
6
A parametric model approach for structural reconstruction

of scale-free networks

Most of the existing network generationmodels are based on either preferential attachment
or random attachment with local information [Dorogovtsev et al., 2000; Chakrabarti and Faloutsos,
2006]. Preferential linking utilizes a global view of the network since preferring a node over the
other nodes needs global information of the network. Random attachment with local growth
process is inspired by the philosophy that links are not always made by choice but also by
chance. For example, making new connections/friendships in society often happens in attending
a social gathering (which is by choice) but new links are generated by chance (random) during
the meeting. A parametric model is proposed in this chapter using the convex combination
of preferential attachment and random attachment with local growth. Here, the preferential
attachment is defined by a sequence of independent Bernoulli trials whose success probabilities
depend on the degree of the existing nodes. The random attachment is defined by a sequence
of independent identical Bernoulli trials. The reconstruction is done by determining the optimal
values of the model parameters that minimize the gap between the given degree distribution and
the degree distribution of the proposed model network. The efficiency of this method is validated
for SNR by reconstructing different real world networks using this approach. We observe that
real world networks and its reconstructed copies do share similar statistical properties including
distribution of clustering coefficient (CC), hops count, eigenvalues, network values (principal
eigenvector of adjacency matrix), and the number of shared triangles. One may wonder why
just the minimization of residual error of degree distributions contribute to reducing the residual
error of other distributions. Recall that, these distributions are often correlated [Li et al., 2011;
Jamakovic and Uhlig, 2008; Hernández and VanMieghem, 2011], and as a by-product of the given
SNR technique and the proposed network model we obtain the desired results. Observing the
usefulness of the proposed parametric growing network model into solving SNR, we call the
proposed model as Network-Reconstruction-Model (NRM).

We analytically prove that NRM shows power-law in the tail of the degree distribution
of the model networks in which the power law exponent ranges from 2 to ∞. We further show
that the networks generated by NRM do replicate different established dynamic and structural
phenomena during its formation that are observed in real-world networks [Leskovec et al., 2007].
For example, we show that specific choice of model parameters can justify edge-densification,
densification power law (DPL), shrinking diameter and modular structure in the corresponding
model networks. We also provide an algebraic relation of the model parameters satisfying
which NRM can generate networks which follow edge-densification and densification power law.
Numerical results establish the property of shrinking diameter and existence of communities for a
particular choice of the model parameters.

In order to verify the novelty of NRM in comparison to other existing parametric network
models, we consider solving the SNR problem by using DMS model [Dorogovtsev et al., 2000],
context dependent preferential attachment model (CDPAM) [Pandey and Adhikari, 2015], forest
firemodel (FFM) [Leskovec et al., 2007] and community guided attachment (CGA)model [Leskovec
et al., 2007]. The results show that performance of both DMS and CDPAM to solving SNR problem
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is not satisfactory. FFM and CGA model are able to capture a few properties of the real-world
networks for a specific choice of domains of its parameters but have more time complexity
compared to NRM.

The chapter is organized as follows. SNR method is explained in Section 6.1 along with
runtime and space complexity of the proposed method. In Section 6.2, accuracy (structural) and
efficiency (in terms of execution time) of the defined method of structural reconstruction of the
networks is compared with other considered network models in the same context. In Section 6.3,
various properties of NRM are discussed and numerical simulations of structural properties
including clustering coefficient, spectral radius, algebraic connectivity, assortativity, triangle
counts are considered. The detail discussion of proposed NRM model and future directions are
provided in Section 6.4 and chapter is concluded in Section 6.5.

6.1 NETWORK RECONSTRUCTIONMODEL AND NETWORK RECONSTRUCTIONMETHOD

Figure 6.1 : Graphical representation for division of probability of connection between node i and j. In
the figure, PA stands for preferential attachment, RA stands for random attachment and LG
is local growth.

We propose a 2-parameter growing network generation model which we call NRM as
follows. The parameters of the NRM are:

• A probability , where 0 ≤ ≤ 1

• A probability pwhere 0 ≤ p≤ 1/2

and both are not zero simultaneously. The network formation process starts with a link as an initial
network G0. Then at each time step t ≥ 3 a new node appears and gets attached to the existing
network G(t). For t = 1,2 no new nodes and links are added. Thus the number of nodes in G(t) is
t−1 when t ≥ 3. For t ≥ 3 let j be the new node which joins the existing networkG(t). Then j forms
links with the existing nodes based on the following steps.

• Bernoulli-step: The node j attempts to make a link with an existing node i with success
probability ki(t)

t , independently for all i, where ki(t) denotes the degree of node i in G(t).

• Random attachment (RA) with local growth (LG) step: The node j attempts to form links
with success probability 1

t to all the existing nodes and if it gets linked with a node i then it
forms links with neighbors of iwith constant probability p.

Then the NRM N( , p) is defined as follows. Begin with the initial link G0. For t ≥ 2, the
networkG(t+1) is constituted fromG(t) by taking the Bernoulli stepwith probability , otherwise
by taking the random attachment with local growth step. Note that, for a given value of the
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pair ( , p), the success probability for formation of a link with an existing node i in the Bernoulli
step increases with its degree ki. Hence, as if, the new coming node j prefers to join an existing
node which has the high degree. Thus with a slight abuse of terms, we call the Bernoulli step as
preferential attachment (PA) step. The entire process of link formation is depicted in Fig. 6.1.

