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Network reconstruction using diffusion dynamics

Networks are ubiquitous in the world from natural networks to artificially generated
networks [Pagani and Aiello, 2013; Amaral et al., 2000]. Biological, communication, transportation
networks, and WWW are few examples of such existing real-world complex networks [Newman,
2010; Girvan and Newman, 2002]. The networks provide a platform to the dynamical processes,
such as information diffusion, epidemic spreading, diffusion of resources, to run [Pastor-Satorras
andVespignani, 2001;Wu et al., 2004]. Underlyingnetwork structure affects the diffusion processes
and helps in controlling them. The power-grid network is a human-made complex network which
is an example of the weighted network and the capacity of electricity transportation through a link
can be thought as the weight of that link. The distribution of the links and their weights defines
the performance of the network in the electricity transportation. A diffusion process is governed
by the rules of diffusion and structural properties of the underlying network. Identification of the
networked non-linear systems is fundamental to control them. In many cases, exact information
regarding the network structure and its nodal dynamics are unknown. To develop a better
understanding regarding how to control the networked systems, nodes’ interconnection pattern
and their properties are required. Diffusion dynamics, for example, information diffusion and
epidemic spreading provide time series data which contains the status of the nodes at different
time steps. If a node is infected or informed, its status will be 1 otherwise 0. It is a binary data and
called as status-time-series (STS) data. Reconstruction of the structure of a network using available
status-time-series data of a diffusion process that is seen in the network is an interesting inverse
problem and studied in many contexts [Tomovski and Kocarev, 2015; Timme, 2007; Li et al., 2015].

The practical importance of the network reconstruction in many disciplines motivated us
to propose a more generalized method for network reconstruction. As a contribution, in this
chapter, we propose a simple yet efficientmethodof network reconstruction using just STS (binary)
data. The proposed method does not require any additional information such as the selection of
threshold values in compressed sensing theory (CST) based method of network reconstruction.
The proposed network reconstruction method is tested on the networks of different structural
properties, for example, modular network, random networks, and real-world networks and a high
accuracy is achieved in most of the cases. Further, the proposed method is compared with a CST
based method of network reconstruction [Shen et al., 2014] using the same STS data and observed
superior performance.

In a social network, tracking of information diffusion or rumor spreading with their
engaged propagation paths is a tedious task and in some cases, it is almost impossible, for example,
viral infection. It is rather easy to keep the record of which node is getting information or infection
at what time which is known as the status of the nodes. Using the information of the status of
the nodes, the question arises if we can track the whole propagation network or simply network
structure in which links and nodes are actively participating? The same problem can be seen as
the detection of missing links in a network using time series data of a dynamical process attached to
that network.

Usually, problems on diffusion dynamics are formulated in the following way: For a
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Figure 9.1 : Graphical representation of diffusion dynamics in a network in which the network provides
a platform for the diffusion. Output of the diffusion at time step t, x(t) acts as an input for
the next time step.

given topological structure and nodal dynamics what is the collective dynamics of the network?
Synchronization, flocking, consensus, cascading failure are some examples of this type of problems
[Ren et al., 2005b; Olfati-Saber, 2006; Xi et al., 2010]. Reconstruction of network structure is an
example of the inverse problem which has importance in many practical applications in many
disciplines like genetic engineering, biological systems, due to the existence of a networked
structure seen in dynamical systems. Sometimes it is not easy to collect information regarding
the structure of a network, for example, brain network, gene regulatory network. In such cases,
reverse engineering can help to get information about underlying network structure.

