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Diffusion protocols for link failure detection and resource

utilization

Information diffusion on network systems is a common phenomena which arises in
many applications, in particular, networked information services [Pavlin et al., 2010; Zhu, 2006],
decision making in sensor networks [Sandhu et al., 2004], manufacturing control [Bussmann et al.,
2004], etc. Several information diffusion protocols have been introduced in literature for various
applications including multi-agent agreement and coordination in which a set of dynamic agents
are connected via a network, known asmulti-agent system (MAS) [Olfati-Saber et al., 2007;Mesbahi
and Egerstedt, 2010]. One of the important issues in the domain of MASs is related to data fusion
among the agents and to take decisions based on the available data (information) at each individual
agent.

In this chapter we consider three inter-related problems which apparently seem to be
different but have importance in information propagation in real world networked systems. These
problems are - (i) automated detection of link failures by observing the nature of information
propagation, (ii) ensuring security and utilization of network resources during information
propagation, and (iii) a static fixed point convergence of information propagation in a dynamic
network. Such problems have been widely studied in the existing literature, however, only a few
works consider these from the network science perspective. Existing studies in these directions
have mainly considered different agreement or consensus protocols such as [Kashyap et al., 2007;
Kuramoto, 2012; Olfati-Saber, 2006; Cortes et al., 2004; Ando et al., 1999; Lin et al., 2004; Cortés et al.,
2006] and the references therein.

We mention that the transportation of resources from one place to another often happens
through multi-agent networked systems, for example data transmission through Internet, electric
power supply through power grid network, road network, rail network andmany other real world
networks that are used to transfer the resources across the globe. In these networks, failure of a link
affects the performance of the entire networked system resulting underutilization of resources or
loss of information. Thus detection of link failures in a MAS can help to improve the performance
of the affected systems in an effectivemanner. In the existing literature, researchers have provided
some solutions that are very specific to the data transmission through Internet [Long and Sikdar,
2007; Iannaccone et al., 2002; Van Renesse et al., 1998]. In a different direction, authors looked the
problem of link failure detection under the agreement protocol in MASs [Rahimian et al., 2012a;
Rahimian and Preciado, 2013; Rahimian et al., 2012b].

The three problems which we consider in this chapter are related to information spreading
or information propagation over a MAS. A link failure and/or irregularity of amount of desired
resources originate only in fewof the agents in the system, and then they affect the diffusionprocess
such that the protocol does not converge to a desired state. Indeed in [Jafari et al., 2011; Rahimian
and Aghdam, 2013] the authors rigorously describe how the cooperative dynamics over a network
may get strongly affected by the network failures due to the removal of some links or nodes in
the network. Obviously, it is of paramount interest for development of protocols for information
diffusion which can help solving the above three problems by observing the nature of diffused
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information at system convergence.

In this chapter we propose a diffusion protocol using the approach of networked
multi-agent systems in which the diffusible resources in the connected nodes i and j flow through
an existing edge (i, j) according to weighted difference of the resources available in the nodes i and
j. These weights are reciprocal of the weights which are fixed positive real numbers bigger than
1 associated with the individual agents and assigned in the beginning of the protocol but can be
modified during the diffusion process. The diffusion under the proposed protocol converges to a
unique state that depends on the weights of the agents. Due to the dependency of the converging
sate over the weights, it has many practical applications as weights can be managed according to
the requirement of applications. We investigate two immediate applications of this protocol in
which the first one is the detection of a link failure and redistribution of resources in a networked
system, and the other application is related to the distribution of resources in dynamic networked
systems. If the weights are correlated with degrees (structural property of agents) of the nodes in
the considered network, then it works as an indicator of the failure of a link. In this case, failure
of a link shifts resources from the affected part of the network to the remaining network which
improves the utilization of the resources. In the other application, if we require a fix distribution
of resources in the networkwithout being affected by the structural changes thenwe need to fix the
weights of the agents that are correlated with the required converging state. We provide analytical
proofs for convergence of the proposed diffusion protocol in static network as well as in dynamic
networks. Indeed we show that the rate of convergence of the standard agreement protocol is
faster than that of the proposed diffusion protocol. Next we describe the effect of link failure over
the redistribution of resources in the nodes of the network under the given conditions. Finally the
proposed diffusion mechanism is simulated for various real world network scenarios to analyze
its performance and applicability in different applications.

The rest of the chapter is organized as follows. In Section 2 we provide a brief literature
survey on existing agreement protocols and its applications as information diffusion protocols in
different areas. In Section 8.2, we define the diffusion protocol which is investigated under the
fixed (or static) and switching (or dynamic) topology of the networks. We discuss the convergence
of the proposed diffusion process for both the static and dynamic network topology, and compare
the rate of convergence of this protocol with the agreement protocol in [Rahimian and Preciado,
2013]. Details of the applications of the proposed diffusion protocol are discussed in the Section 8.3
followed by Section 8.4, in which simulation results are presented regarding the theory developed
in the Section 8.2. The simulated analysis of applications over the proposed diffusion protocols is
discussed in Section 8.5. Finally, Section 8.6 concludes the chapter with future directions of this
work.

8.1 RELATEDWORKS
As the proposed diffusion protocol is a variant of the standard agreement protocol

[Jadbabaie et al., 2003; Olfati-Saber and Murray, 2004], we first briefly review it for MASs. For
a survey of agreement protocols see [Ren et al., 2005a]. Let G be the connected network associated
with aMAS on n agents. The adjacencymatrix associatedwithG is defined byA= [ai j]where ai j = 1
if the ith and jth nodes of G are linked by an edge, otherwise ai j = 0. The combinatorial Laplacian
matrix associatedwithG is defined as L=D−AwhereD= diag{d1, . . . ,dn},di = ∑n

j=1 ai j, i= 1, . . . ,n.
Let xi(t) be the amount of information available at the ith agent at time t that needs be shared among
the other agents in the network. Then a continuous-time consensus protocol can be described as

ẋi(t) =−
n

∑
j=1

ai j(xi(t)− x j(t)) (8.1)
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which can be written in the matrix form

ẋ(t) =−Lx(t) (8.2)

where x(t) = [x1(t), . . . ,xn(t)]T . Hence the state dynamics of the associated MAS depends on its
Laplacian eigenvalues and finally the system reaches to agreement, that is xi(t)− x j(t) → 0, i= j
as t→∞. The rate of convergence depends on the algebraic connectivity of the networkwhich is the
least positive Laplacian eigenvalue of G. Note that L is a symmetric positive semidefinite matrix
with one of the eigenvalues zero and other eigenvalues are positive when G is connected, hence
the eigenvalues can be ordered [Mesbahi and Egerstedt, 2010].

