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Biased randomwalk and information diffusion

In this chapter we utilize the dependency of structure of the network and diffusion on
the network to provide possible explanation for preferential growth of the real networks. Biased
random walk is an observed phenomena in networks which is adopted to explain the biased
growth of the networks such as Internet andWWW. Truncated randomwalk is another dimension
of diffusion analysis in real-world systems which is considered in this chapter. The proposed
biased random walk is utilized to calculate the PageRank efficiently.

Networks are ubiquitous in real world [Kelly, 2011]. For example, communication and
information systems [Schwartz, 1977], transportation systems [Bell and Iida, 1997], biological
systems [Girvan and Newman, 2002; Assenov et al., 2008] and many socio-economic systems can
often be interpreted as network systems. In general, these networks are dynamic in nature, where
number of nodes and connectivity pattern between the nodes vary with time. However, it is
observed that many real networks exhibit power-law in the tail of its degree distribution, for
example, WWW and Internet. Often, specially in information and communication networks, and
social networks, diffusion of information is considered on the networks, in which, an amount of
a diffusive material gets diffused via links in the network, over the entire network. Thus in a
dynamic network, connectivity pattern influences the diffusion dynamics. On the other hand,
the diffusion pattern influences the nodes to add/remove links for acquiring or not acquiring the
diffusive material. For example, temporal removal of links happen during an outbreak of disease/
infectious diffusive material in social networks. Theory of self-organization is employed to justify
the growth of a network and diffusion dynamics on it in [Aoki et al., 2015].

Thus a pertinent question about the structural dynamics of a network is the following:
How does diffusion dynamics influence the nodes of a network such that power-law in degree
distribution emerge or sustain in the network? Earlier, it has been speculated that preferential
attachment is a procedure for link formationwhich can explain the arise of power-law in a growing
network. Here we address whether the diffusion pattern can justify the existence or arise of
power-law in the degree distribution of a real network.

We mention that several attempts have been made in literature to model and investigate
diffusion phenomena on real networks. For example, information diffusion is often described as
a random walk dynamics on a network. Indeed, a piece of information or data can be represented
by a random walker, and the current and the immediate next position of the walker correspond to
the sender and receiver nodes in an information network. Note that the activity level of the links
plays a big role in information diffusion. Consider WWW network as an example which follows
preferential attachment [Barabási et al., 2000] and searching dynamics in it is modeled as a random
walk phenomena [Adamic et al., 2001]. In the preferential attachment, a new node prefers to get
linked with a highly connected node in the network [Barabási et al., 2000] whereas, according to
random walk dynamics, average searching time also known as mean-first-passage-tie (MFPT) of
a node in a network is inversely proportional to the degree of that node [Redner, 2001]. Thus a
low degree node has high MFPT which does not justify the preferential growth of the network
because if a node has low degree then it will have high searching time. Hereby one can claim that
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degree based preferential or biased growth and random walk based searching are not consistent
to explain the dynamics of real-world networks which follow power-law degree distribution.
Other existing studies on biased random walk dynamics are not able to justify the preferential
or biased growth of the networks. From the above discussion, it is concluded that there is a hidden
dynamics of diffusion which may not be captured by existing random walk dynamics (based or
unbiased)[Redner, 2001; Fronczak and Fronczak, 2009].

In another direction of diffusion phenomena, we can observe that diffusion on real-world
networks is not a continuous randomwalk process as considered in previous studies. Awalker can
stay at a node in for awhile or jump to another nodewhichmay not be directly linked to the current
location (node) of thewalker. Transition probability of a link can vary with time or in a special case,
it can be reduced. From the above discussion, we can deduce that a rigor analysis of diffusion as
a random walk is required that can justify the preferential or biased growth of networks and such
a walk can be adopted to study the diffusion and searching in networks. A biased random walk
is usually defined by using property of links, interaction frequency of links and/or a function of
degrees of incident nodes while defining the transition probability of a link.

