (after or during
crystallization) is restricted by a fixed number for each node. In our simulated results, we consider
Cn = 6 for any node participating in the crystallization process as observed in many standard
crystallization processes, for example, [Hoppe, 1970; Wells, 2012].

In the context of crystallization, we consider that a cubical is occupied by a solution with c
unit of concentration. The interaction frequency of the nodes (atoms) of the solute in the solution
depends on the concentration of the solute in the cubical. As we know that crystallization is a
reversible process, the nodes, which lie in the boundary of the crystals, get dissolved in the solution
which depends on the positions of the atom in the crystal. The atoms which are weakly attached
with the crystal have higher chances to get dissolved in the solution where a probability pd(i) for
a node i is associated with the crystal. It is needless to mention that it depends on the position of
the node inside the crystal.

Once we describe a network formation approach for nucleation based on the
aforementioned assumptions, we propose to extend this network formation formalism in to a
social network model. Thus we consider the example of formation of groups or communities
of researchers when a workshop or conference is organized in an institute. We develop a social
network model in spirit of the nucleation process under some suitable assupmtions in the begining
of the formation of the social network.

The chapter is organized as follows. In Section 2 we discuss crystal formation with single
solute as a network formation process. In Section 3, we propose a social network model inspired
by the network approach to crystallization. Finally we conclude our findings.

5.1 NETWORK APPROACH TO CRYSTAL FORMATIONWITH SINGLE SOLUTE
In the network formulation for crystal formationwe assume that a setV of nodes (atoms) in

a solute can take part in the crystallization, that is |V |, the number of nodes inV are participating in
the crystallization process, whereas, the solution can accommodate maximum N ( |V |) number
of nodes of the solute. Then we define the probability of linking a node to an another node, which
is a potential candidate to be a part of the crystal, as

p=
|V |− |C |

N

where |C | is the size (the number of nodes) of the crystal formed during the process. Obviously,
|C | = 0 in the begining of the network formation. Consequently, the dissolution probability is
defined as

q(i) = 1− ki
Cn

(5.1)

where ki is the degree of a node i ∈ V which represents the number of contacts the node i in the
crystal.

In order to introduce the concept of free energy penalty for the nucleation process, we
define a constant

E = ∑
i∈C

[Cn− ki]− ∑
i∈C

ki = |C |Cn−2 ∑
i∈C

ki (5.2)
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where C denotes the crystal and |C | is the number of nodes (atoms) in the crystal C . Note that,
∑i∈C [Cn− ki] corresponds to the surface energy and ∑i∈C ki represents the volume energy in the
network realization of the nucleation process.

The one-one correspondence of the terms used in standard nucleation and the terms which
we just have introduced for its network formation interpretation are given in Table 5.1.

Now we describe the mechanism of a growing network which ultimately explains the
nucleation process.

1. Let V be the set of members which are participating in the network formation. Network
formation started from a random node which becomes the first member of the crystal C .

2. A random node from V \C is selected (from the boundary of C ), which gets connected with
C with probability p.

3. A random node i ∈ C which gets removed from C with probability q(i).

4. Repeat the steps 2 and 3 until |V |= |C |.

A sample crystal produced by adopting the network formation process is given in Fig. 5.3(b)
which is called a crystal-network (CrN). The crystal in Fig. 5.3(b) is generated by considering |V |=
8×102,N = 10×102. The behaviour of the characteristic curves of the classical nucleation process
and crystallization through network formation approach are the samewhich can be observed form
the Figs. 5.1 and 5.3(a).

It may be noted that for a fixedN, a different choice of |V | can influence the crystal formation
process. Thus, we pose the following question. For a fixed N, how does the concentration of nodes,
that is, |V | change the dynamics of crystallization in crystal-network formation? It is well-known
in classic nucleation process that the concentration influences the crystallization process, in fact,
lower the concentration is, slow the rate of crystallization.