Thus the aim of the agreement problem is to achieve a certain desired goal with the help of
local dynamics in the associated MAS in which a node interacts with its neighboring nodes only
and the whole system reaches to some required state asymptomatically [Jadbabaie et al., 2003; Li
and Guo, 2015]. Some of the applications of agreement and cooperation protocols include load
balancing [Kashyap et al., 2007], synchronization [Kuramoto, 2012], flocking [Olfati-Saber, 2006]
[Cortes et al., 2004] [Tanner et al., 2007], rendezvous in space [Ando et al., 1999][Lin et al., 2004]
[Cortés et al., 2006], information sharing among the devices which are equipped with sensors
[Spanos et al., 2005][Olfati-Saber et al., 2007][Miao et al., 2016] [Wan et al., 2016]. See also [Qiu et al.,
2016] [Yu et al., 2010][Luck andMcBurney, 2008][Tahbaz-Salehi and Jadbabaie, 2008][Tanner et al.,
2003]. Agreement protocols for MASs with switching topology can also be found in [Sontag, 1983]
[You et al., 2013]. The consideration of bidirectional and unidirectional diffusion is an important
subject of study[Li et al., 2013a][Ren et al., 2005a] in this regard. Apart from agreement, a lot of
interest is generated for studying the controllability of MASs by either exploiting the agreement
protocol or its variants with the introduction of feedbacks to some of the nodes known as leaders,
for example, see [Mesbahi and Egerstedt, 2010; Lewis et al., 2016;Wan et al., 2016; Liuzza et al., 2016;
Katsoukis and Rovithakis, 2016].

Recently the standard agreement protocol given by the Eq. (8.2) has been exploited for
detection and isolation of single or multiple link failures in MASs [Rahimian and Preciado, 2013;
Rahimian et al., 2012b] by using a directed information flow graph associated with the MAS. An
algorithm for sensor placement is proposed, which enables the designer to detect and isolate any
link failures across the network based on the observed jump discontinuities in the derivatives of
the output responses of a subset of nodes [Rahimian and Preciado, 2013] in the associated MAS.
Nevertheless, for a class of directed networks with rooted out-branchings, it is observed that single
and multiple link failures can be detected when Eq. (8.2) governs the diffusion process [Rahimian
et al., 2012a,b].

Finally we conclude this section with a note that to the best of authors’ knowledge the
literature lacks any linear informationdiffusionprotocol for identifying link failures as a byproduct
of the protocol, in contrast to calculating the derivatives of output responses of some nodes. In
addition to that this chapter contributes to utilization of resources in aMAS efficiently by detecting
the link failures. Thus the proposed protocol has the potential to be applied in many practical
applications related to resource distribution and fault detection in real-world networked systems.

8.2 PROPOSED PROTOCOL FOR DIFFUSION ONMASS
In this section, we propose a diffusion protocol which is based on the push policy of

information sharing on a network. In push dynamics, a node j acts as a sender, and node i,
connected by an edge to the node j, acts as a receiver. Static and switching (or dynamic) topologies
are considered to investigate the performance of thediffusionprocess. In a static network, structure
of the network remains fixed whereas, in switching (or dynamic) topology of a network, the
number of nodes is fixed but the connections between them change over time.
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8.2.1 Diffusion on Static Networks
Let G be a simple connected network on n nodes associated with a MAS. Let xi(t) ∈ R be a

variable associated with the node i that represents the amount of resource at node i in time t. The
rate of change in the amount of resources available at node i at time t depends on the amount of
resource available at its neighbors and is described by

ẋi(t) = ∑ai j
x j(t)

j
− xi(t)

i
, t > 0 (8.3)

where i ≥ 1, i = 1, . . . ,n is a weight affiliated to the node i which is decided by the designer of
the MAS, and ai j denotes the i jth entry of the adjacency matrix corresponding to N. Obviously
ẋi(t) is the cumulative difference of the weighted resources available at node i and its neighbors.
Note that the weight i signifies that at any time, total amount of resource (like bandwidth in a
communication network or information density in a social network) at the node i that is not visible
to its neighbors, however, associated with a numeric value which is proportional to the amount of
resources available or consumed by the node. Thus i > j indicates that node ihasmore resources
compared to the node j.

The diffusion dynamics can be described by the matrix equation

ẋ(t) =−LΩ−1x(t),

where Ω is a diagonal matrix, Ωi,i = i, and L is the Laplacian matrix associated with G.Hence we
have an autonomous linear dynamical system described as

ẋ(t) =−Mx(t), M = LΩ−1. (8.4)

It is evident that if i = j = 1 for all i = j then this diffusion protocol is the standard agreement
protocol discussed in the previous section. Indeed observe that in Eq. (8.2) the system matrix is
symmetric positive semidefinite but in (8.4) the system matrix M is not a symmetric matrix.

For an initial condition x(0) = x0 ∈ Rn the solution of (8.4) can be derived as

x(t) = e−Mtx0, t ≥ 0.

In order to investigate the asymptotic behavior of x(t) as t → ∞ we first focus on the eigenvalues
of M. We show in the following lemma that in spite of M being a non-symmetric matrix, the
eigenvalues of M are non-negative real numbers.

Lemma 8.2.1. The eigenvalues of M = LΩ−1 are non-negative real numbers.