In the existing literature on biased randomwalks, the bias is formulated based on the degree
of a node, specifically, the receiver node in the context of information diffusion [Wang et al., 2006].
However, we mention that there are examples of social networks in which activity level of a link
(wi j) depends on the structural property of both the participating nodes as

wi j ∝ (kik j) , (7.1)

where is a constant [Barrat et al., 2004]. In this chapter, we define the transition probability of a
link by using the activity level of that link given by

wi j = kik j, (7.2)

where is a proportionality constant such that 0 < ∑ j wi j < 1. Hence ∑ j wi j is the probability that
a walker leaves the node i if it is at the node i and wi j is the probability of leaving the node i
via edge (i, j), hence it represents the transition probability. In this chapter, we incorporate the
role of heterogeneous properties of links to define biased random walks. This is natural due to
its importance in many real world applications, for example, if two places (nodes) (X and Y ) are
connected via two paths (P1 and P2) of multiple hops, people (walkers) prefer a path over another
on the basis of its attributes such as traffic, the number of red signals and condition of the roads
which are inherent properties of the links involved in the paths. Further, in literature, it is assumed
that a walker (random and/or biased) never ends its walking. We explore and investigate random
and biased random walks in which a walker can stop permanently at some node in the network
with a non-zero probability during its walking. We call this phenomenon as “walker may kill itself ”.
For example, observe that information diffusion in a social network is not a long lasting process.

Thus in this chapter, we introduce discontinued truncated biased random walk as a
representation of information diffusion in social networks and this can have applications in
truncated searching strategies. Truncated searching is defined as a searching process in which
a walker has an upper time limit of searching.

The contribution in this chapter can be summarized as follows. We introduced a biased
randomwalk on a network and interpret it as a diffusion dynamics on the network. We show that
it can justify the preferential growth of the network. This results into existence of power-law in the
degree distribution of the network. As mentioned above that it is realistic to assume that diffusion
is not a continuous process forever, we introduce discontinued truncated randomwalk (DTRW) on
networks and explain it as information diffusion dynamics on the network that ultimately shown
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to be useful to calculate PageRank ordering of nodes in the network. DTRW also supports the
preferential growth of the network.

The organization of the chapter is as follows. A background and literature survey
is provided in next Section. Proposed dynamics of the biased random walk is discussed in
Section 7.2. Section 7.3 is dedicated for discontinued truncated randomwalk which has application
in calculating PageRank efficiently. In Section 7.4, detailed discussion of biased random walk and
truncated random walk along with concluding remarks is provided.

7.1 BACKGROUND AND RELATEDWORK
We recall that random walk dynamics is often used to study different diffusion dynamics

on networks. Dynamics of a random walker is investigated in many contexts [Nash-Williams,
1959; Tetali, 1991], for example, navigation and centrality of networks [Perra et al., 2012; Starnini
et al., 2012], routing of packets in Internet, and diffusion in communication networks. Traffic in
transportation networks can also be represented as phenomena of random walkers [Wang et al.,
2006]. Random walk dynamics is applied to explore the dynamics of wealth’s distribution in
economic networks, gene expression pathways in biological networks and search (navigation)
strategies in Internet [Adamic et al., 2001; Tadić and Rodgers, 2002; Tadić and Thurner, 2004;
Kim et al., 2002; Rosvall et al., 2005; Germano and de Moura, 2006]. In random walks, a walker
positioned at a node i can move to any node j which is linked to the node i in the network with
equal probability. Thus the selection of a node for a move is uniform among the neighbors of the
current node occupied by a random walker [Akyildiz et al., 2000; Noh and Rieger, 2004].

Thus the standard random walk dynamics can be explained as follows. Let pi(t) be the
occupation probability of a node i at time t then,

pi(t+1) =∑
j
ai j

p j(t)
k j

,

and the collective dynamics of the random walking in a network is given by

p(t+1) = AD−1p(t), (7.3)

where ai j is the i jth entry of adjacencymatrix A of the network andD is the degreematrix associated
with the network [Redner, 2001]. Solution of the Eq. (7.3) is given by

p∞ = lim
t→∞

p(t) =
d

1Td
,

where d= D1 and 1 is a all-one column vector of appropriate length.

Observe that a node of higher degree has higher probability of finding the random walker
which can represent information or any other diffusive resources. This canmotivate a new node to
go for preferential attachment. But as soon as the new node joins an existing network, it becomes
the part of a network and follows the same diffusion protocol and hence, it gets fewer resources
indicated by occupation probability. This reduces the probability of existence of the newly formed
link.