In this chapter, we develop a method for reverse engineering of network reconstruction
based on diffusion dynamics and matrix analysis, only using binary time series data. SIS model
[Pastor-Satorras and Vespignani, 2001] is considered as an example to examine the procedure.
We start from the introduction of SIS diffusion model at node level given by ẋi(t) = ∑ j ai jx j(t)−
xi(t). In this model, a node can be either in the susceptible state (S) or infected state (I). xi(t) is the

probability of the node i being infected or informed at time t. The collective dynamics of SIS model
is given by [Newman, 2010],

ẋ(t) = Ax(t)− Ix(t). (9.1)

where ai j is i jth element of the connection (adjacency) matrix, A, of the considered network. is
diffusion probability of an edge and is recovery probability of an infected node that directly goes
to susceptible class. xT(t) = [xi(t), , ..., , xn(t)] is the state vector. For a given time series, x(t) and
ẋ(t) are known. Eq. (9.1) is linear in coefficient of matrix A. From sufficient amount of data, we can
obtain matrix A using the matrix generated by deterministic vectors x(t) and ẋ(t) that is explained
further in this chapter. A graphical representation of discrete time diffusion dynamics is as shown
in Fig. 9.1 where x(t) acts as an input for the next time step, t+1. Discrete time diffusion dynamics
is adopted to calculate the vector ẋ(t) by considering the approximation ẋ(t) = ∆x= x(t+1)−x(t).
Vectors x(t) and ẋ(t) are not binary vectors but we have only binary data. It is assumed that
at a given time step t binary status vector y(t) is the resultant of polarization of vector x(t) in
which higher values of xi(t) are replaced with 1 and lower ones are replaced with 0 using some
threshold value which is unknown to us. The benefit of this assumption is that we do not need
the information of threshold value as we have already polarized vector. We can also assume that
y(t) is the resulting vector of linear or non-linear transformation of vector x(t). We define a matrix
analysis based simple procedure to reconstruct the connection matrix from the given binary time
series data. The procedure is successfully tested in many real-world and computer-generated
benchmark networks. The proposed network reconstruction method has higher accuracy and
efficiency as compared to the other methods that are considered in this chapter.
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Rest of the chapter is arranged as follows: The proposedmethod of network reconstruction
from available status-time-series (STS) data is explained in Section 9.1. Section 9.2 provides the
performance analysis. Discussion and salient features of the proposed network reconstruction
method are discussed in Section 9.3. Finally, the chapter is concluded in Section 9.4.

9.1 METHODOLOGY OF NETWORK RECONSTRUCTION FROM THE GIVEN STS DATA
Consider a simple SIS model of diffusion in which a node can be in two states, susceptible

(S) or infected (I). Let us assume that a node j is in infected state with probability x j(t) at time t and
passes the infection (information or signal) to its neighbouring nodes with probability or itself
goes to the susceptible state with probability . The probability of a node i, being infected at time
t+1 will be

ẋi(t) = ∑
j
ai jx j(t)− xi(t),

where ai j is the i jth entry of the connection (adjacency) matrix, A, [Newman, 2010]. The collective
diffusion dynamics in the network is given by,

ẋ(t) = Ax(t)− x(t). (9.2)

where A is the connection matrix of the network and vector x(t) is the probabilities of the nodes
of being infected at time t [Newman, 2010]. Consider discrete values of time t = 0,1,2, ..., , that
produce a system of linear equations given by

ẋ(0) = ( A− I)x(0),
ẋ(1) = ( A− I)x(1),

..

..

ẋ( ) = ( A− I)x( ).

Above given equations can be combined as

[ẋ(0) ẋ(1) ... ẋ( )] = ( A− I) [x(0) x(1) ... x( )] .

Let X= [x(0) x(1) ... x( )] and ∆X= [ẋ(0) ẋ(1) ... ẋ( )] be the matrices of size n× . We get a simple
equation

∆X= ( A− I)X, (9.3)

in which X is not a square matrix, so we cannot get the inverse of X directly. To solve this problem,
we multiply XT both sides of Eq. (9.3) which produces

∆XXT = ( A− I)XXT.

XXT is an n×nmatrix. Next, time t should be divided in intervals such that ẋ(t)≈ x(t+1)−x(t) =
0, ∀ t, to avoid redundant calculations and unnecessary engagement of computing and storage
resources. Ideally, should be selected in such a way that

min rank(Xn× ) = n,

125



which reduces the unnecessary redundancy and computational complexity of the matrix
multiplications. Consider,

A= ∆XXT XXT −1
+ I. (9.4)

From Eq. (9.4), it is required that XXT should be invertible matrix. Let be sufficiently large
such that X has rank n then using Sylvester’s rank inequality [Mirsky, 2012]

rank(XXT) = rank(X).