Thus the probability that the new coming node j forms a linkwith an existing node i during
the formation of G(t+1) is given by

pj
i (t+1) = (PA)+(1− ) (RA+LG) ,

which can be written as

pj
i (t+1) =

ki(t)
t

+(1− )
1
t
+ p ∑

ki(t)

1
t

, t ≥ 2. (6.1)

Given the values of the parameters and p, a network can be generated by using p j
i (t+1).

We prove that the degree distribution of a network generated by NRM follows power-law in its
tail, that is the probability of a node having degree k, which we denote by P(k) is approximately
k− when k is large, where = 1+ 1

+ p and = 1− . Then degree of a node i after t time steps of
its appearance in the network is given by

ki(t) = k0
i + ( −1)

t
ti

1
−1

− ( −1) (6.2)

by Eq. (6.1). Here k0
i is the degree of the node i just after it appered at time ti. Consequently, we

obtain

pj
i =

k0
i
−1

+
1

t
1
−1

i t
1− 1

−1
j

. (6.3)

The detailed derivation of these results are provided below.

Consider the link formation probability p j
i (t+1) from Eq. (6.1). Then assuming continuity

of ki(t)with respect to time-step t, we obtain

ki
t
=

ki
t
+

ki p+1
t

=
1
−1

ki
t
+

t
(6.4)

using mean-field approach. Here = 1+ 1
+ p , p ∈ [0, 1/2] and = 1− . Solving the Eq. (6.4) we

obtain

ki(t) = k0
i + ( −1)

t
ti

1
−1

− ( −1). (6.5)

where the initial condition is given by ki(ti) = k0
i . This yields the probability of connection between

node i and j given in Eq. (6.3)

pij =
k0
i
−1

+
1

t
1
−1

i t
1− 1

−1
j

.
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Now we show that the networks generated by NRM follow power-law with exponent =
1+ 1

+ p in the tail of its degree distribution. We adopt a similar approach as described in Chapter
3, [Chung and Lu, 2006]. Recall that the link formation probability of NRM is given by

p j
i (t+1) =

ki(t)
t

+(1− )
1
t
+ p

ki(t)
t

, t ≥ 1

= ( + p)
ki(t)
t

+
t

(6.6)

where 0 ≤ ≤ 1, and 0 ≤ p ≤ 1/2, = 1− and , p are not zero simultaneously. Let mk,t be the
number of nodes of degree k in N(t). Then

E(mk,t |mk,t−1) = mk,t−1 1− ( + p)
k
t
−

t

+mk−1,t−1 ( + p)
k−1
t

+
t

.

Then taking expectation both sides we obtain

E(mk,t) = E(mk,t−1) 1− ( + p)
k
t
−

t

+E(mk−1,t−1) ( + p)
k−1
t

+
t

. (6.7)

Let
Mk = lim

t→∞

E(mk,t)

t
.

Now we recall the following lemma from [Chung and Lu, 2006].

Lemma 6.1.1. Suppose that a sequence {at} satisfies the recurrence relation

at+1 = 1− bt
t+ t1

at + ct for t ≥ t0. (6.8)

Furthermore, suppose limt→∞ bt = b> 0 and limt→∞ ct = c. Then limt→∞
at
t

exists and

lim
t→∞

at
t
=

c
1+b

. (6.9)

Consider bt = ( + p)k+ , t1 = 0, t0 = 1 and

ct =
E(mk−1,t−1)

t
[( + p)(k−1)+ ].

Then limt→∞ bt = ( + p)k+ and

lim
t→∞

ct =Mk−1[( + p)(k−1)+ ].

Hence from Eq. (6.7)

Mk =Mk−1
[( + p)(k−1)+
( + p)k+1+

. (6.10)
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Now ifMk = k− for some > 0 then

Mk

Mk−1
=

k−

(k−1)−
= 1−

k
+O

1
k2 . (6.11)

From Eq. (6.10),

Mk

Mk−1
=

[( + p)(k−1)+
( + p)k+1+

=
( + p)k− ( + p)+

( + p)k+1+

=
( + p)k+1−1− ( + p)+

( + p)k+1+

= 1− 1+( + p)
( + p)k+1+

= 1− ( + p)+1
( + p)k+1+

= 1−
1+ 1

+ p

k+ 1+
+ p

= 1−
1+ 1

+ p

k
+O

1
k2 . (6.12)

Thus comparing Eq. (6.11) and Eq. (6.12) we obtain

= 1+
1
+ p

.

Now it remains to show that 0 <Mk < ∞ for k ≥ 2. Let us rewrite the Eq. (6.6) as

pj
i (t+1) =

1
−1

ki(t)
t

+ 1− 1
−1

r
2
t
, (6.13)

where r =
1

2(1− p)
≤ 1 since 0 ≤ p ≤ 1/2. Then the link formation in NRM can be described as

follows. From Eq. (6.13), note that after t > 2 a new coming node either goes for preferential
attachment (PA)with probability 1

−1 or for randomattachment (RA)with probability 1− 1
−1 .

Random attachment to two nodes in the network is restricted by probability r. Simply, the
probability of getting two links under random attachment by newly appeared node is 1− 1

−1 r.
Thegraphical representation of theprocess is given in Fig. 6.2. Newly addednode can also generate
two links under preferential attachment schemewith some probability≥ 0. So the probability that
a newly appeared node has degree two is ≥ 1− 1

−1 r.