Next motivation for preferential attachment could be the searching time or
mean-first-passage-time (MFPT) of a node. However, MFPT ∝ 1/k, where k is the degree of
the node which also does the negative effect in preferential growth of a network. Hence the
standard random walk dynamics fails to interpret the phenomena of preferential attachment.
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Later, preferential navigation (biased randomwalk) is explored in [Fronczak and Fronczak,
2009] as a model of information diffusion. In biased random walks, a walker shows bias while
choosing the next move to one of the neighbors of the node occupied by the walker by setting
priorities. The probability of passing (transition probability) of awalker from a node i to a neighbor
node j via the link (i, j) is usually defined by

wi j =
k j

∑l∈Ni
kl

,

where is a constant,k j is the degree of a node j and Ni denotes the set of neighbors of i [Wang
et al., 2006]. A different variant of transition probability can also be defined to realize different
phenomena in networks, for example, a localized biased randomwalk phenomenon is presented in
[Sood andGrassberger, 2007] by using indirect neighbors (neighbors at 2 ormore shortest distance)
for the transition probability between two connected nodes (direct or indirect). In [Fronczak and
Fronczak, 2009; Yuan and Chern, 1992; Sood and Grassberger, 2007; Motter et al., 2005], attributes
(properties) of nodes have been considered to define a biased random walk. We can observe the
similar results as discussed for randomwalks, in the case of biased randomwalk inwhich transition
probability depends on the degree of the receiver node only.

7.2 BIASED RANDOMWALK USING PROPERTY OF LINKS
In this section we introduce a biased random walk on networks by utilizig property of its

links. We consider mean-first-passage-time (MFPT) [Redner, 2001] as a measure to investigate the
dynamics of the proposed random walk. Recall that MFPT is defined as the average number of
hops or time needed to reach a node i from any arbitrary node in the network [Perra et al., 2012;
Gefen andGoldhirsch, 1985]. Thus it is the average time taken in the process of network navigation
to access some specific node. Let q(t, i) be the probability that the walker arrives at the node i first
time at time t. If i is the probability of the walker to reach to a node i from its neighbors during
the walking then

q(t, i) = i (1− i)
t−1 . (7.4)

Assume that the probability of travelling of the walker from a node j (neighbour of target
node i) to i is 0 < kik j < 1. Then if the probability of finding the walker at node j at steady state is
�pj then we have

i = ∑
j
�p j kik jai j, (7.5)

where ai j is the i jth entry of the adjacency matrix A associated with the network. Recall that ai j = 1
if the nodes i and j are linked, otherwise ai j = 0. The MFPT of node i (Ti) is then given by

Ti =
∞

∑
t=0

tq(t, i) =
1

i
=

1
ki ∑ j �pjk jai j

. (7.6)

Then it follows from equation (7.6) that we need to calculate the occupation probability of node i,
that is, �p j to obtain an explicit expression of MFPT which can possibly explain the dynamics of the
biased random walk proposed in this chapter.

Let pi(t) be the probability that random walker is at node i at time t. Then we define the
dynamics of the proposed biased random walker as

86



pi(t+1) = ∑
j
ai jw ji p j(t)+ pi(t)

�
1−∑

j
ai jwi j

�
(7.7)

where wjip j(t) represents the probability that the walker will reach to the node i from its neighbour
j, if the walker is present at node j. The second term corresponds to the probability that the walker
will not leave the node i if it is there. Replacing wi j = kik j in equation (7.7) we obtain

pi(t+1) = ∑
j

kik jai j p j(t)+ pi(t)

�
1−∑

j
ai j kik j

�
. (7.8)

Hence the collective dynamics of the proposed biased random walk in a network is given
by

p(t+1) = DADp(t)+(I− Dia(Ad)D)p(t)
⇒ p(t+1)−p(t) =− (Dia(Ad)D−DAD)p(t)

where p(t) = [p1(t), p2(t), p3(t), ..., pn(t)]
T , I is the identity matrix of appropriate dimension,

and Dia(x) is the diagonal matrix with ith diagonal entry as the ith entry of the vector x. After
approximating the difference equation in to a differential equation, we obtain

ṗ(t) =− Mp(t), (7.9)

where M = (Dia(Ad)D−DAD) . Observe that M is a symmetric diagonally dominant matrix with
positive diagonal entries, hence M is a positive semi-definite matrix. Further, M1 = 0 since Mii =

∑ j=i |Mij| and 1 is the all-one vector of length n. Solution of the Eq. (7.9) is then given by (for a
detailed proof see chapter 3, [Mesbahi and Egerstedt, 2010])

p(t) = e− Mtp0 = ∑
i
e− i(M)t �uT

i p0
�
ui, (7.10)

whereui is an eigenvector corresponding to the ith eigenvalue i(M) ofM. For a connected network,
the least eigenvalue 1(M) = 0, u1 = 1/