XXT is a full rank matrix which confirms the existence of XXT −1
.

In Eq. (9.4), A is a matrix of zeros and ones while ∆XXT XXT −1
can have real numbers.

In this situation, a transfer function, which simply applies a threshold on the values of the
considered matrix (the right side of Eq. (9.4)), is used to convert values to zeros and ones to get
adjacency matrix A. Let suppose, the transfer function is given by

A= F ∆XXT XXT −1
. (9.5)

Similarly, status-time-series (STS) data, Y, can be assumed as the transformation of X and
given by,

Y= Φ (X) . (9.6)

From Eqs. (9.5) and (9.6), ∃ a Ψ such that

A= Ψ(Y), (9.7)

which would not break the consistency of the theory. In this chapter, we attempt to find a
simple relation between A and Y. In other words, we try to find out an approximation of Ψ using
the structure of Eq. (9.4).

In the case of the real-world diffusion process, we have status-time-series (STS) data of the
nodes in which status of the nodes that they are infected or susceptible are given at the particular
time. It is represented by numbers 0s and 1s.

We adopted the structure of Eq. (9.4) to define a method to reconstruct the connection
matrix of a network using times series data of the status of the nodes during the diffusion process.
Matrix M is considered as an approximation of Ψ. The procedure of network reconstruction is
discussed in Algorithm 1.

The proposed algorithm depends on STS data (Y) and the number of edges (m). In
Section 9.2.4, we discuss the retrieval of the number of edges from the STS data only. The proposed
methodology of inferring network topology from STS data is simply based on observations
(diffusion data). The algorithm does not require prior knowledge of nodal dynamics or diffusion
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Algorithm 1 Network Reconstruction
Input: STS data (Y), outcome of the diffusion dynamics on a network G.
OutPut: Connection matrix C.
1: procedure Reconstruction
2: Consider matrix M = ∆YYT YYT −1

. Size of the matrix Y is n× which contains time
series data of the status of the nodes and column of the matrix ∆Y represents the changes in
the status of the nodes in consecutive time steps.

3: M ← M+MT

2
, to generate a symmetric matrix.

4: In the decreasing order of the entries of the matrixM, select first 2m entries from the matrix
M. Replace these entries with 1 and rest of the entries with 0. Newly produced matrix of 0s
and 1s is called reconstructed connection matrix C of the given network G.

5: end procedure

a b c

1

2

3

44 4

3 3

2 2

1 1

Figure 9.2 : (a) Example of wrongly reconstructed network. (b) Considered network (original). (c)
Example of reconstructed network which is partially correct.

parameter as required in other considered methods in the literature [Timme, 2007; Shandilya and
Timme, 2011; Aniszewska and Rybaczuk, 2008; Zhou and Lu, 2007; Comellas and Diaz-Lopez,
2008].

Another aspect of the network reconstruction framework is the evaluation of the accuracy
of Algorithm 1. True Positive Rate (TPR) and False Positive Rate (FPR) are considered asmeasures
or metrics to evaluate the accuracy of the proposed algorithm. TPR is defined as the fraction of
links correctly identified and FPR is the fraction of links wrongly identified which do not exist in
real. We define another measure to check the accuracy of the reconstruction of the network which
inherits the flavor of TPR and FPR both, simultaneously and given by

∆E = 1− 1Tabs(A−C)1
1TA1

, (9.8)

where abs(A−C) = (|ai j − ci j|), ci j is i jth entry of the matrix C. ∆E has maximum value 1 and
minimum value −1. If the reconstruction is done accurately then ∆E will be 1 and in case of
totally wrong reconstruction, it will be−1. 1Tabs(A−C)1 counts themismatches in the constructed
network and original network. Accurate reconstruction of the network eliminates the second term
in Eq. (9.8) due to no mismatch of reconstructed links.