Thus for k= 2,we have bt = b= (1+ +2 p) and ct = c≥ 1− 1
−1 r. Then by Lemma 6.1.1

limt→∞E(m2,t)/t =M2 exists and

M2 = lim
t→∞

E(m2,t)

t
≥

1− 1
−1 r

2+ +2 p
.
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Figure 6.2 : Graphical representation of Eq. (6.13).

Thus 0 =Mk < ∞ for all k ≥ 2 by Eq. (6.10). This completes the proof.

Various structural and statistical properties of networks generated by NRM are
investigated in Section 6.3. The SNRproblem for a given real network can be solvedby determining
the values of and p by using the degree sequence or degree distribution of the given scale-free
network as follows.

6.1.1 Determination of the optimal values of and p for network reconstruction
Now we describe a method for the determination of the optimal values of the parameters

, p that can produce amodel network usingNRM for reconstruction of a given scale-free network.
Since any choice of ∈ [0,1] and p∈ [0,1/2] generates amodel networkwith power-law in its degree
distribution, we discritize both [0,1] and [0,1/2] into m1 and m2 equi-distant points, respectively.
Let S1 ⊂ [0,1] and S2 ⊂ [0,1/2] denote the set of points obtained after discritization such that |S1|=
m1, |S2|=m2. Then for each ( , p)∈ S1×S2 theNRM produces a network having power-law degree
distribution with exponent = 1+1/( +(1− )p) in the tail of its degree distribution and there
can be m1m2 model networks.

Let G(t) be the model network which contains the same number of nodes as the number of
nodes in a given real network Gr. Then the optimal values of , p is obtained by

( opt, popt) = min
( ,p)∈S1×S2

kmax

∑
k=1

|P(ki(t)< k)−Pr(ki < k)|. (6.14)

where P(ki(t) < k) = 1−P(ki(t) ≥ k), the probability that a node has degree ki smaller than k is
calculated for the network generated by NRM for a given ∈ S1, p ∈ S2; Pr(ki < k) = 1−Pr(ki ≥ k)
is calculated from Gr, and kmax denotes the maximum degree of nodes in G. Note that the time
complexity in finding the values of opt, popt rises if m1m2 is a very large number as we need to
generate m1m2 model networks in order to obtain the desired result.

However the time complexity can drastically be reduced by utilizing the power-law
exponent of the model network. Let r > 1 be the power-law exponent of the given network
Gr that can be obtained by using gradient descent technique [Kutner et al., 2004] from the degree
sequence of the given network. Setting

r = 1+
1

+(1− )p
(6.15)

a relation between the parameters , p can be obtained, and hence the search space for the optimal
values of parameters ( , p) is reduced from O(m1m2) to linear search space of O(m1) or O(m2).
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Table 6.1 : Real world networks.

Network Size (n) Edges
e-mail network 1133 5451
PPI network of YEAST 2361 6609
Collaboration network (CbN) 4158 13422
Collaboration network (ca-HepTh) 8638 24806
PGP network 10680 24316

Let n be the number of nodes inG(t). Then the degree of each node inG(t) can be calculated
at time t in constant run time using Eq. (6.2). Thus it needs O(n) space to store the degree
distribution. Determination of popt and opt requires approximately O(2n) space.

We mention that due to the lack of a functional relationship between the power-law
exponent and model parameters in existing parametric models, the structural reconstruction of
a given network by using existing models is computationally challenging. For example, how the
power-law exponent in the degree distribution of networks in CGA model is related to the model
parameters i.e. difficulty constant (> 0) and branching factor (> 0) is not known. Same is true
for FFM in which the model parameters are known as forward burning probability (∈ (0,1)) and
the backward burning ratio (> 0). Besides, determination of values of the parameters involved in
CGA and FFM is difficult as the corresponding domain spaces are unbounded. Hence one has to
be careful while restricting a domain to be bounded for reconstruction of a given network using
these models.

We determine the pair ( opt, popt) after discretizing the domains of , p intom1 = 100 =m2

points to generatemodel networks usingNRM for certain real world networkswhich include email
network [Guimerà et al., 2003], PPI network of YEAST [Bu et al., 2003], PGP network [Boguñá et al.,
2004], CollaborationNetwork (CbN) [Leskovec et al., 2007] and the Collaboration network (ca-Hep
Th) [Leskovec et al., 2007]. Note that the degree distribution of each of these networks follows
power law in the tail as investigated in [Boguñá et al., 2004; Clauset et al., 2009b; Barabási andAlbert,
1999b; Albert and Barabási, 2002], see Table 6.1. The datasets of these networks can be found in
[Leskovec and Krevl, 2014]. The degree distribution (in log− log scale) of each of these real world
networks and the same for respective model networks obtained by NRM using ( opt, popt) are
plotted in Fig. 6.3. The detailed analysis of the reconstruction capability of NRM and comparison
with other relevant models is provided in next section.

6.1.2 Limitation of NRM
The power-law exponent in the networks generated by NRM ranges from 2 to ∞. Hence

NRM is not applicable for reconstruction of scale-free networks having power-law exponent less
than 2. The optimal values of and p are obtained by discretizing the domains of these parameters
and thus opt and popt need not be the global optimal values. For a given pair ( , p), the NRM
produces networks having a constant throughout the evolution of the network. Therefore it does
not capture the class of networks which have time varying power-law exponent.
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(e) Collaboration network (ca-HepTh).