√
n and i(M)> 0 for i≥ 2. Thus as t → ∞,

p(t)→ �p=
1Tp0
n

1. (7.11)

The biased random walk process defined by the Eq. (7.9) is verified by performing a
simulation on a connected test network on 17 nodes having average degree of the network 2.37.
A random vector of unit length under 2 norm, that is, ||p0||2 = 1 is considered as initial condition.
Convergence of biased randomwalk is shown in Fig. 7.1. The occupation probability of each node
for a biased random walker, defined by (7.9), is same at steady state. Now one can say that how
this could be motivation for preferential attachment while the occupation probability is same for
all nodes?

The average searching time of a node i (defined as MFPT) can be calculated by using
Eqs. (7.6) and (7.11) as

Ti =
n

ki
�
1Tp0

�
∑ j k jai j

. (7.12)
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Figure 7.1 : Single particle diffusion defined by Eq. (7.9) is simulated over a test network of 17 nodes.

Observe that the average searching time Ti not only depends on the connectivity (degree)
of i but also on the distribution of its neighbors’ connectivity. We mention that in other searching
strategies under random or biased random walk that are available in literature, for example in
[Fronczak and Fronczak, 2009] the MFPT of a node i is of the form 1/ki or some other similar
function that clearly indicates that higher degree nodes have less MFPT value, that is, they receive
more visits. Hence there are no benefits of being linked with a node of high degree unless it
does not have a higher degree. Thus there is no motivation to stay linked with a higher degree
node in a network. In contrast, the result obtained in Eq. (7.12) has a different story to offer. The
proposed biased random walk explains that even if a node is not well connected with the entire
network it can receive more visits if it is linked with highly connected nodes. This phenomenon
motivates a node to get linked and stay connected with high degree nodes and hence the biased
random walk provides a possible explanation of preferential growth in real world networks, for
example, on the internet or the web graph WWW. Thus it would not be exaggerated to say that
the proposed randomwalk process proves the saying that ‘being a friend of a rich person is beneficial’
which promotes the preferential growth of a network. This is an example of self-organization in a
network which leads to power-law or preferential growth of Internet and similar networks.

We compare the dynamics of the biased randomwalk defined by Eq. (7.9) with the random
walk proposed in [Noh and Rieger, 2004] on a scale-free network of size 5000 with average degree
4 generated by using the Barabasi-Albert model. In Figs. 7.2 and 7.3 the MFPT of all the nodes
in that network are plotted under biased and unbiased navigation schemes respectively. If the
probability of successful transfer of a walker depends only on the degree of the node occupied by
the walker then the nodes of the lower degree show higher MFPT, and nodes of the higher degree
have lower MFPT, see Fig. 7.3. Similar results are stated in the case of degree dependent biased
navigation in which the probability of successful transfer of a walker depends on the degree of
receiver node [Fronczak and Fronczak, 2009]. Biased random walk defined in this chapter has an
advantage in which a node of lower degree connected with higher degree nodes can have lower
MFPT, see Fig. 7.2. The comparison of improved MFPT of lower and higher degree nodes defined
by the proposed biased random walk and considered random walk is provided in Fig. 7.4.
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Figure 7.2 : Single particle diffusion defined by (7.9) is simulated over the network of 5000 nodes which
is generated under BAmodel. Relative MFPT of nodes is plotted.
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Figure 7.3 : Single particle diffusion under random walker is simulated over the network of 5000 nodes
which is generated under BA model. Relative MFPT of nodes is plotted.
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Figure 7.4 : Comparison of MFPT under simple random walk (RW) and biased random walk (BRW).
Simulation is done on a network of 5000 nodes which is generated under BA model.

7.3 DISCONTINUED TRUNCATED BIASED RANDOMWALK
Till nowwe discussed biased randomwalks in which a walker continues its walking as t →

∞. However, there are evidences of real-world processes in which a walking does not necessarily
continue forever, for example, information diffusion (spreading of a message) and searching in
WWW. In the following, we investigate single walker navigation on networks in which a walker
may stop permanently during its travel. This happens, for example, in the case of single message
forwarding in a network. Truncated searching is also an application of such a biased randomwalk.
We propose two such processes for real-world applications.