Proof. Note thatM = LΩ−1 = ΩΩ−1LΩ−1. SupposeQ= Ω−1LΩ−1 which is a real symmetric positive
semi-definite matrix and Ω is a positive definite diagonal matrix. Let (M) be an eigenvalue of M
corresponding to an eigenvector v. Then,

M = ΩQ⇒Mv= ΩQv⇒ (M)v= ΩQv

This implies,

⇒ Qv= (M)Ω−1v
(8.5)

and

v∗Q= ∗(M)v∗Ω−1

(8.6)
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By pre-multiplying v∗ in Eq. (8.5) and post-multiplying v in Eq. (8.6) and then subtracting them,
we obtain,

v∗Qv−v∗Qv= ∗(M)v∗Ω−1v− (M)v∗Ω−1v
⇒ 0 = ( ∗(M)− (M))v∗Ω−1v

Therefore, ∗(M) = (M), that is (M) is real. Further, from Eq. (8.5), we obtain (M) =
vTQv
vTΩ−1v

≥
0.

The following theorem describes the convergence of the diffusion protocol. The proof is
similar to the proof of Proposition 3.11 in [Mesbahi and Egerstedt, 2010].

Theorem 8.2.2. The diffusion protocol given by Eq. (8.4) converges to the state vector x∗ as t → ∞ such that
x∗ ∝ where = [ 1, 2 , . . . , n]

T , and the rate of convergence depends on 2(M), the second smallest
eigenvalue of the matrixM.

Proof. Note that L and M have same rank n− 1, thus zero is an eigenvalue of M with algebraic
multiplicity one. Further as the all-one vector is an eigenvector corresponding to the eigenvalue 0 of
L, theweight vector is an eigenvector corresponding to the eigenvalue 0 ofM.LetM=XJ(ΛM)X−1

be the Jordan decomposition of matrixM where X is a non-singular matrix. Then,

X−1MX = J(ΛM) =





J(0) 0 . . . 0
0 J( 2(M)) . . . 0
...

...
...

...
0 0 . . . J( n(M))



 .

where J(0) and J( i(M)) denote the Jordan blocks corresponding to the eigenvalue 0 of M and the
ith eigenvalue i(M) ofM respectively, i= 1, . . . ,n. Further

MX = XJ(ΛM)

yields MX1 = 0, hence X1 ∈ span{ }.

X−1M = J(ΛM)X−1,

which further implies that the first row of X−1, that is Y1, is the left eigenvector of the matrix
M associated with its eigenvalue 0. By Lemma 8.2.1 it follows that 1(M) = 0 and all the other
eigenvalues ofM are positive. Since X−1X = I, it follows that XT

1 Y1 = 1, where X1 and Y1 are the first
column and first row vectors of matrices X and X−1 = Y , respectively. Therefore,

e−Mt = X





e0 0 . . . 0
0 eJ(− 2(M))t . . . 0
...

...
...

...
0 0 . . . eJ(− n(M))t



X−1.

Now we show that
lim
t→∞

eJ(− i(M))t = 0

for i≥ 2. Assume that i(M) has algebraic multiplicity s≥ 1. Then,

J( i(M)) =





i(M) 1 0 . . . 0
0 i(M) 1 . . . 0
...

...
...

...
...

0 0 0 . . . i(M)





s×s
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and hence
J( i(M)) = i(M)Is×s+N

where N is a nilpotent matrix of order s. Consequently, for i≥ 2

lim
t→∞

eJ(− i(M))t = lim
t→∞

e(− i(M)I−N)t

= lim
t→∞

e− i(M)Ite−Nt (8.7)

= 0.

Hence,

lim
t→∞

e−Mt = X





1 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0



X−1 = X1YT
1 .

Finally,
x∗ = lim

t→∞
x(t) = lim

t→∞
e−Mtx0 = X1YT

1 x0 = (YT
1 x0)X1,

where X1 ∝ and Y1 ∝ 1 are the first right and left eigenvectors of the matrix M respectively and
1 = [1, 1, . . . ,1]T , the all-one vector. Therefore, from Eq. (8.7) it follows that the convergence rate
of the system depends on the minimum non-zero eigenvalue of the matrix M that is 2(M).

Now we show that the rate of convergence of the proposed protocol is slower than that of
the standard agreement protocol, that is, 2(L)≥ 2(M).

Theorem 8.2.3. Let N be a connected network corresponding to a MAS on n agents. Then

2(L)≥ 2(M).

Proof. Let v be a right eigenvector corresponding to an eigenvalue (M) of M = LΩ−1. Then,

LΩ−1v=Mv⇒ LΩ−1v= (M)v⇒ LΩ−1v= (M)ΩΩ−1v

⇒ Ly= (M)Ωy and Ω−1v= y

⇒ Ω−1Ly= (M)y⇒ By= (M)y and B= Ω−1L.

Thus the above calculation shows that matrices M and B share the same eigenvalues. Let
z be a unit eigenvector corresponding to the eigenvalue 2(L) (second smallest eigenvalue) of L.
Consider BTB = LΛ2L where Λ = Ω−1. Therefore, both the matrices BTB and L share the same
smallest eigenvalue and the corresponding eigenvector (all-one vector).

Now,

zTBTBz = zTLΛ2Lz
⇒ zTUΣUTz = ( 2(L))

2 zTΛ2z, (8.8)

where UΣUT is the singular value decomposition of the matrix BTB and Σi,i = ( i(M))2. We know
that BTB and L share the same eigenvector u1 = [1,1, ...,1]T corresponding to the zero eigenvalue
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(smallest eigenvalue). Then it is evident that the vector z can be written as the linear combination
of singular vectors u2, u3 ... un. Hence

z=
n

∑
i=2

biui =
n

∑
i=1

biui, b1 = 0

which implies
z=Ub.

where b= [0, b2 , ...,bn]T andU = [u1, u2, ...,un]. Thus from Eq. (8.8) we obtain

bTUTUΣUTUb= ( 2(L))
2 zTΛ2z.

SinceUTU =UUT = I, the identity matrix, it follows that

bTΣb= ( 2(L))
2 zTΛ2z.

As B and M share the same eigenvalues,

n

∑
i=2

(bi i(M))2 = ( 2(L))
2 zTΛ2z

⇒ bTb( 2(M))2 ≤ ( 2(L))
2 zTΛ2z. (8.9)

Recall that z is a unit vector and hence bTb= 1. Then from Eq. (8.9) we obtain

( 2(M))2 ≤ ( 2(L))
2

n

∑
i=1

z2
i
2
i
≤ ( 2(L))

2
n

∑
i=1

z2
i

2
min

which establishes that

2(M)≤ 2(L)

min

where min = mini i ≥ 1. Thus the desired result follows.