The effectiveness of the measure ∆E is explained by an example in Fig. 9.2. An example
network of 4 nodes and 3 edges is considered. Adjacency matrix of original network is given by
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A=





0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0





and reconstructed networks in Fig. 9.2 have connection (adjacency) matrices

C1 =





0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0



 ( Fig. 9.2a) and C2 =





0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0



 ( Fig. 9.2c),

respectively.

A−C1 =





0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0



−





0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0



=





0 1 1 1
1 0 −1 −1
1 −1 0 −1
1 −1 −1 0



 ,

abs(A−C1) =





0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



 ,

∆E = 1− 1Tabs(A−C1)1
1TA1

= 1−2 =−1.

Similarly, for the reconstructed matrix C2,

∆E = 1− 1Tabs(A−C2)1
1TA1

= 1−2/3 = 1/3.

In the next section, we provide the performance analysis of the proposed method of
network reconstruction.

9.2 PERFORMANCE ANALYSIS
We generated networks using the models LFR (Lancichinetti-Fortunato-Radicchi)

[Lancichinetti et al., 2008], GN (Girvan-Newman ) [Girvan and Newman, 2002], ER (Erdős-Rényi)
[Erdös and Rényi, 1960], BA (Barabási-Albert) [Barabási et al., 2000] and WS (Watts and Strogatz)
[Watts and Strogatz, 1998a]whichprovide the benchmark for testing of different type of algorithms
and diffusion dynamics such as community detection, graph decomposition, epidemics and
information diffusion. SIS model is applied on the computer generated networks of the models
LFR, GN, ER, BA, and WS and other considered real-world networks given in Table 9.1. The
process of diffusion is simulated under the SIS model and STS data of diffusion is collected
for each of the above mentioned network and the proposed network reconstruction procedure,
Algorithm 1, is applied.

The graphical representation of the framework that is used to validated the proposed
network reconstruction method, is given in Fig. 9.3. The proposed framework has three parts
dedicated to three separate processes given as
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Figure 9.3 : Graphical representation of the framework that is used to validated the proposed network
reconstruction method. Accuracy ∆E is calculated which counts the mismatches in the
entries of adjacency matrix A and reconstructed matrixC.

1. Consideration of a network, real or computer generated, under a considered model.

2. Diffusion is applied under SIS diffusion model to get STS data.

3. Network reconstruction is performed using Algorithm 1 and accuracy ∆E is calculated.

A detailed description of the network generation using the models is given in Section ??.
Details of the implementation of diffusion under SIS and proposed method of network
reconstruction is given in Section 9.2.2.

9.2.1 Network models used for simulation of reconstruction process
Network reconstruction method is applied to different networks in which some are real

world and some are computer generated networks. We consider GN [Girvan andNewman, 2002],
ER [Erdös and Rényi, 1960], WS [Watts and Strogatz, 1998a], BA [Barabási et al., 2000] and LFR
[Lancichinetti et al., 2008] benchmark model networks.

GN benchmark networks are regular random networks with community structure. The
size of GN networks is 128 nodes in which each node has the same degree. GN model network
consists of 4 communities of the same size, 32 nodes each. Community strength depends on the
ratio of internal to the external degree of nodes. We used a GN benchmark network of average
degree 16 in which each node has 6 connections inside the community and 10 connections outside
the community.

ER and WS, both follow binomial degree distribution. ER model network is produced
by applying Bernoulli process over each pair of nodes. Consider a pair of nodes and linked
them with probability p = 0.1. In this way, we generated a connected ER model network of 100
nodes. WS networks are the resultant of rewiring of regular networks with probability p> 0which
exhibit small world phenomena having higher clustering as real-world networks have [Newman,
2010]. First, a regular network of desired average degree is considered then rewiring process in
applied. Each edge is rewired with probability p= 0.001. In the rewiring process, an existing edge
disappears and a new edge appears randomly. A network of average degree 8 is considered under
this model.