Figure 6.3 : Matching of degreedistribution of realworld networks and the sameproduced by the NRM.
The degree distributions of different networks generated by NRM are plotted (in log− log
scale) in blue and the same of the corresponding real-world networks are plotted in black.
The horizontal axis represents degree (k) and vertical axis represents cumulative probability
P(ki ≥ k).
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(a) Degree distribution.
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(b) Distribution of clustering coefficient of nodes.
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(c) Distribution Triangles.
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(d) Distribution of hops.

Figure 6.4 : Numerical results of different properties of network generated by models corresponding
to email network are plotted.
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Table 6.2 : Dis-similarity between degree distributions.

Models / Networks email CbN ca-HepTh PGP YEAST
NRM 0.04 0.04 0.0045 0.067 0.073

CDPAM 0.20 0.27 0.24 0.28 0.26

DMS 0.20 0.27 0.01 0.28 0.25

FFM 0.07 0.10 0.0065 0.12 0.13

CGA 0.15 0.13 0.105 0.12 0.15

6.2 COMPARISON OF NRMWITH CDPAM, DMS, FFM AND CGAMODEL
Now we compare the performance of the proposed NRM with the existing parametric

models FFM, CGA model, DMS, CDPAM as follows. We consider the domains of the forward
burning probability and backward burning ratio in FFM as (0, 1) and (0, 10) respectively for
computing a model network using FFM. In CGA model we consider the branching factor to lie
in (2, 5) and the difficulty constant belongs to (1, 10). For DMS, we consider the domain of the
model parameter ‘initial attractiveness’ to lie in (1, 105). Finally, the model control parameter in
CDPAM is assumed to lie in (0.6, 105). We discretize each of these domains for all the models into
100 points. Model networks are generated using each of these values and the optimal values of the
parameters are determined that minimize |P(ki(t)< k)−Pr(ki < k)| (see Eq. (6.14)).

For NRM, as mentioned above, we discretize the domains of ∈ [0, 1] and p ∈ [0, 1/2] into
100 points. Recall that due to the functional relation between the model parameters in NRM, the
running complexity for the generation of a model network is equivalent to the single parameter
models, when the power-law exponent of the given scale-free network is incorporated. The optimal
values of , p are obtained as defined in Eq. (6.14).

We call the model network generated by the optimal values of the parameters for a given
real network as an optimal model network.

6.2.1 Comparison of NRM, DMS, CDPAM, FFM and CGA using Jensen-Shannon Index
The Jensen-Shannon index [Lin, 1991] measures the similarity between probability

distributions of two different systems defined by [Boas et al., 2010]

J(p,q) =
1
2
(D(p,m)+D(q,m)) ,

wherem=(p+q)/2, p and q are the probabilitymass functions of the two different systems. D(p,m)
is defined by

D(p,m) = ∑
x
p(x)log

p(x)
m

which gives the distance in bits between two distributions p and m.

We employ the Jensen-Shannon index to calculate the similarity of degree distributions
of the optimal model network generated by a given model and the corresponding real-world
network. The corresponding dissimilarity indices are provided in Table 6.2 for certain real
networks discussed above. The table establishes that NRM is better in the context of degree
distribution for reconstruction of real world networks compared to the other models which we
consider in this chapter.
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Table 6.3 : Average error in different structural properties of the networks generated by different
models corresponding to the given networks. It is averaged over error between 10
ensembles of generated model networks and real world network.

Network Model EDD ECC EATS EAHs EAC ESV ENV

email NRM 1.76 0.14 3.65 0.10 0.19 0.28 0.002
CDPAM 9.74 0.17 1.71 1.01 6.82 1.26 0.008
DMS 9.80 0.19 12.64 0.92 6.71 1.46 0.007
FFM 2.59 0.26 3.64 0.91 0.22 0.32 0.031
CGA 4.86 0.15 20.11 0.28 0.85 0.81 0.028

YEAST NRM 1.89 0.22 4.84 0.13 0.02 0.55 0.003
CDPAM 7.66 0.17 8.57 1.43 4.50 1.33 0.008
DMS 7.70 0.18 11.70 1.28 4.43 1.47 0.009
FFM 2.02 0.32 5.32 1.05 0.05 0.37 0.012
CGA 3.66 0.14 14.23 0.60 0.06 0.80 0.018

ca- NRM 0.71 0.017 1.92 1.27 0.008 0.15 0.002
HepTh CDPAM 6.21 0.47 17.10 2.52 3.65 0.93 0.006

DMS 6.22 0.48 18.52 2.23 3.58 1.12 0.007
FFM 1.62 0.021 5.06 0.93 0.03 0.24 0.004
CGA 2.73 0.43 17.87 0.03 0.024 0.51 0.009

CbN NRM 1.56 0.19 54.01 1.32 0.026 0.44 0.006
CDPAM 7.43 0.54 63.74 2.95 4.45 1.24 0.010
DMS 7.45 0.55 66.16 2.74 4.42 1.41 0.010
FFM 2.06 0.16 63.44 1.76 0.029 0.57 0.008
CGA 3.69 0.49 66.58 1.83 0.035 0.67 0.013

PGP NRM 3.30 0.10 15.22 2.48 0.044 0.75 0.003
CDPAM 5.42 0.26 29.56 3.86 2.83 1.05 0.005
DMS 5.49 0.26 30.31 3.47 2.73 1.26 0.005
FFM 8.10 0.15 17.24 3.73 0.30 1.20 0.006
CGA 3.89 0.23 30.01 0.50 0.063 0.61 0.004

6.2.2 Comparison of NRM, DMS, CDPAM, FFM and CGA on the basis of reconstruction of
structural and spectral properties
In this section, we introduce error functions which measure the amount of deviation of

certain structural and spectral properties of the optimal model network and a given real network.
Thus we compare the potential of the network generative models described above to resolve the
SNR problem for a given real network.