Process-I Consider that a walker presents at a node i can walk to one of its neighbors j
with probability wi j = kik j and the probability that it will not leave the node i is 1−∑ j wi j where
is a positive constant such that 0 < ∑ j wi j < 1. If the walker is alive at the node j at time t with

probability pj(t) then the probability that the walker is present at node i alive at time t+1 is given
by

pi(t+1) = ∑
j

ai jkik j p j(t).

This leads to a collective dynamics of the random walker under discontinued walking as

p(t+1) = T p(t). (7.13)

where T = DAD is the transition matrix in which 0 < ∑ j Ti j < 1 and T has maximum eigenvalue
positive and it is less than 1.

Letp0 be the initial condition of the randomwalker. Then the recursive relation in Eq. (7.13)
can be converted to

p(t) = T tp0.

For a large value of t
p(t) = t

T vT ,
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where vT is the leading eigenvector of matrix T and T is corresponding maximum eigenvalue
of , see [Cull et al., 2005] for detailed proof of such recurrence relations.

Process-II This process is motivated by the following example. Consider a simple
real world example of migration of people from cities and villages. Cities are considered as
well-connected nodes and villages are not so well-connected. The four cases of migration can be
discussed as follows. (i) City to city, (ii) village to village, (iii) village to city and (iv) City to village.
Wemay assume that the probabilities of migration between cities and between villages are similar.
The probability of migration of population from villages to cities is much higher as compared to
the other cases. For (iv) the probability may be a very small number.

Thus we define the transition probability wi j =
k j
ki
where is a positive constant such that

0 < ∑ j wi j < 1 and then the proposed biased random walk is given by

pi(t+1) = ∑
j
ai j

ki
k j

p j(t).

The collective dynamics of the walker can be written in the matrix form as

p(t+1) = DAD−1p(t). (7.14)

Let p0 be the initial condition of the random walker. Then we obtain

p(t) = DAtD−1p0.

For a large value of t

p(t) = ( 1)
tDv1

where v1 is the leading eigenvector and 1 is corresponding eigenvalue of the adjacency matrix
of the network (see [Cull et al., 2005] for a detailed proof). Note that pi(t) = ( 1)

t(Dv1)i where
1 < 1 since 0 <

�
∑ j wi j

�
< 1. Thus pi(t) depends on both the eigenvector centrality and degree

centrality of the node i.

Now the question is that can a random walker be able to visit a node i before stopping?
Note that at steady state �p → 0 which indicates that i → 0 as defined by Eq. (7.5). However for
a large value of t i = ∑ j p j(t) kik jai j and q(t, i) = i (1− i)

t−1 . Then the probability of visiting a
node i by the random walker before its stopping is given by

Pi( ) = ∑
t=0

q(t, i)

= ∑
t=0

i (1− i)
t−1

= ∑
t=0

∑
j
p j(t) kik jai j

�
1−∑

j
p j(t) kik jai j

�t−1

≤ ∑
t=0

�

∑
j
p j(t) kik jai j

�
.
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Then for Process-Iwe have

Pi( )≤ ∑
t=0

∑
j

t
T k jv

j
T kik jai j

≤ ki ∑
t=0

t
T ∑

j
v jT k2

j ai j

≤ ki

�
1− +1

T

1− T

�

∑
j
v jT k2

j ai j

and for Process-II

Pi( )≤ ki

�
1− ( 1)

+1

1− 1

�

∑
j
v j1ai j.

Thus observe that, in the context of truncated searching Eqs. (7.14) and (7.13) have different
dynamics as compared to the continued (t→∞) searching process defined by Eq. (7.9). In continued
searching, the occupation probability of the walker at each node is same or proportional to the
degree of the node, whereas, in truncated searching, the probability of finding the walker at a
node depends on the degree of the node and degree distribution of its neighbors.

Wemention that finding an explicit expression forMFPT in truncated biased randomwalks
is difficult as the probability pi(t) depends on t. Indeed one can obtain a pattern of the MFPT of
the random walker at time by dividing the entire time span into small intervals of size . Then
the initial times of these intervals are b1 = 1, b2 = +1, b3 = 2 +1, ..., b / = − +1. In each
interval, MFPT is calculated by considering the initial time of that interval and constant i which is
calculatedbyusing theminimumormaximumvalue of pi(t) in the same interval. Ifwe consider the
minimum (maximum) value of pi(t) in each interval then we can obtain the upper (lower) bound
of MFPT by calculating the expression in Eq. (7.15) as follows.