Now we come to the main result for static networks in this chapter for the detection of
unknown failure links which affect the dynamics of diffusion on a network associatedwith aMAS.
Here we consider i = di, the degree of the ith node, and hence Ω = D, the degree matrix.

Theorem 8.2.4. Consider the diffusion dynamics given by Eq. (8.4) by setting Ω =D, the degree matrix of
the corresponding connected network on n agents. Let x∗ be the final state of the system after the execution
of the process. Then either of the following is true.

1. A link failure is detectable by at least n−1 observers, if each node is attached with an observer, or

2. After the convergence, a failure of the link (i, j) increases the values of xk ∈ x∗ at every nodes where
k /∈ {i, j}, and at least one of xi ∈ x∗ or x j ∈ x∗ reduces. The increment in the value of the converging
state, x∗, is proportional to the degree of the nodes.

Proof. Let x0 ∈ Rn be the initial state vector which represents the initial amount of resources
available with the agents in the MAS. Let d = [d1, ,d2, , ... dn]

T where di is the degree of the ith

node, i= 1, . . . ,n.
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Let q(t) = 1Tx(t). Then,

q̇(t) =
d
dt
1Tx(t) = 1T ẋ(t) = 1TLD−1x(t) = 0

since 1TL= 0. Hence, q(t) = q is an invariant quantity in the network. Thus, for any t ≥ 0,

1Tx(t) = 1Tx0 = 1Tx∗ ∝ 1Td. (8.10)

as follows from Theorem 8.2.2, where x∗ represents the state at which the diffusion process
converges and = d.

Now assume that a link (i, j) is either removed or not working or failed (we consider all
the three cases as failed), then the diffusion will happen under remaining network G\ (i, j) which
has a degree vector d1 = d−1i, j where 1i, j is the vector of ones at positions i and j, and rest of the
entries of 1i, j are zeros. Consequently,

1Tx(t) = 1Tx0 = 1Tx∗ ∝ 1Td1. (8.11)

where x∗ is the new converging state of the diffusion process which begins with the same initial
state vector x0. From the Eqs. (8.10) and (8.11),

1Tx∗ = 1Tx∗ ⇒ 1Td= 1Td1.

where > 0 is a proportionality constant. Thus we obtain

1T (d− d1) = 0 ⇒ 1T (d− d+ 1i, j) = 0

which implies
1T (1− )d+ 1T1i, j = 0.

If possible, let < 1. Then,
1T (1− )d+ 1T1i, j > 0

which contradicts the previous equality and hence > 1. This implies x ∗
k > x∗k where x ∗

k and x∗k
denote the kth entry of the vectors x∗ and x∗ respectively and k /∈ {i, j}where ith and jth nodes are
incident to the failure link.

To make 1T (1− )d+ 1T1i, j = 0, at least one negative change would happen in x∗i and x∗j .
In this new state of convergence x∗, we notice that at least n−1 changes with respect to x∗ which
is due to one link failure at (i, j). Consequently, the defined diffusion protocol is able to detect the
link failure from at least n−1 observers.

We mention that since the increment in the amount of the resource at the node k which is
not the part of the failed link is proportional to the degree of that node, the diffusion under this
protocol has benefit to shift the resources from the nodes which are the part of the failed link to
other nodes in the network according to the connectivity of the nodes (degree). Thus we conclude
that the change in the converging state works as an indicator of link failure, and hence without
sending a message regarding the link failure explicitly to the functional nodes the designer can
detect the failure of a link in the network.

Next we investigate the diffusion dynamics in a network with switching (or dynamic)
topology.
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8.2.2 Diffusion on Dynamic Networks
In the previous subsection we have defined a diffusion protocol for static MASs. In this

section, wedefine a linear diffusionprocess for dynamic networks inwhich the nodes changes their
adjacency relationships with time. Indeed we assume that the network never gets disconnected at
any time instant.

Let Gt be a connected dynamic network on n nodes which changes with time t ≥ 0 and Lt
the combinatorial Laplacian matrix associated with Gt . Similar to the case of static networks, we
associate a weight i ≥ 1 to the ith node and constitute the matrix Ω = diag{ 1, . . . , n} which is a
symmetric positive definitematrix. Thenwe introduce a diffusion process on the dynamic network
associated with a MAS as

ẋ(t) =−LtΩ−1x(t), t > 0,x(0) = x0 ∈ Rn (8.12)

where x(t) is the state vector at time t as mentioned before. Then the concerned system which
governs by the Eq. (8.12) converges to a vector which belongs to the null space of the matrix
LtΩ−1 spanned by the vector = [ 1, 2, . . . , n]

T [Mesbahi and Egerstedt, 2010]. Consider a weak
Lyapunov function

V (x(t)) =
1
2
xT (t)Ω−1x(t)

and hence
V̇ (x(t)) =−xT (t)Ω−1LtΩ−1x(t).

Note that for any vector x(t) = 0, V (x(t))> 0 since Ω−1 is a positive definite matrix, and V̇ (x(t))≤ 0
since Ω−1LtΩ−1 is symmetric positive semidefinite which confirm the asymptotic stability of the
system. Hence the system given by Eq. (8.12) converges as t → ∞ and the converging state
belongs to the set of vectors spanned by the vector because the null space of the matrix LkΩ−1

is independent of t, see chapter 4, section 4.1.1 in [Mesbahi and Egerstedt, 2010]. Indeed by
considering the set

Γn = {G : G is a connected network onnnodes}

so that for any t > 0, Gt ∈ Γn, an alternative proof can be derived similar to the proof of Theorem 9
in [Olfati-Saber and Murray, 2004]. Moreover the convergence rate is less than

max
t>0

2(LtΩ−1).

At the steady state of the diffusion in a dynamic network, the distribution of resources in the
networkonly depends on , it provides away todistribute resources according to the requirements
of underlying applications without being dependent over the topology of the network.

Note that the solution of the diffusion protocols defined by Eqs. (8.4) and (8.12) depend on
= diag(Ω). Also observe that if the entries of the matrix Ω is formulated by using structural or

spectral properties of the given network then the diffusion pattern of resources over the network
depends on the topological structure of the network. This freedom of selecting the matrix Ω can
provide a wide range of applicability of the defined diffusion protocol in real-world complex
multi-agent systems. Some of them are discussed in the next section.