We define the error in degree distribution as

EDD =
kmax

∑
k=1

|PM(ki < k)−Pr(ki < k)|.
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where Pr(ki < k) is the degree distribution of the given real-world network and PM(ki < k) is the
same of the optimal model network. Similarly, error in clustering coefficient of the networks is
defined as

ECC = |CCr−CCM|,

where CCr is the average clustering coefficient of the real world network and CCM is the average
clustering coefficient of the optimal model network. Error in the average number of triangles
shared by a node is defined as

EATS =
1
n
|Trace(A3

r )−Trace(A3
M)|

where Ar is the adjacency matrix of the real world network and AM is the same for the optimal
model network of the same size. Error in average hops between a pair of nodes EAHs is defined
as the error in average path length of the real network and the optimal model network. Error in
algebraic connectivity is defined as

EAC = | 2(Lr)− 2(LM))|.

where 2(Lr) and 2(LM) are the second smallest eigenvalues of the combinatorial Laplacian
matrices associated with the real world network and the optimal model network respectively.

Finally we define errors in the singular values (SV) and the values of principal eigenvector
(also called network values (NV)) of the adjacency matrices as

ESV =
1
n

n

∑
k=1

|SVk(Ar)−SVk(AM)|.

and
ENV =

1
n

n

∑
k=1

|NVk(Ar)−NVk(AM)|

respectively.

The errors, thus calculated, are given in Table 6.3 after determining the optimal model
network for each of the network generation models. Observe that the error is minimum for NRM
in almost all the cases. Thus we deduce that NRM has the capability to capture multiple structural
and spectral properties simultaneously for a given scale-free network better than the other models.
Besides, FFM and CGAmodels perform marginally better than DMS and CDPAM.

Here we mention that algebraic connectivity is small for most of the real networks and
it is an indication of modular structure in the network [Jamakovic and Uhlig, 2008; Newman,
2004, 2006a]. From Table 6.3 observe that the optimal model networks generated by NRM have
lower algebraic connectivity which is close to the algebraic connectivity of the corresponding real
networks. Hence NRM has more potential compared to other models to inherit modular structure
in the reconstructed copies of real networks. Moreover, the spectral properties such as singular
values, network values of the optimal model networks generated by NRM are close to that of the
real networks. This means that the rate of convergence of different diffusion protocols on these
model networks should be same as that of the real networks [Newman, 2010].

In Fig. 6.4 we plot the distribution of clustering coefficient, degree distribution, distribution
of sharing of triangles and hop’s distribution of the reconstructed copies of email network and that
of the email network. Observe that the optimal model network generated by NRM outperforms
all the other optimal model networks. Hence these numerical results confirm that NRM can solve
the SNR problem efficiently than the other models for the choice of domains of its parameters
considered in this chapter.
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Table 6.4 : approximated execution time (in sec) of different methods adopted for network
reconstruction.

Models/ Network email Yeast CbN PGP ca-HepTh
NRM 13 43 138 610 538

CDPAM 139 347 1256 5789 5392

DMS 156 423 1163 7143 5643

FFM 32132 78264 123462 892335 297436

CGA 213 443 1326 8976 7364

6.2.3 Comparison of NRM, DMS, CDPAM, FFM and CGA on the basis of execution time
We evaluate the execution time for solving the SNR problems for the real networks

considered in this chapter, by using CDPAM, DMS model, FFM, CGA model and NRM. The
optimalmodel network is produced by discretizing all the domains of parameters discussed before
into 100 equidistant points. ForNRM, the relationship between themodel parameters is usedwhile
incorporating the power-law exponent of a real network (see Eq. 6.15). The execution time for each
of these models for the corresponding real network is calculated in seconds and presented in Table
6.4. All the computation is in a machine of configuration 4 GB RAM, Intel(R) Core(TM) i5−3230M
CPU 2.6 GHz, 64 bit OS. The execution times in Table 6.4 confirm that the one parameter models
and theCGAmodel have execution time almost 10 timesmore thanNRMwhile FFMhas almost 104

times more execution time compared to NRM. Thus we conclude that NRM is an efficient model
to resolve the SNR problem.

6.3 PROPERTIES OF NETWORK RECONSTRUCTION MODEL
In this section, we discuss different statistical properties of a network generated by NRM.

Note that NRM is similar to the preferential attachment scheme as described in [Chapter 3, [Chung
and Lu, 2006]]. Following a similar derivation as provided in [Chapter 3, [Chung and Lu, 2006]], it
is easy to prove that the degree distribution of a network generated by NRM exhibits power law in
their tail given by P(k) ∝ k− where = 1+ 1

+(1− )p .Nowwe derive computable expressions of the
expected diameter, expected number of triangles and expected clustering coefficient of a node in a
model network generated byNRM.We also provide an algebraic relation for themodel parameters
and p such that any chosen values for these parameters that satisfy the algebraic relation would

produce networks which follow edge-densification and densification power law.