BA model and LFR has power-law degree distribution. BA model is a growing random
network model that is based on preferential attachment scheme in which, at each time step, a node
appears and gets connected to a pre-existing node i with probability pj

i given by

p j
i =

ki
∑l kl

,

where ki is the degree of node i. We considered a network of average degree 4 that is generated by
BA model. LFR network is generated using the procedure given in [Lancichinetti et al., 2008] by
setting the parameters: number of nodes 100, average degree 5, maximum degree 20, exponent for
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Table 9.1 : Accuracy of the reconstruction of given networks. n and E are the number of nodes and
edges respectively in a network. ∆E is the accuracy measure of the reconstruction. The
provided values are averaged over 100 runs of reconstruction algorithm for each network
of given size. The parameters are = 0.1 and = 0.03. The values of the accuracy measures
(∆, TPR and FPR) in 5th, 6th and 7th columns are corresponding to our proposed method.

Models/ Networks n m ∆E TPR FPR ∆E (CST)
BA model 500 986 1 1 0 0.984
ER model 100 473 0.9789 0.9895 0.0105 0.963

Network GN 128 1024 1 1 0 0.956
models LFR 100 203 1 1 0 1

WSM 500 2000 1 1 0 1
Col 145 346 1 1 0 0.974

Dolphins 62 159 1 1 0 0.968
Celegans 453 2025 1 1 0 0.993

Real-world Football 115 613 1 1 0 0.971
networks Web 180 228 0.9956 0.9978 0.0022 0.959

Lesmis 77 254 1 1 0 0.989
Karate 32 78 1 1 0 0.9744

the degree distribution 2, exponent for the community size distribution 1, mixing parameter 0.1,
number of overlapping nodes 0, number of memberships of the overlapping nodes 0 and range of
community size is taken as [5, 20]. The details of the data are given in Table 9.1.

9.2.2 STS data generation and network reconstruction
Susceptible-Infected-Susceptible (SIS) diffusion model is adopted to generate time series

status data of diffusion over the considered networks. Initially, all nodes are in susceptible (S) state
or class. A node is randomly selected from the network as an initial spreader (source node). During
diffusion phenomena, a node, which is in the infected class of nodes (I), can infect its neighbor
with probability or it can be transferred to susceptible state with probability . Simulation is
done by setting = 0.1 and = 0.03. At each time step t, all infected nodes either try to transfer
their infection to their susceptible neighboring nodes with probability = 0.1 or shift to susceptible
state with probability = 0.03. After completion of each step, we collect the status of the nodes,
either they are infected (yi(t) = 1) or susceptible (yi(t) = 0). We get y(t) for each time step which
collectively provide the matrix Y. After that we generate ∆Y with the help of matrix Y.

∆Y= Y(:,2 : +1)−Y(:,1 : ).

Now we apply the proposed network reconstruction method (as stated in Algorithm 1) over the
generated STS data. We get the matrix M of real values. 2m highest values are selected to convert
them into ones and rest of the values set to zeros. The resulting matrix is called as reconstructed
connection matrix C. The performance of the network reconstruction method is evaluated using
well-accepted measures TPR and FPR, and our defined measure, ∆E, given in Eq. (9.8). Results
are provided in Table 9.1. 9 out of 11 considered networks are reconstructed with 100% accuracy
(∆E = 1, TPR= 1 and FPR = 0). The other two networks, Web, and ER are reconstructed with high
accuracy having the values of accuracy measure ∆E = 0.9956 and 0.9789, respectively.

The value of and can varywithout affecting the accuracy of the proposed reconstruction
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Figure 9.4 : Improvement in accuracy of network reconstruction from time series data of diffusion.
SIS diffusion model is applied in KARATE network to produce STS data. Horizontal axis
represents the length of status-time-series (STS) data and vertical axis corresponds to
accuracy (∆E) of network reconstruction.
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Figure 9.5 : Comparison of two methods of network reconstruction. One is our proposed method (C1)
and second is CST based network reconstruction (C2).

method. We should select the values of parameters and such that STS data that is generated
has sufficient independent vectors y(t). The reconstruction of the considered networks are tested
for other values of the parameters and results are similar to given in Table 9.1.