8.3 APPLICATIONS
In the previous section, we have discussed the dynamics of a diffusion protocol which is

applicable in static as well as dynamic networks. The converging state of this diffusion process
depends on the matrix Ω which is not unique and can be chosen based on the underlying
application. This dependency can be utilized in many practical applications. If the selection
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of the matrix Ω depends on structural properties of the network, it works as a detector of
structural changes in the network. In the opposite direction, if we need a very specific fixed
result, independent of the structural dynamics of the network, then thematrix Ω should be selected
according to that given fixed point without considering the structural properties of the network. In
this case, we know the converging state in advance although the path to reach there is unknown.
In this section, we discuss three immediate applications of this diffusion protocol,

1. Link failure detection,

2. Security and utilization of resources, and

3. Static fixed point convergence over a dynamic network.

Next we discuss how the proposed diffusion dynamics can be utilized to develop the above three
applications in a connected network.

8.3.1 Link Failure Detection
In many real world networked systems, detection of irregularity or faults in the system

is one of the prime requirements. A small fault or error in the system may lead to a disastrous
situation. For example, failure of major parts of the system can result in cascading failures in the
networked systems. To avoid such situations, we need a proper solution that is able to detect even
a small fault in the system. In this direction, we utilize the novelty of the diffusion protocol defined
in the previous section. The solution of the diffusion Eq. (8.4), x∗, depends on the vector . If ∝ d,
then the solution vector, x∗, depends on the degree vector, d, of the networkedmulti agent system.
Failure of a single link changes the orientation of the degree vector of the remaining networked
multi-agent system (d1) that is still working. It shifts the solution of the diffusion protocol given
by Eq. (8.4). Let x∗ be the new solution. It will be different from the previous one because of the
dependency of matrix Ω over the degree of the nodes in the network. From the Theorem 8.2.4,
the change in the amount of resources at the nodes which are not the part of the failed link (i, j),
(x∗ −x∗)−i j ∝ ( − 1)d, where > 1 and the difference of resources, (x∗ −x∗)i j, is negative in the
nodes i or j. It can be noted that the network is static before link-failure. Therefore, Theorem 8.2.4
also holds. The difference in solutions x∗ and x∗ is noticeable at the nodes which are not parts of
the failed link. In the networked multi-agent system of size n, at least n− 1 observers, which are
associated with n−1 nodes of the network, would be able to detect a link failure in the system.

Convergence dynamics for link failure detection – If the network do not use a diffusion
protocol for link failure detection, the nodes which are connected with the failed link can detect it
immediately although others can not. They have to wait until they get an error message initiated
by the nodes which are parts of failed link, which may take some additional time. However, in
case of applying the diffusion protocol for link-failure detection, a node k,= {i, j} can be able to
detect a link-failurewithout concernwith other nodes. In standard broadcasting of errormessages,
nodes need to transfer themessage to other nodes. All nodes are involved inmessage propagation.
In the proposed diffusion protocol, no additional message needs to be forwarded to other nodes
regarding the link failure. It is inbuilt in the diffusion dynamics. The maximum time steps it
takes is equal to the diameter of the network, while the normal broadcast of failure messages can
take time-steps more than the diameter of the network to inform all the nodes about the event of
link-failure. The lack of information about the failure prevents other nodes to take appropriate
actions, and therefore link failure can cascade in the network. However, using the diffusion
protocol for link failure detection, nodes which are not the part of the failed link, can detect the
fault due to the shift in converging state x∗ immediately after the link failure and can take necessary
actions. Fluctuation in the steady state after convergence can be an indicator of the link failure.
This way we don’t have to wait until the next convergence to new steady state after link failure.
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Under this application, protocol runs always because link failure event can not be predetermined.
It can be noted that the dynamics of each node depends on its immediate neighbors only. So
a node k,= {i, j} would only be able to detect an event of link-failure, not the exact location of
failure. To get more information regarding the exact location of link-failure, we need a centralized
monitoring system that would not be a part of this network. The communication delay through
the centralizedmonitor can not be avoided. It may cause the serious damage to the network due to
failure cascading. Decision taken by a node in the networked system, on the basis of the fluctuation
in the steady state of the node (converging state) can reduce the possible failure cascading and
hence, communication delay can be avoided.

Link failure detection in dynamic networks –In the case of dynamic networks, if the
degree of the each node remains constant during the diffusion under Eq. (8.12), the failure of a
link can be detected using the same structure of the matrix Ω as discussed earlier. Diffusion in
dynamic network under Eq. (8.12) also converges to the vector . If we consider Ω =D, then it will
converge to vector d. Similar to the case of diffusion in static network, the failure of a link triggers
a change in the converging state, and the outcome will be same as discussed for static network
structure. At least (n−1) nodes would be able to detect a link failure.

8.3.2 Security and Utilization of Resources
Underutilization and loss of resources is another problem that can be addressed through the

proposed diffusion protocol. Resources, for example, data, power, information etc., are important
assets in this real-world. Under many different circumstances, these resources are propagated
through a networked system. In the networked system, some locations could be of more capacity
and more secure, whereas some others could be of less capacity and less secure. Under this
scenario, we need a priority in the distribution of the resources. Flexibility in the selection of matrix
Ω can be applied to obtain desired outcome of resource distributions. We can set the value of i
according to predefined priorities of the nodes in a network. Higher priorities can be set to more
secure or needy nodes to reduce the insecurity or underutilization of the resources distributed
in the network. It is known as prioritized distribution of resources where priority can be the
trustworthiness of a node.

In this diffusion protocol, when a link stops working and ∝ d, some amount of resources
at the nodes, which are the part of the failed link, get shifted to other nodes in the connected
network. Let x∗ and x∗ be the converging state of the diffusion process under the defined diffusion
protocol in the network before the failure of a link and after link failure respectively. From the
Theorem 8.2.4, the change in the amount of resources at the nodes which are not the part of failed
link (i j), (x∗ −x∗)−i j ∝ ( −1)d, where > 1 and the difference of resources, (x∗ −x∗)i j, is negative
in the nodes i or j. This phenomena shifts the resources from the nodes which are involved in
the failed link to the other nodes in the network. This improves the security and utilization of the
resources in the networked multi-agent system. It can be noted that this architecture is different
from developing a fault-tolerant system architecture. Fault-tolerance is related to the working of
the network after a damage, but here we talk about the automated transfer of the resources after
the link failure, from the damage part of the network to the rest of the network. This means that
the diffusion protocol can secure the resources. It is applicable in both the types of networks, static
and dynamic connected networks.