F ( , l
i ) = ∑

t=1

�
1− l

i

�l
−

�
1− l

i

� +1
, (7.15)

where l
i is in lth interval which is calculated using maximum or minimum of pi(t) in the same

interval. In the context of information diffusion (message passing), P is the probability distribution
of information diffusion which is viewed as a biased randomwalk in the network under the given
condition that thewalker can stop during the diffusion. Within the time limit , a node i can receive
the first message (information) on average time Ti( )with probability Pi( ).

Information diffusion phenomena are simulated under discontinued truncated biased
random walking in which the number of walkers increases as each node which has information
can start sending it to its neighbors. The diffusion is simulated over the same scale-free network
considered previously. Spreading of information started from a random node. Time of reaching
the information at a node, first time, is also calculated. This simulation repeated 1000 times and
average reaching time, MFPT, is plotted in Figs. 7.5 and 7.7 for truncated biased random walk
defined by Eqs. (7.13) and (7.14), respectively. The probability that a node i receives information
within time having average reaching time Ti( ) is also calculated and plotted in Figs. 7.6 and 7.8
for the corresponding biased diffusion given by Eqs. (7.13) and (7.14) respectively.
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Figure 7.5 : Single particle diffusion defined by Eq. (7.13) is simulated over a network of 100 nodeswhich
is generated unde BA model.
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Figure 7.6 : Information spreading is simulated as a diffusion defined by Eq. (7.13) over a network of
100 nodes which is generated unde BA model. Probability distribution is plotted for the
reachability of information to a node within considered time . Simulation performed 1000
times with same parameter and different source node which is selected randomly to
calculate the probability distribution.
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Figure 7.7 : Single particle diffusion defined by Eq. (7.14) is simulated over a network of 100 nodeswhich
is generated unde BAmodel.
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Figure 7.8 : Information spreading is simulated as a diffusion defined by Eq. (7.14) over a network of
100 nodes which is generated unde BA model. Probability distribution is plotted for the
reachability of information to a node within considered time . Simulation performed 1000
times with same parameter and different source node which is selected randomly to
calculate the probability distribution.
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The results obtained for average reaching time of information to a node under simulation
is same as obtained theoretically under the defined truncated diffusion protocols. Nodes of higher
degree are more probable to get information in less time while the distribution of MFPT and the
corresponding probabilities have wide distribution for lower degree nodes. The lower degree
nodes which are linked with higher degree nodes have lower MFPT value with high probability,
see Figs. 7.5 and 7.6. But in the case of diffusion under Eq. (7.14), higher degree nodes act like sinks
which do not release the information easily. Assortativity in the network improves the diffusion in
this case. A higher degree node has lower MFPT with high probability. As before, in this case, the
lower degree nodes have a wide distribution of MFPT and probability P, however, the reasoning
is different. The lower degree nodes which are linked with lower degree nodes have a tendency to
receive information from lower degree nodes if they have it. In this case (second case) assortativity
for lower degree nodes is preferable. There is high positive correlation 0.94 and 0.788 between
quantity fi = ∑ j kik j and Pi for the diffusion under Eqs. (7.13) and (7.14), respectively.

The distribution of MFPT in the biased random walk, and probability distribution in
discontinued truncated biased random walk depend on the structural properties of neighboring
nodes. This dependency provides an initial feed for preferential growth. A newly connected
node can be benefited from its neighbors similar to social networks. Strategic network model also
suggest the similar dynamics in the form of utility [?].

Thuswe conclude that the discontinued truncated diffusion can have practical applications
in web-searching, the study of information diffusion, packet routing on Internet etc. The results
obtained in this chapter also establish an analytical reasoning for the preferential growth of real
world networks.

7.3.1 PageRank and discontinued truncated randomwalk
In this section, we discuss a method to calculate PageRank search which is used to rank

web pages in WWW network [Newman, 2010] by utilizing the concept of discontinued truncated
random walk. PageRank is an ordering metric which signifies the importance of nodes [Langville
and Meyer, 2011; Pasquinelli, 2009].

We consider discontinued randomwalk inwhich a randomwalker can continue its random
walking with probability and otherwise it stops. The collective dynamics is given by

p(t+1) = AD−1p(t). (7.16)

Assume that a random walker starts its walking from some other arbitrary random node.
Thus the random walking with jumping phenomena (also called as repeated truncated random
walk) can be modelled as follows [Sarma et al., 2015].