The accuracy of the method depends on the amount of available data. From the given
sufficient length of time series data of diffusion, we can able to reconstruct the respective network
without any error. For an example, a network of KARATE club member [Newman, 2006b] is
considered to evaluate the accuracy of the reconstruction of the network, with respect to available
status-time-series data, which is shown in Fig. 9.4. From Fig. 9.4, we can clearly observe that the
accuracy (∆E) of the proposed network reconstruction method increases with the length of time
series data.

9.2.3 Efficiency and accuracy of the proposed algorithm
In this section, we perform a comparative analysis of the proposed method of network

reconstruction and an existing CST based method for the same. STS data is used as the input in
both the methods (our proposed one and CST based method).
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The success rate of the complete reconstruction of networks using the proposed method is
almost 82% (9 out of 11 networks)while the consideredCST basedmethod has success rate of 16.6%
(2 out of 11 networks), refer Table 9.1. The success rate of complete reconstruction of networks
using CST based method reported by the authors was 33% (4 out of 12) [Shen et al., 2014]. Same
STS data is used in both methods (our proposed one and the considered CST based method) of
network reconstruction. CST based method of network reconstruction requires two thresholds
values to calculate the probability distribution of infection and selection of independent input
vectors. For more detail refer [Shen et al., 2014]. Our proposed method does not require any prior
information regarding the selection of threshold values. The accuracy of the proposed method is
better as compared to that of the CST based network reconstruction method. The accuracy of the
CST based method depends on the selection of threshold values. A graphical representation of the
performance comparison of the two methods of network reconstructions is given in Fig. 9.5. In
Fig. 9.5,C1 andC2 are reproduced adjacency matrices which are obtained by the proposed and the
considered CST based network reconstruction methods, respectively. C1 and C2 are compared on
the basis of metric ∆E in Table 9.1. The strength of the proposedmethod of network reconstruction
can be followed by comparing the accuracy values given in fifth (our proposedmethod) and eighth
(CST based method) column of Table 9.1.

An example of reconstructed network
Here we demonstrate the accuracy of the proposed method of network reconstruction via

an example of the real-world network. In Fig. 9.6(a), the structure of the original adjacency matrix
of the football network is shown and Fig. 9.6(b) is corresponding to reconstructed adjacencymatrix
also known as connection matrixC. Football network has 115 nodes and 613 edges. This is a social
network among the football players who participated in a football tournament. First, diffusion
processes imposed in the considered network then the connection matrix C is obtained using
Algorithm 1. Considered adjacency matrix and reconstructed connection matrix have the exact
overlapping of zeros (black dots) and ones (white dots) in Fig. 9.6. TPR is 1 and FPR is 0 which is
corresponding to 100% accuracy of the network reconstruction.

(a) (b)

Figure 9.6 : (a) Adjacency matrix, A, of football network. (b) Reconstructed Adjacency matrix, C.

Previously, we discussed that Algorithm 1 requires STS data Y and number of edges m in
advance. Now the question is that can we get the value of m from the available STS data itself?
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Figure 9.7 : Calculation of the threshold value to generate connection matrix C from the matrix M
correspond to KARATE club network of n= 34 nodes and m= 78 edges. (a)Wij Weights of
matrix M. (b) Magnified view of plot inside the red-rectangle in 9.7(a) (Left). (c) Difference
of consecutive weights (∆W ) of matrix M when these are sorted. Second highest peak
is inside the red-rectangular. (d) Magnified view of plot inside the red-rectangle in 9.7(c)
(Left). The height of the arrow represents the difference shown in 9.7(b) (Top).
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9.2.4 How to find out the value ofm (number of edges)?
In the proposed network reconstructionmethod, we assume that the number of edges in the