6.3.1 Expected Diameter
The expected diameter of a random network is defined as the maximum of average path

lengths between any pair of nodes [Fronczak et al., 2004]. Recall that, if A1,A2, ...An are mutually
independent events and their probabilities fulfil the conditions P(Ai)≤ for all i then

P(∪n
i=1Ai) = 1− exp −

n

∑
i=1

P(Ai) −Q, (6.16)

where 0 ≤ Q < ∑n+1
j=0(n ) j/ j!− (1+ )n [Fronczak et al., 2004]. In order to compute the expected

diameter of a network generated by NRM, we consider Ai ∈ A to be an event which assumes
the existence of a walk (i, v1, . . . ,vl−1, j) of length l between two nodes i and j in G(t). The set A
consists of all such events and hence |A | = |V (t)|l−1 where |V (t)| denotes the number of nodes in
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G(t) [Fronczak et al., 2004]. Note that a walk is called a path if vi = v j,1 ≤ i, j ≤ l− 1. Then the
probability of the existence of a path of length not more than l between any two nodes i, j in G(t)
is given by

Pi j(l)≈ P(∪Ai∈A Ai)

≈ 1−exp −
|V (t)|

∑
v1=1

. . .
|V (t)|

∑
vl−1=1

pv1
i . . . p j

vl−1

(6.17)

by using Eq. (6.16) and pyx denotes the probability of having a link between the nodes x and y.
Consequently,

Pi j(l) = 1−exp



− k0
i
−1

+
hl−1
n

t
1
−1

i t
1− 1

−1
j





by using Eqs. (6.3) and (6.17), where hn = ∑|V (t)|
i=1

k0
i
−1+

i . Thus, the expected length of a shortest
path between two nodes i, j ∈V (t) is given by

li j =
1
−1 ln ti+ 1− 1

−1 lnt j− ln k0
i
−1 + −E

lnhn
+

3
2

(6.18)

where li j = ∑∞
l=0F(l), F(l) = 1 − Pi j(l) and E = 0.5772 is the Euler’s constant [Fronczak et al.,

2004]. Moreover, it follows from Eq. (6.18) that li j is an increasing function of ti and t j when
other parameters are fixed. This observation indicates that the expected diameter of the network
generated by NRM is the expected length of a shortest path between the first node and the last
node added in the network. Hence, setting t j = |V (t)| and ti = 1, the expected diameter of a complex
network generated by NRM is given by

DG =
1− 1

−1 ln |V (t)|−E

lnhn
+

3
2
.
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Figure 6.5 : (p, ) in green region shows shrinking in expected diameter and in red region first expected
diameter grows then stabilizes. k0

i = 2 ∀ i< 100.
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In Fig. 6.5 a parameter grid is plotted that shows the behavior of expected diameter of
NRM for given range of values. The combination of parameter values in the green region produces
stabilization of diameter after shrinking and red region shows the stabilization of diameter with
very slow growth. Note that here we allowed p to lie in [0, 1] and recall that the NRM produces a
network whose degree distribution follows power-law in the tail only when 0 ≤ p≤ 1/2.

6.3.2 Expected Number of Triangles and Clustering Coefficient
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Figure 6.6 : Comparison between numerical and theoretical results for triangle counts in a network
generated by NRM at p= 0.4, = 0.2 is plotted.

Note that, in NRM, a new coming node can get attached with previously existing nodes
in two ways: either it goes for preferential attachment with probability or it chooses random
attachment having local growth with probability 1− . Thus, the expected number of triangles G
in a network G generated by NRM is given by

G = ∑
i∈G(t)

0
i , where

0
i+1 =(1− )

i

∑
i1=1

p(ki1 + p i1 (ti))
ti

+
i

∑
i1,i2=1,i1<i2

ki1(ti)
ti

ki2(ti)
ti

pi2i1

and hence

0
i+1 =(1− )p kti +

i

∑
i1=1

p i1 (ti)
ti

+
i

∑
i1,i2=1,i1<i2

k0
i1 + ( −1) 2 k0

i2 + ( −1)

t
2− 2

−1
i ( −1)t

2
−1

i1 ti2

(6.19)

where 0
i is the expected growth of triangles in the network when a node i is added to the network

given that 0
1,

0
2 = 0.
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In the right had side of the Eq. (6.19), the first term represents the triangles generated
by random attachment with local growth and second term counts the same for preferential
attachment. In random attachment phenomena, let a new node i+ 1 get attached with node i1
having degree ki1 at time ti then the node i+ 1 creates approximately pki1

ti
triangles by connecting

the neighbours of node i1 and i1 is also a part of these triangles. Next let at time ti, node i1 be attached
with i1(ti) triangles. Then the node i+ 1 will get attached to these triangles with probability p2.
Thus i+1 gets p2

i1 (ti)
ti

expected triangles and hence i+1 gets p(ki1+p i1 (ti))
ti

total expected triangles
from the node i1.