We investigate the effect of p (which depends on |V |) in crystal-network by simulating
the process for |V | = 6× 102 and |V | = 8× 102 with a fixed N = 10× 102. It is found that lower
concentration level increases the time of crystallization under network approachwhich is standard
in classic crystallization process. The conclusion is made by plotting E after taking average over
5000 crystal-networks, see Fig. 5.4(a).

It iswell known from the classical nucleation theory that themolecules or ions continuously
get in to crystal and dissolve in to the solution during the crystallization process. During the
crystallization process the size of the crystal changes continuously that can be measured in the

Table 5.1 : Correspondence between the symbols used in crystallization and corresponding network
formation process.

In crystallization In network formation
the set of atoms which V

take part in crystallization
c p

pd(i) q(i)
F E
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Figure 5.1 : Horizontal axis represents size of the nucleus (s) and vertical axis represents free energy
penalty.

context of network formation. The average rate of change ( ˙|C |) in the size of the network-crystal
is given by

˙|C |= p−q

where q= 1
|C | ∑i∈C

�
1− ki

Cn

�
is the average probability of dissolution. Further

˙|C |= |V |− |C |
N

−1+
k
Cn

. (5.3)

where k is the average degree of the nodes inside the crystal networks. From the Eq. (5.2) and (5.3),

˙|C |= −|C |
N

− E
2Cn|C | +

�
−0.5+

|V |
N

�
.

From the Fig. 5.2, it is observed that the process of crystal formation is fastest around the
point where E = 0, see red dots in the Fig. 5.2, after that the rate of the change in the size of a
crystal decreases slowly. In Fig. 5.2, we plotted the 100× ˙|C | so that the comparison between the
curve of E and 100× ˙|C | can be visualized at same scale.

In classical nucleation theory, the rate of nucleation highly depends on concentration.
The rate of nucleation is given by a complicated non-linear function of the prevailing saturation
concentration as

Ṅ = k1 exp
	

k2

−(ln(c/c0))2



. (5.4)
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Figure 5.2 : Plot in blue represents the average rate of change in the size of the crystal at given size and
plot in black is E . ˙|C | is maximum around the point where E = 0. Points in red color.

This function shows a zero rate around the concentration c0 and suddenly jumps to a very
high value after c exceeds a certain concentration. Then the nucleation and associated growth of
the cluster reduce the cwhich brings down the rate again close to zero. This is the general feature
of the equation and also observed in the case of homogeneous nucleation.

In the context of nucleation process under network formation approach, we simulated the
crystal formation process at different concentration levels of solution. For a given solution, c0, k1
and k2 are constants. We consider k1 = k2 = 1, c ∈ {0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6} and
c0 = 0.5. For each value of c, we numerically simulated the average time taken by the nucleation
process to generate a crystal nucleus that is related to nucleation rate of the solution. The numerical
results are averaged over 1000 simulations. In Fig. 5.4(b), average frequency of nuclei generation at
each value of concentration level is plotted against the function of concentration cwhich is given in
right of the Eq. (5.4). The rate of nucleation increases exponentially as the concentration increases.
The plot between nucleation rate and quantity

�
k2

−(ln(c/c0))2

�
in Fig. 5.4(b) validate the novelty of the

process of nucleation using network formation approach. The behaviour of the rate of nucleation
in the context of network formation is highly similar to the classical nucleation process.

5.2 A SOCIAL NETWORKMODEL INSPIRED BY NUCLEATION
In the previous section we have studied the crystallization by interpreting it as a network

formation process. In this section we propose a social network model which inherit communities
in the resultant network inspired by the process. Here, we emphasize that these communities can
be thought of as groups of entities with similar interest.

We assume that the atoms are social entities and the social ties between these entities are
represented by physical contacts of the atoms after crystallization. Hencewe propose the following
model.

1. Let V be the set of nodes which are participating in the network formation process among
the total number of available nodes N |V | in a system.