network is known in advance. Now the question is that can we reconstruct a network successfully
without knowing the number of edges that are present in the network. We plotted the values Mi j
of the matrix M in Fig. 9.7(a). Fig. 9.7(b) is showing the magnified view of the rectangular area in
Fig. 9.7(a). The dots outside the rectangular box in Fig. 9.7(a) are well separated from the rest of
the plotted dots (points). These points (lying outside the box) correspond to the strength of the
communicability of the pairs of the nodes in the context of diffusion under SIS dynamics. Inside
the box, there are two groups of points which are clearly visible in the magnified view shown in
Fig. 9.7(b). The upper group of points (in blue color) are representing the edges in the original
network and the lower bunch of dots are corresponding to node pairs which have the tendency
of the strong indirect relation of communicability in the context of diffusion. A clear separation
line between the two groups inside the rectangular box in Fig. 9.7(b) can be drawn to identify the
number of edges in the network.

In another observation, we generated a list of length n2 which has entries of the matrix M
of size n×n. Then the difference in the consecutive entries (∆W ) of the sorted list is calculated and
plotted in Fig. 9.7(c). Fig. 9.7(d) is themagnified viewof the rectangular area in Fig. 9.7(c). There are
two noticeable peaks in the plot of Fig. 9.7(c). The position of the first peak (smaller of two peaks)
is corresponding to the double of the number of edges, 2m, in the network without knowing it in
advance. Second highest peak (inside the rectangular box in Fig. 9.7(c)) can be used as an identifier
to calculate the edges in the network reconstruction. Hence, the information regarding the number
of edges, m, is not required in advance. The proposed method of network reconstruction is able
to work on STS data only. We applied the above process to find out the value of m for each of the
networks considered (as stated in Table 9.1) and observed the exact matching of the number of
edges derived from this process with that of the original network.

9.2.5 Prediction of ordering of edges in a weighted network using STS data
Networks are heterogeneous in nature and can have different communication properties

of links which can be utilized during communication. For example, let G be a communication
network andA is its connectionmatrix. Edges of the network havedifferent communication ordata
transfer capacity (weights) which is denoted by wi j and unknown. If we have status-time-series
data, how can we retrieve more information? In this section, we are concerned about the ordering
of edges according to their weights. The aforementioned method of network reconstruction is
applied using status-time-series (STS) data and obtained matrixM. Entries fromM, corresponding
to non-zero entries in A, are considered as we know the connections of the network. Correlation
between original weights and extracted weights from the matrix M is calculated. It is highly
positivewhich suggests that we can successfully order the edges according to their communication
importance. This information can be utilized in data communication to prioritize the links while
sending the information or data or routing on the Internet.

We consider the real world network of KARATE club members. Weights, which are in the
range of [0 1/8], are randomly distributed to its edges that work as transmission probability ( )
in diffusion. Each edge has a different value of . 0.7(1− ) is used as recovery probability, ,
for each infected node. The correlation between recovered weights of edges in the reconstructed
network and original weights are highly positive, 0.8439. This indicates that ordering of edges
in the reconstructed weighted network can be used to order the edges in the original network of
unknown weights. The same process of reconstruction of edge weights is applied to the social
network of dolphins. In this case, correlation is 0.8262. These results are averaged over 100 runs
of the reconstruction process. The considered length of time series is 104.
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Figure 9.8 : Weights of recovered links using CST based network reconstructionmethod. There are two
group of points in which upper group (blue circles) corresponds to existing links and lower
group (green stars) representing the indirectly connected node pairs.

9.3 DISCUSSION
The structure of the matrix M is the resultant of the diffusion dynamics held over

the underlying network G, so the distribution of the values Mij signifies the strength of the
communicability of each node pair whether they are directly connected or indirectly. Directly
connected nodes (existing connections) have highest communication strength which is shown by
blue circles in Fig. 9.7(a). Second class or group of points inside the rectangular box in Fig. 9.7(a)
(green color stars or lower group of points in Fig. 9.7(b)) represents the indirectly connected pair of
nodes of short-range connection (connected by few links). The third group of points at the bottom
of the Fig. 9.7(a) are corresponding to long-range indirect connections. The third group of node
pairs connected by long-range connections can be focused while improving the connectivity of the
network if it is required for an application similar to innovation or information diffusion. There
are also multiple applications where the short-range indirect connections are important that are
represented by green stars inside the rectangular box in Fig. 9.7(a).