As we know that diffusion under Eq. (8.12) converges to vector . If we consider a
dynamic network which maintains the connectivity, degree of the nodes can change during the
diffusion such that Ω = D. Then it might be possible that the diffusion does not converge to any
state vector. However, as the connectivity of a node reduces, the resources at that node shifts
towards other well-connected nodes in the network according to the diffusion protocol given
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by Eq. (8.12). The rate of change in the pattern of connections affects the rate of shifting of the
resources. Nevertheless, if the degree of each node is fixed, only the pattern of connections changes
without affecting the connectivity. As a consequence, the failure of a link shifts resources to other
parts of the network as we have discussed in case of a static network. Under the given fixed degree
vector of the network, dynamic behavior of the network structure does not affect the converging
vector. It can be affected by only loosing the connectivity (degree) of a node during the diffusion
process. Thus under the above conditions, diffusion dynamics can be used to detect the damage
(link failure) in the network.

8.3.3 Static Fixed Point Convergence Over a Dynamic Network
In this section, we consider a dynamic network and the distribution of resources depends

on fixed property of nodes, not on the pattern of connections. In the previous application, we have
analyzed how a link failure can shift the resources form one part of the network to the other part.
In this application, we focus on the fixed distribution of the resources irrespective of connection
pattern of the network. In the previous application, fixed prioritized distribution is obtained on
the basis of utilization and security that depends on the connectivity of the network. However,
in this case we have prioritized the distribution irrespective of the connections. A less connected
node can get more priority so that it can get more resources before being disconnected from the
rest of the world.

In Section 8.2.2, we have studied the convergence of the proposed diffusion protocol under
dynamic networks. In this scenario, the diffusion protocol converges to vector x∗ that depends on
. Inmany applications, such aswhenweneed the fixeddistributionof resources in the networked

multi-agent systems irrespective of the structure of the network, we can get required results after
setting the vector according to the priorities of the nodes which are independent of the structure
of the network. Therefore, the priorities of the nodes can be set in a way such that the ratio of the
priorities between any two nodes and the ratio of the required resources between those two nodes
are same. This way, we can get the predefined distribution of resources in the dynamic networked
multi-agent system.

The case of a static network, which may undergo link failures without loosing the
connectivity of the network, can be considered as the dynamic network. We can achieve the
desired distribution of resources over the nodes of the network irrespective of link failures. The
only required conditions are connectivity of the network and fixed structure of the matrix Ω that
can define the pattern of the desired output of the diffusion. In this application, the protocol stops
after some time, when the value of the resource at a node i, xi(t), does not change significantly. A
threshold value, to compare the change in the value of xi(t), can be obtained to stop the diffusion
protocol.

8.4 SIMULATIONS TO VALIDATE THE THEORY OF DIFFUSION PROTOCOLS
In this section, we provide the simulation results of the proposed diffusion process under

the protocols developed in the section 8.2. Similar to the previous section, three data sets are
considered to show the validation of theory under different conditions. The detailed observations
are discussed next.

8.4.1 Data
Wehave used three networks to simulate the defined diffusion protocol and its applications

under different scenarios. The data provides the network topology of the Internet network
[Knight et al., 2011] in which nodes represent geographical locations of Internet service providers,
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Table 8.1 : Details of the Networks used for the simulation

Network Nodes Edges
RedBestel 84 93

Belcanada 48 64

Belsouth 51 66

customers or external transit providers; and links represent direct connectivities between these
geographical locations [Knight et al., 2011]. We have used simple connection matrix of these three
considered networkswhichprovide the connectivity among the different nodes only. The details of
the networks are given in Table 8.1. We execute theproposeddiffusionprotocol over these network
structures with static and link failure scenarios, and compute the changes in the converging states
with respect to the time.

8.4.2 Simulated Cases
We have considered 5 cases as follows.

(I) Convergence over static networks with Ω = D,

(II) Convergence over the dynamic networks with Ω = D,

(III) Convergence of diffusion in static vs dynamics networks for Ω =D,

(IV) Change of the Converging State of a Node due to Link Failure when Ω = D,

(V) Convergence of diffusion in static vs dynamics networks for constant Ω.

Next we analyze the observations for these five cases.

Case I (Static Network with Ω = D)
In this experiment, we consider the dependency of converging state vector over the

structural property of the network when the network is static and Ω = D. The proposed diffusion
protocol is implemented over three static networks, as given in Table 8.1, with Ω = D, . Multiple
initial state vectors x0 are considered to simulate the diffusion phenomena. The convergence of x(t)
with respect to the time t is plotted in Figs. 8.1(a) to 8.1(c). As we observe from the figure that the
diffusion process converges to the same state vector x∗ ∝ d, independent of the initial state vector,
where d= diag(D) is the degree vector of the considered network. It can be noted that the second
smallest eigenvalue of the the three networks, that is Bellsouth, RedBestel and Bellcanada, are
0.053, 0.0052 and 0.0152 respectively. The Bellsouth network has larger 2(M), and the RedBestel
network has smaller value of 2(M). In Figs. 8.1(a), 8.1(b), and 8.1(c), it follows the convergence
rate of the diffusion process, which is faster in the Bellsouth network and slowest in the RedBestel
network.

Case II (Dynamic Network with Ω = D)
In this subsection, we have simulated the diffusion over the dynamic networks for Ω = D.