2. Select multiple nodes, say, k (≪ |V |), called the initiators for the resultant network that act as
the starting points of crystallization simultaneously. In the beginning, a participating node
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Figure 5.3 : In (a) Horizontal axis represents size of the nucleus (s) and vertical axis represents E . In
(b) Crystal generated through network formation approach.

0 200 400 600 800 1000 1200 1400 1600 1800
−20

−15

−10

−5

0

5

10

15

20

time

Initial concentration of the first solute=0.8

Initial concentration of the second solute=0.6

E

(a)

−35 −30 −25 −20 −15 −10 −5 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b)

Figure 5.4 : In (a) Crystallization time while the initial concentration level of solute is different. In (b)
Horizontal axis represents the quantity
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�
and vertical axis represents nucleation

rate Ṅ in the context of network formation process.
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i (a node which wants to participate in the network formation process) gets linked with the
initiators which are physically close to iwith probability

p=
|V |
N

.

3. Once the degree of an initiator becomes at least 1, we call the subgraph which consists of an
initiator and its neighbours, a group. Then, any participating node can get attached to any
node (member) with probability p in any group depending on its closeness to a group where
closeness is defined as the minimum spatial distance among all spatial distances of members
in a group.

4. The process continues until no isolated participating node exists in the system.

For example, consider the phenomena of group formation of participants having similar
research interest in aworkshop organized in an institute. Here, we assume that the nodes represent
researchers in the institute and V is the set of all researchers among them who are participating
in the workshop. Thus, for the network formation, we assume N |V | is the total number of
researchers available in the institute. We assume that the workshop schedule includes k parallel
sessions focused on different sub areas of research in each such session. The speakers in each
session at a given instant can be considered as the initiators for the resultant network formation,
in which, the closeness of a researcher (node) can be defined by considering his research interest
or social acquaintances with fellow researchers. The resultant network can be thought of as an
outcome of the crystallization process.

We simulate social networks using the above mentioned model by setting N = 27× 103,
|V | = 2× 103 and we select 10 random initiators for the generation of the resultant network, for
example, see Fig. 5.5 where the size of the nodes are proportional to its degrees and Cn = 6.

A network generated by setting 2 intiators with |V |= 2×103 and N = 27×103 is provided
in Fig. 5.6.

5.2.1 Community structures in the resultant social network
Real world network inherits community structure or modularity. In the context of

social structure, community is a group of similar people who have more connections inside the
community and less interactive to the rest of the world. Newman defined that community is a
group of nodes which has more number of links than expected in random networks [Newman and
Girvan, 2004]. Tomeasure the quality of community structure inside a network, modularity index
Q is given by Newman which is defined as

Q=
1

2m∑
i j

	
Ai j−

kik j
2m



cic j

where m is the number of edges in the network, ki and k j are the degrees of the nodes i and jwhich
belong to communities ci and c j respectively, and is the Kronecker delta function.

In order to investigate the existence of community structures in the resultant network due
to the proposedmodel, we proceed as follows. We generate the networks for different values of |V |,
in particular, we consider |V |= t×102 where t = 2 : 10 and N = 2×103 is fixed. We observe that as
|V | (the concentration of solution) increases, the number of modules increases and the modularity
index decreases. See in Figs. 5.7(a) and 5.7(b). We use Louvain algorithm for the detection of
the community structures [Blondel et al., 2008]. It is needless to mention that this phenomena is
common in various social networks, for example, [Girvan and Newman, 2002].
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Figure 5.5 : A network generated by using the proposed model. The clusters of nodes with same color
denote the communities
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Figure 5.6 : A network generated by crystallization process.
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Figure 5.7 : In (a) Number of communitieswith respect to concentration. In (b)Modularity indexQwith
respect to concentration.
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5.3 CONCLUSION
In this chapter we investigate crystallization in the perspective of network formation

process. The basic rules of the network formation in the context of crystallization are defined that
are able to explain the nucleation process as a network formation phenomena. A similar approach
is used to define a social network model.

…
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