Resulting weights of diffusion dynamics which are the entries of the matrix M also can be
utilized to identify the promising pathways of diffusion. IfWi j(=Mij) has high value then nodes
i and j are either directly connected or connected with the highly active pathway of diffusion. To
prevent the outbreak condition of the epidemic, we can demolish the highly active pathways and
these pathways can be identified by matrix M.

The proposed method is focused on diffusion under SIS (contact based diffusion) model
on a network. The method has applicability in many ways: For example, similar matrix analysis
based approach can be adopted for other diffusion dynamics. The proposed procedure of network
reconstruction is simple in the sense that it needs only to use STS data in Eq. (9.4) which can also be
used as a starting point for reconstruction of a weighted network. The method can also be applied
to non-STS data where data points can be real numbers instead of binary (0,1). In [Timme, 2007;
Shandilya and Timme, 2011; Aniszewska and Rybaczuk, 2008; Zhou and Lu, 2007; Comellas and
Diaz-Lopez, 2008; Yu, 2010; Yu and Parlitz, 2011; Li et al., 2015; Ma et al., 2015; Tang et al., 2015], we
need to know the nodal dynamics a prior but the proposed one can be applied for more general
contact based diffusion dynamics without knowing the exact nodal dynamics. The dependency of
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the considered previous methods of network reconstruction on the system-parameter (for example
infection rate in [Tomovski and Kocarev, 2015]) or nodal dynamics reduces the applicability of
the methods. In our proposed method, there is no such constraint. Only STS data is required. The
simplicity of themodel comes from Eq. (9.4) in which only data is required without any other prior
information of the diffusion parameters and nodal dynamics of the nodes.

If we compare the proposed framework with the CST-based method of network
reconstruction, we can observe that our proposed method is more informative and able to reveal
hidden information. In Fig. 9.8, weights of links obtained by CST based method of network
reconstruction are plotted which are separated into two groups. Points of higher weights
correspond to existing links and vice versa while in our proposed method, weights are distributed
in three groups which are corresponding to directly connected nodes, indirectly connected nodes
of strong communicability, and node pairs of weak communicability, see Fig. 9.7(a). In the
case of our proposed method of network reconstruction, we also observe that there is a sharp
boundary between the three groups of the weights of the node pairs while in CST based method
of network reconstruction, the separation line between the weights of direct connections and
indirectly connected node pairs is not well defined which makes the identification of the exact
number of links present in the network difficult. In the proposed framework of the network
reconstruction, second highest peak in the difference of the sorted weights (Wij) of the node pairs
is the indicator of the number of links present in the network while there in no such well-defined
indicator in CST based network reconstruction method. The selection of two threshold values in
CST based methods also makes the procedure less robust [Shen et al., 2014].

9.4 CONCLUSION
Network reconstruction is a problem of great interest which belongs to multiple domains,

for example, biology, genetics, social networking, epidemic and wireless sensor network. In this
chapter, we presented a simple yet efficient approach to infer the connectionmatrix from the given
binary time series data of a process held over the considered network and also compared with
an existing CST based method proposed for the same. From the considered diffusion dynamics
under SIS model, a matrix, M, is generated using the status-time-series data that is converted to
the connection matrix on the basis of a simple observation made on the entries of the matrix M.
Reconstruction procedure has novelty in accuracy and efficiency. The proposed method can be
applied in more general contact based diffusion dynamics without prior information of the nodal
dynamics. Network topology inference framework can be utilized in link prediction also. Missing
links can be identified using the proposed method. In future, the proposed framework can be
extended to identify missing nodes as well as links with their meaningful attributes.

…
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