To impose the effect of dynamic network structure, at each time stepwe applied the same rewiring
process as explained follows. We consider four random nodes i1, j1, i2 and j2 at each time step such
that only edges (i1, j1) and (i2, j2) exist and there is no other edges among these considered nodes.
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Figure 8.1 : Case I- State vector x(t) is plotted for the diffusion process in (a) Bellcanada (b) Bellsouth (c)
RedBestel networks (static networks) after setting Ω = D. Different colors in the plots are
correspond to the diffusion started from different initial points, x(0). It shows the unique
state convergence (x∗ ∝ d) of diffusion process in the considered networks while Ω = D.
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Figure 8.2 : Case II- State vector x(t) is plotted for the diffusion process in (a) Bellcanada (b) Bellsouth
(c) RedBestel networks (dynamic networks) after setting Ω=D. Plots inmultiple colors are
correspond to the diffusion started from different initial points, x(0). It shows the unique
state convergence (x∗ ∝ d) of diffusion process in the considered networks while Ω = D.
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Figure 8.3 : Change in the Orientation of Links among the Considered Nodes during the Rewiring
Process.
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To consider the effect of dynamic structure of the network, the edges rewired keeping the degree
of the nodes same. Graphical representation of the rewiring of the edges at each time step is given
in Fig. 8.3.

It can be noted that the network should be connected during the simulation process, and
therefore the rewiring procedure takes this into consideration while changing the links. The
diffusion under such dynamic conditions is simulated considering multiple initial state vectors
x0. Simulated results are shown in Figs. 8.2(a) to 8.2(c). It can be observed from the figure that
the converging state vector x∗ is unique for the given degree vector d, because the rewiring of the
edges does not affect the degree of the nodes, aswe can observe from Figs. 8.2(a), 8.2(b), and 8.2(c).
The rates of convergence of the diffusion in the networks are in the same sequences as discussed
in Case I, with the similar explanation of its behavior.

Case III (Diffusion Trajectories of Static vs Dynamics Networks for Ω = D)
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Figure 8.4 : Case III- After setting Ω =D, Error in trajectories of diffusion in (a) Bellcanada (b) Bellsouth
(c) RedBestel static networks and corresponding dynamic networks (incorporating
rewiring) is shown. Diffusion started from different initial conditions, x(0).

In this subsection, we study the differences in diffusion trajectories between the diffusion
processes over same network under a static scenario and a dynamic scenario. The proposed
protocol is executed over a static network first, and then the same network is considered to simulate
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the diffusion in a dynamic scenario. We adopted the same rewiring process what we discussed in
the previous case to consider the effect of dynamic network. Difference between the trajectories
of the two processes is termed as error which is plotted in Figs. 8.4(a), 8.4(b), and 8.4(c). The
measurement of error is defined as follows

error(t) = ∑
i
|xi(t)− xi(t)|

, where x(t) is the state vector at time t of the diffusion process in the static network and similarly
x (t) is the state vector for the diffusion process in dynamic network. We can observe that for the
constant degree vector d, the converging state is unique, independent of the initial condition and
the dynamic nature of the networks. Further, from Figs. 8.4(a), 8.4(b), and 8.4(c), as the t become
larger error goes to zero.

Case IV (Change of the Converging State of a Node due to Link Failure when Ω = D)
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Figure 8.5 : Case IV- State vector x(t) of diffusion in (a) Bellcanada (b) Bellsouth (c) RedBestel networks
is plotted. Link-failure during the diffusion process is captured by vertical sift in converging
state x∗.

Here we observe how a link failure during diffusion shifts the converging state. In
sub-section 8.5.1, we have discussed how the link failure affects the converging sate of the diffusion
process. For the similar condition Ω = D as considered in the previous cases, when a link fails
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during the diffusion process, a vertical shift in converging state x∗ appears that is visible in Figs.
8.5(a), 8.5(b), and 8.5(c) In the simulation process, we deleted two links randomlywithout affecting
the connectivity of the network. To observe the shifting in converging lines in Figs. 8.5(a), 8.5(b),
and 8.5(c) , we deleted the two links after sufficient time. The same procedure is applied for the
simulation of all the three networks which are mentioned in the Table 8.1. All the converging lines
in time series plot of state vector x(t) show the vertical shift due to new converging state x∗ which
appears after the deletion of links as discussed in sub-section 8.5.1. This is an indication of link
failure. An intuitive justification of the same can be as follows. The nodes of the networks can
be classified into groups according to their degree distribution. In this scenario, the nodes of a
same group converges to the same value of x∗i due to similar degree distribution. When a link fails,
degree distribution of the nodes changes, and new groups are thus formed. This shifting in groups
appears as the vertical shifting in the converging lines of the time series plot, as we can observe in
Figs. 8.5(a), 8.5(b), and 8.5(c).

Case V (Diffusion Trajectories of Static vs Dynamics Networks for Constant Ω)
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Figure 8.6 : Case V- For a constant matrix Ω which has non-zeros diagonal entries, difference (error) in
trajectories of diffusion in (a) Bellcanada (b) Bellsouth (c) RedBestel static networks and
corresponding dynamic networks (incorporating rewiring) are plotted. Diffusion started
from different initial conditions, x(0).

In this subsection, we do the same experiment which is being carried out in Case III, except
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that now we consider a constant Ω instead ofΩ =D. We plotted the difference in the trajectories of
the state vectors during the diffusion in the static network and the dynamic network for the fixed
matrix Ω that is independent of the structural properties of the considered networks. Diffusion
for the unique matrix Ω converges to the fixed converging state x∗ independent of the structural
changes in the networks. As time t become larger, error(t) goes to zeros, as we can observe in Figs.
8.6(a), 8.6(b), and 8.6(c).

8.4.3 Summary of Observations and Salient Features of the Proposed Diffusion Protocol
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Figure 8.7 : Plots in blue color represents the diffusion in static network and plots in black color
represents the diffusion in dynamic network that is corresponding to considered static
network of Bellcanada.