Observe that when a node i gets attached in the network at time step ti, it generates 0
i

triangles which also increases the count of triangles formed by the existing nodes. Thus the growth
of triangles at a particular node is given by

i(t+1) = i (t) 1+
2 p2

t
+2 p

ki(t)
t

+ ∑
i1>i

ki(t)
t

ki1(t)
t

pi1i .
(6.20)

The number of triangles attached to a node increases with the time as the network grows.
When a new node appears at time t and selects random attachment with local growth step to form
links with the existing nodes, the node i gets pki(t)

t expected triangles. Secondly, the new node
can also select a neighbour of node i with probability 1

t so the probability that the new node will
connect with the neighbours of node i first, is ki(t)

t then by probability p, i will be selected. This
way the node i gets pki(t)

t expected triangles. Thirdly, let (i, j,k) be a triangle. The new node can
connect with j (k) first with probability 1

t then with nodes i and k ( j) with probability p. Let there
be i(t) triangles attached to node i at time t. This increases 2 i(t)p2

t expected triangles of node i.
Next, the growth of triangles at a node also depends on preferential attachment that is given by
last term of Eq. (6.20). Finally, the overall growth of triangles attached to node i is the summation
of all cases described above and given by Eq. (6.20).

The expected number of triangles calculated theoretically and numerically calculated
number of triangles in a network generated by NRM are plotted in Fig. 6.6. The numerical count
of triangles is averaged over 100 ensembles of growing networks generated by NRM.

Consequently, the expected clustering coefficient of a node in the network generated by
NRM is given by

ci(t) =
i(t)

ki(t)(ki(t)−1)
.

where c0
i =

0
i

k0
i (k0

i −1)
and

k0
i =

i−1

∑
f=1

pif =
i−1

∑
f=1

k0
f

−1
+

1

t
1
−1
f t

1− 1
−1

i

.

6.3.3 Edge densification and densification power law
Edge densification or increasing average degree of a growing network is an interesting

phenomena which is observed in many real networks [Leskovec et al., 2007]. We show that the
same is true for networks generated by NRMwhen the model parameters , p satisfy an algebraic
equation. Let kt be the expected average degree of a network Nt generated by NRM. Assume that
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a new node i is added to the network at time-step t + 1 such that the degree of node i becomes
k0
i = kt( + p)+ . Then the new expected average degree of the network is given by

kt+1 =
tkt +2kt( + p)+2

t+1
. (6.21)

followed by Eq. (6.1). Thus,

kt+1 − kt =
2kt
−1 +2 − kt

t+1
. (6.22)

since ( + p) = 1
−1 (see Eq. (6.15)). Hence, a network generated by NRM exhibits edge

densification if

2kt
−1

+2 − kt > 0 ⇒ kt
3−
−1

+2 > 0.

Thus, when ≤ 3, that is, +(1− )p≥ 1
2 , the network exhibits edge densification. Nevertheless,

when > 3, that is, +(1− )p< 1
2 , the edge densification happens up to time-step t if

kt <
2 ( −1)

−3
=

2
1−2( +(1− )p)

.

Further, converting Eq. (6.22) into a differential equation by mean field approximation, we
have

kt
t
=

kt 2
−1 −1 +2

t+1
. (6.23)

Considering the initial condition as k(0) = 1 and solving Eq. (6.23), we obtain

kt = 1+
2

(t+1) − 2
.

where = 2( +(1− )p)−1.

Let e(t) be the number of edges in G(t). Then we have 2e(t) = tkt +2 which yields

e(t)≈ t t
1
2
+ 1+

1
t

− +1 (6.24)

when = 2( +(1− )p)−1 = 0. Therefore, if 2( + (1− )p) = 1, a network generated by NRM
exhibits densification of power law given by

e(t)≈ 1
2
+ t +1. (6.25)

when the time-step t is sufficiently large.

The expected number of edges calculated theoretically and the numerically calculated
number of edges in a network generated by NRM are plotted in log-log scale in Fig. 6.7. The
numerical count of edges is averaged over 100 ensembles of growing networks generated byNRM.
Hencewe establish that a growingnetworkG(t)generated byNRMinherits the phenomenaof edge
densification when t is sufficiently large.
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Figure 6.7 : Comparison between numerical and theoretical results for densification power-law (DPL)
in a network generated by NRM at p = 0.4, = 0.2 is plotted. The count of triangles is
averaged over 100 ensembles of growing networks generated by NRM.

6.3.4 Properties of NRM by Numerical Simulation
Even though the growth process of NRM is simple, closed-form expressions of several

properties of networks generated by NRM are in general difficult to obtain due to cumbersome
calculations. Thus in this section we investigate certain structural properties of such networks by
setting fixed values of the parameters and p.We focus on the dynamics of clustering coefficient,
assortativity, algebraic connectivity, spectral radius and modularity of model networks during its
formation by setting p= 0.5 and ∈ {0.05,0.15,0.25,0.35,0.45}.

In Figs. 6.8(b), 6.8(e) and 6.8(d), we observe that the clustering coefficient (CC), assortativity,
and modularity (Q) [Blondel et al., 2008] are negatively correlated with the parameter . As the
value of increases the value of clustering coefficient, assortativity, and modularity, decrease.
Whereas, algebraic connectivity (AC) and spectral radius (SR) are positively correlated with , see
Figs. 6.8(a), 6.8(c).

6.4 DISCUSSION AND FUTURE DIRECTION
Understanding the mechanism of network evolution lies at the core of many real-world

problems and applications.