Let the walker be at a node i at time t with probability pi(t). Next, it can go either for a walk
to its neighbor with probability or do a random jump with probability 1− . In a network on n
nodes, 1/n is the probability of being occupied by the walker in a single jump. Thus the collective
dynamics of the random walk can be written as

p(t+1) = AD−1p(t)+ 1−
n

1. (7.17)

At converging state, solution of the Eq. (7.17) is p=
1−
n

�
I− AD−1�−1 1. The probability

of visiting a node by random walker under this diffusion scheme is proportional to PageRank of
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Figure 7.9 : Vertical axis represents correlation coefficient (correcoef) between considered metric
(Degree and PageRank) and distribution of density of walkers and and horizontal axis
corresponds to parameter .

the network that is well-defined centrality used by google to rank the relative importance of web
pages [Sarma et al., 2015]. Solution of the Eq. (7.17) follows the PageRank ordering which requirs
inverse of a matrix to be calculated. Can we reduce the complexity of calculating the PageRank
ordering without computing the inverse of I− AD−1?

A search engine based on the randomwalker with random jumps converges to the desired
outcome. The random walk dynamics defined by Eq. (7.17) is based on local dynamics that does
not require complex computation and detailed global structure of the network. The proposed
discontinued truncated random walk based method for calculating PageRank is a distributed
diffusion process which reduces the omputational complexity. Similar results are provided in
[Sarma et al., 2015]. Converging state of the probability distribution, in Eq. (7.17), follows same
distribution as PageRank which can be easily calculated by the density distribution of walkers or
users in almost constant time.

Let a network on n nodes have m walkers per node which follows the searching dynamics
defined by Eq. (7.17). After some time, the density of walkers in a node remains unchanged. The
distribution of density of walkers at steady state is directly proportional to PageRank which can be
used to rank the web pages. We consider an LFR network on 500 nodes with average degree 5.176
for simulation. Initially, we consider m = 50 per node, after that each walker performs random
walk 50 times and then the density of random walkers is calculated. For validation, we calculated
the correlation between density distribution of walkers and PageRank.

In Fig.7.9, the correlation between density distribution of walkers and considered metrics
(PageRank and Degree) are plotted for different values of parameter . It is observed that at the
higher value of , correlation is high for both degree and PageRank but PageRank always performs
better than the degree. In Fig. (7.10), PageRank of the LFR network is plotted for different values
of . It is noticed that PageRank is widely distributed and shows more clear ranking of nodes. It
promotes the consideration of the higher value of (between 0.8 to 0.9) for better resolution of
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Figure 7.10 : Vertical axis represents PageRank and horizontal axis corresponds to parameter .

ranking of nodes. From Figs. 7.9 and 7.10, we can conclude that the values of should be higher
but not very close to one otherwise Pagerank approaches to degree distribution.

7.4 DISCUSSION AND CONCLUSION
In a network with power-law degree distribution, there are a large number of nodes which

have fewer connections and a few nodes in the network are well connected in the network and
these are known as hubs. Preferential growth of the nodes in a network is considered to explain
such behavior of degree distribution in real networks. In this chapter, we establish an explanation
for such behavior of the growth process in a network considering the diffusion dynamics on the
networks in the form of biased randomwalks. We studied simple biased randomwalks in which a
randomwalker can walk forever and transition probability of a link depends on the degrees of the
participating nodes of that link. The assumption of transition probability is adapted from [Barrat
et al., 2004]. Secondly, we also consider a discontinued truncated biased randomwalk on networks,
in which a walker can stop while travelling in the network. Information diffusion is a real-life
example of such phenomena. The results obtained in the form of MFPT in continuous biased
random walk and the probability distribution of visiting a node in discontinued truncated biased
random walk supports the preferential growth of real networks. We can conclude that diffusion
dynamics of a node which considers the effect of its neighboring nodes provide a feedback force
for biased growth similar to preferential attachment. The defined biased random walks can also
be adopted in packet switching, searching, marketing in online social networks.

Discontinued truncated random walk is also adopted to calculate PageRank in a network
which is simply projected as the density distribution of users in a network under repeated
truncated random walk dynamics defined by Eq. (7.17). In this method of PageRank calculation,
distributed local dynamics leads to desired collective behavior in the form of the density
distribution of users in the network. In the simulation, we find very high correlation (≈ 0.99)
between density distribution of users and PageRank which justify the consideration of density
distribution of users for the purpose of ordering or ranking.
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