It is observed that the convergence of the diffusion process in a static network is slower
than the diffusion in a dynamic network corresponding to the same static network, as we can
observe from Fig. 8.7. In Fig. 8.7, black lines represent the convergence of diffusion process in
a dynamic network which has constant degree of the nodes. Similarly, blue lines represent the
convergence of diffusion in the static network having same degree of nodes in the network as in
the case of dynamic network. Plot in black color converges faster than blue one. To incorporate the
dynamic nature in the structure of the network, we applied edge rewiring keeping the degree of
the nodes same. Dynamic nature of the links creates paths of small lengths between a pair of nodes
during the diffusion of the resources in the network. It promotes faster diffusion of resources in the
network under the considered diffusion protocol. In static networks, paths are deterministic which
cannot always facilitate short path length between the nodes that have uneven (different from the
converging value of x∗i ) distribution of resources. In the previous section, we have discussed that
the converging vector of the diffusion under the considered diffusion protocol depends on the
matrix Ω that can either depends on structural properties, for example Ω = D, of the considered
network, or can be a predefined constant diagonal matrix which has the constant positive real
numbers associated with the nodes in the network that can be interpreted as the priority of the
nodes in the network. In the reverse engineering, if we assume that the diffusion in the network
happens using the defined diffusion protocol, then the converging vectorwill represent the relative
significance (centrality) of the nodes in the network. However, it is important to show the central
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position of the nodes during the diffusion phenomena.
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Figure 8.8 : Shifting in the Resources due to Link Failure. Plot shows the change in converging state,
(x∗ −x∗), after the deletion of a link in (a) Bellcanada (b) Bellsouth (c) RedBestel networks.

8.5 SIMULATIONS OF APPLICATIONS OF DIFFUSION PROTOCOL
In this section, we provide simulation results of applications developed in the section 8.3.

Three different data sets are considered to show the validation of the proposed theory, as discussed
in the previous section with Table 8.1.

8.5.1 Simulation of Diffusion With andWithout Link Failures
In this case, we study the diffusion process in the static network with the consideration

of Ω = D. We have already discussed about the dependency of the converging state x∗ over the
structural property of the network if Ω = D. Fist, we run the diffusion protocol over the three
networks considering Ω = D, after that a link is deleted from each network, and then again we
execute the same protocol. Let us assume that x∗ and x∗ are the two converging states, x∗ is the
converging state before the deletion of the link, and x∗ is the converging state after the deletion
of the link. Deletion of the link changes the converging state because of the dependency of the
converging state over the vector d. We plot the change in converging states as shown in Figs. 8.8(a),
8.8(b), and 8.8(c). (x∗ − x∗) is plotted in Figs. 8.8(a), 8.8(b), and 8.8(c) which shows that deletion
of a link (i, j) decreases the amount of resources in the nodes i and j and increases resources at
other nodes. After deletion of a link, the network must be connected. The non-zero values of
(x∗ −x∗) indicates that the failure of a link and shifting of resources from the affected part (nodes
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associatedwith failed link) to amore secure part of the network increase the security andutilization
of the resources. The discussed simulated results verify the practicality of applications explained
in sub-sections 8.3.1 and 8.3.2. Similar results are obtained for dynamic network structure also, as
discussed in sub-sections 8.3.1 and 8.3.2.

8.5.2 Simulation of FixedPoint ConvergenceOver the Static andDynamicNetwork Structures
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Figure 8.9 : Fixed point Convergence over the Static Network Structure. State vector x(t) is plotted
for the diffusion process in (a) Bellcanada (b) Bellsouth (c) RedBestel networks (static
networks) for a constant diagonal matrix Ω, having non-zeros diagonal entries. Plots in
multiple colors are correspond to diffusion started from different initial points, x(0). It
shows the convergence of diffusion process in (a) Bellcanada (b) Bellsouth (c) RedBestel
networks.

In this subsection, we study the diffusion in the networks when matrix Ω is a constant
diagonal matrix which has non-zeros diagonal entries, independent of the structural properties of
the network. To generate the matrix Ω, a random integer number is generated in the range of 1 to
5 corresponding to each entry of the diagonal of the matrix Ω. All the nodes of the network are
grouped in 5 groups. We have performed the simulation in a static network, similar to the Case
I as discussed in the previous section. The diffusion process converges to a unique state vector
x∗ which depends on the vector = diag(Ω). Figs. 8.9(a), 8.9(b), and 8.9(c) show the evolution of
the state vector x(t)with respect to the time steps. There are only five converging lines in the time
series plot of the state vector x(t) in Fig. 8.9(a), 8.9(b), and 8.9(c), that corresponds to five group of
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nodes in the network according to matrix Ω.
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Figure 8.10 : Fixed point Convergence over the Static Network Structure. State vector x(t) is plotted
for the diffusion process in (a) Bellcanada (b) Bellsouth (c) RedBestel networks (dynamic
networks) for a constant diagonal matrix Ω, having non-zeros diagonal entries. Plots in
multiple colors are correspond to diffusion started from different initial points, x(0). It
shows the convergence of diffusion process in (a) Bellcanada (b) Bellsouth (c) RedBestel
networks.

Next, we consider the diffusion in dynamic networks for the fixed matrix Ω which is
generated as discussed in the previous case. Diffusion phenomena is simulated for the multiple
initial state vector x0 and constant matrix Ω considering dynamic network structure. We use the
similar rewiring process (Fig. 8.3) as discussed in the previous section for dynamic networks.
To make the situation more realistic, the additional link deletion process is imposed, however
which is not very frequent during the simulation. The connectivity of the network is maintained
throughout the diffusion process. The results are shown in Figs. 8.10(a), 8.10(b), and 8.10(c). In
Figs. 8.10(a), 8.10(b), and 8.10(c), there are 5 converging lines in time series plot of the state vector
x(t)whichdepends on the entries of thematrixΩ. In this case, deletion of the link does not affect the
converging state vector x∗. Using this diffusion protocol with fixed Ω, which is independent of the
network structure, a fixed distribution of the resources in the network can be achieved irrespective
of the dynamic changes in the structure of the network.
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8.6 CONCLUSION
In this chapter, we proposed a diffusion protocol for networks with static and switching

topologies. Diffusion process under the defined protocol converges to a desired solution
depending on the priority of its nodes or the degree vector. Due to this dependency, the protocol
has multiple practical applications as we have shown in the chapter. We show that it can be used to
detect failure of links in networks, as well as to distribute the resources in the network according to
the requirements, in spite of changes in the network topology. The effectiveness, convergence and
stability of the proposed protocol have been analyzed through simulation results in different real
life networks. To the best of our belief, the theoretical foundation laid by the proposed diffusion
protocol can be utilized in the applications of dynamic and time varying networks, which we plan
to explore in details as a future extension of this work.

…
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