One of the fundamental problems in dealing with large real networks is the space
complexity. In general, the space complexity of storing a network isO(|V |2) orO(kt |V (t)|), where kt
and |V (t)| denote the average degree and the number of nodes in a growing network at time-step
t respectively. In addition, kt increases with time t in many networks during the growth of
the networks due to edge densification. We introduce a parametric growing scale-free random
network model in this chapter that can inherit multiple structural properties of a given real
network. Thus, in turn, we attempt to solve the problem of structural reconstruction for scale-free
real networks. We develop a method to determine the optimal values of the parameters involved
in the model by using only the power-law exponent or degree sequence of the given scale-free
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(a) Algebraic connectivity.
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(b) Clustering coefficient.
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(c) Spectral radius.
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(d) Modularity index Q.
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(e) Assortativity index.

Figure 6.8 : Numerical results of different properties of networks generated by NRM is plotted for
different values of parameter after setting p = 0.5. Horizontal axis represents size of
the network N(t) and vertical axis represents numerical values of considered property.
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real network. Thus we show that the proposed approach can efficiently resolve the structural
reconstruction problem for scale-free real networks efficiently. As a byproduct of this method, we
deliver a novel technique to reduce the space complexity of storing a scale-free real network by
storing only its degree sequence which is of O(|V |).

We mention that it would be impossible to develop a mathematical model that can
reproduce any given scale-free network. This follows the philosophy that the growth process
of networks in different contexts could significantly differ. The crucial observation here is that
if the scale-free real network is grown from a ‘social’ perspective, that is, based on preferential
attachment (PA) and random attachment(RA) with local growth (LG) then NRM can better
reproduce the network. We mention that PA and RA+LG are considered as building blocks for
several growing real networks and network models [Chakrabarti and Faloutsos, 2006]. However,
as we discussed before, the PA which we define in this chapter is not the standard concept of
PA [Albert and Barabási, 2000]. Here PA is defined by a sequence of independent Bernoulli trials
with varying success probabilities of formation of links and the success probabilities depend on
the degrees of the existing nodes during the growth of the network. The novelty of the growth
process adopted in NRM proves to be efficient as its performance is better than CDPAM, DMS,
FFM, and CGA model. Besides, the method for structural reconstruction proposed in this chapter
is computationally efficientwhile estimating the optimal values of themodel parameters compared
to the other models.

A natural question regarding NRM is to find out what role do the model parameters , p
play into determining specific structural and spectral properties of networks generated by it. We
numerically investigate the influence of in the model networks while p is fixed. In Fig. 6.8,
we plot clustering coefficient, spectral radius, algebraic connectivity, modularity and assortativity
index of the model networks by setting p = 0.5 and ∈ {0.45, 0.35, 0.25, 0.15, 0.05}. We observe
that as (that is the contribution of PA) increases, the algebraic connectivity and spectral radius of
the network increases. Thus it positively affects the spectral properties of the network. Whereas,
the increment of decreases modularity, assortativity, and clustering of the network. Thus
contributes negatively to the structural organization of the model networks. Finally, we can say
that the local growth is responsible for the existence of community structure and clustering in the
model networks. Recall that, community formation in social context relates to the formation of
groups of similar social elements who have more connections inside the group compared to its
connections outside the group. Moreover, connectivity of similar nodes increases the assortativity
of the network. We mention that NRM has similar dynamics during its formation. Indeed, PA
increases the connectivity of the network in NRM. As the value of increases, the value of
decreases while p is fixed. It is interesting to note that as the fraction of connections based on
preferential attachment increases, the growth rate of diameter becomes slower, and at = 1 NRM
has the constant diameter.

It is well known that many real-world networks follow edge densification with shrinking
diameter during its evolution. In several cases they follow densification power law (DPL) |E(t)| ∝
|V (t)| where lies in the interval (1, 2). We prove that NRM demonstrates a similar pattern. In
fact, when the power-law exponent lies between 2 to 3, NRM shows DPL without any constraint
and most of the real-world networks have power-law exponent between 2 to 3. Thus the model
networks generated by NRM can help to track the dynamics of growing real-world networks. An
optimal model network which can inherit certain structural properties of a given real network
can be used to extrapolate the future properties of the corresponding real network. In addition,
a significant difference between extrapolated results and real results can be considered as an
indicator of the abnormality in the real network. For example, link failure cascade, spamming
or artificial generation of unnecessary links in a network can lead to irregularities in the edge
densification law.
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Note that, it is often difficult to access the real-time diffusion dynamics on a real network.
The optimal model network generated by NRM for a real network can be used to study different
diffusion protocols on the real network.

6.5 CONCLUSION
In this chapter, a solution is provided to reduce the space complexity used to store the

social or complex networks. We can store degree sequence of a network and later using this
sequence and NRM,we can reproduce the other properties with a good approximation (low error)
compared to other models considered here. A parametric network generation model is proposed
for reconstruction of scale-free networks with given degree sequence or degree distribution. A
sufficient condition for the model parameters is provided to generate networks which follow
edge-densification and densification power-law. Computable expressions for expected number
of triangles and expected diameter for the networks generated by the proposedmodel are derived.
Reconstruction of several real-world networks is done in support of the novelty of the proposed
model. By numerical computations, it is established that the proposed model can generate
networks with shrinking diameter and modular structure when specific model parameters are
chosen. In this chapter, we focus on reduction of space complexity of complex networks. The
method of network reconstruction discussed in this chapter has linear space complexity of order
O(|V |) and linear runtime complexity of order O(m1) or O(m2).

…
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