List of Figures

Figure	Title	page
3.1	Degree distribution of different networks of size $10000{ m generated}$ by CDPAM with different	
2	values of β when $\theta = 0.5$. In (a) $\beta = 0.6$ and in (b) $\beta = 1.2$.	21
3.2	Degree distribution of different networks of size 10000 generated by CDPAM with different	
	values of eta when $ heta=0.5$. In (a) $eta=1.8$ and in (b) $eta=2.4$.	22
3.3	Degree distribution of different networks of size $10000{ m generated}$ by CDPAM with different	
	values of eta when $ heta=0.5.$ In (a) $eta=3$ and in (b) $eta=6.$	22
3.4	Degree distribution of different networks of size $10000{ m generated}$ by CDPAM with different	
	values of eta when $ heta=0.5$. In (a) $eta=60$ and in (b) $eta=300$.	23
3.5	Degree distribution of different networks of size $10000{ m generated}$ by CDPAM with different	
	values of eta when $ heta=0.5$. In (a) $eta=600$ and in (b) $eta=600000$.	23
3.6	Growth of the diameter of networks. Horizontal-axis represents the logarithm of the	
	number of nodes $(\ln V)$ and the vertical-axis represents diameter $(D).$ As eta decreases	
	to $ heta=0.5$, the growing rate of the diameter reduces.	26
3.7	Average clustering coefficient is plotted for different size of networks with different	
	values of β and $\theta = 0.5$. Horizontal-axis represents the number of nodes of a network	
	and the vertical-axis represents average clustering coefficient of the network.	27
3.8	Average clustering of the networks having 1000 nodes generated by CDPAM with different	
	values of β when $\theta = 0.5$. Horizontal-axis represents $\log \beta$ and the vertical-axis represents	
	average clustering coefficient of the network.	27
3.9	Assortativity index is plotted for different size of networks generated by CDPAM with	
	different values of β when $\theta = 0.5$. Horizontal-axis represents the number of nodes of	•
	the networks and the vertical-axis represents assortativity index of the networks.	28
3.10	Number of triangles is plotted for different size of networks generated by CDPAM with	
	different values of β when $\theta = 0.5$. Horizontal-axis represents the number of nodes of	20
2.44	the networks and the vertical-axis represents number of triangles in the networks.	29
3.11	Algebraic connectivity of different size of networks generated by CDPAM with different	
	values of β when $\theta = 0.5$ and by BA model. Horizontal-axis represents the number of nodes of the networks and the vertical-axis represents algebraic connectivity of the networks.	30
2 12	Spectral radii for different size of networks generated by CDPAM with different values	30
3.12	of β when $\theta = 0.5$ and by BA model. Horizontal-axis represents the number of nodes	
	of the networks and the vertical-axis represents spectral radius of the networks.	30
	of the networks and the vertical axis represents spectra rulates of the networks.	00
4.1	Example of signed network and its layers.	36
4.2	Step 2- Random attachment with local growth.	36
4.3	Graphical representation of addition of a new node.	37
4.4	Degree distribution of signed network generated by the model defined by Eq.(4.6).	39
4.5	Distribution of diversity of nodes, $\Phi,$ in network of (a) Wikielection (b) model network	
	defined in the chapter and (c) EM model network given in [Ludwig and Abell, 2007].	43
4.6	Distribution of stability of nodes, <i>s</i> , in network of (a) Wikielection, (b) model network	
	defined in the chapter and (c) EM network given in [Ludwig and Abell, 2007].	44
4.7	Distribution of triangles shared by nodes in the network of (a) Wikielection (b) model	
	network defined by Eq. (4.6) and (c) EM network given in [Ludwig and Abell, 2007].	45

4.8	Examples of signed networks. Dark, dotted edges represent positive, negative edges, respectively.	47
5.1	Horizontal axis represents size of the nucleus (s) and vertical axis represents free energy penalty.	54
5.2	Plot in blue represents the average rate of change in the size of the crystal at given size and plot in black is $\triangle E$. $ \dot{\mathscr{C}} $ is maximum around the point where $\triangle E = 0$. Points in red color.	55
5.3	In (a) Horizontal axis represents size of the nucleus (s) and vertical axis represents $ riangle E$. In (b) Crystal generated through network formation approach.	56
5.4	In (a) Crystallization time while the initial concentration level of solute is different. In (b) Horizontal axis represents the quantity $\left[\frac{k_2}{-(ln(c/c_0))^2}\right]$ and vertical axis represents nucleation rate \dot{N} in the context of network formation process.	56
5.5	A network generated by using the proposed model. The clusters of nodes with same color denote the communities	58
5.6	A network generated by crystallization process.	59
5.7	In (a) Number of communities with respect to concentration. In (b) Modularity index Q with respect to concentration.	59
6.1	Graphical representation for division of probability of connection between node <i>i</i> and <i>j</i> . In the figure, PA stands for preferential attachment, RA stands for random attachment and LG is local growth.	62
6.2	Graphical representation of Eq. (6.13).	66
6.3	Matching of degree distribution of real world networks and the same produced by the NRM. The degree distributions of different networks generated by NRM are plotted (in $\log - \log$ scale) in blue and the same of the corresponding real-world networks are plotted in black. The horizontal axis represents degree (k) and vertical axis represents cumulative probability $P(k_i \ge k)$.	68
6.4	Numerical results of different properties of network generated by models corresponding to email network are plotted.	69
6.5	(p, θ) in green region shows shrinking in expected diameter and in red region first expected diameter grows then stabilizes. $k_i^0 = 2 \forall i < 100$.	74
6.6	Comparison between numerical and theoretical results for triangle counts in a network generated by NRM at $p=0.4, eta=0.2$ is plotted.	75
6.7	Comparison between numerical and theoretical results for densification power-law (DPL) in a network generated by NRM at $p=0.4, \beta=0.2$ is plotted. The count of triangles is averaged over 100 ensembles of growing networks generated by NRM.	78
6.8	Numerical results of different properties of networks generated by NRM is plotted for different values of parameter β after setting $p = 0.5$. Horizontal axis represents size of the network $N(t)$ and vertical axis represents numerical values of considered property.	79
7.1	Single particle diffusion defined by Eq. (7.9) is simulated over a test network of 17 nodes.	88
7.2	Single particle diffusion defined by (7.9) is simulated over the network of 5000 nodes which is generated under BA model. Relative MFPT of nodes is plotted.	89
7.3	Single particle diffusion under random walker is simulated over the network of 5000 nodes which is generated under BA model. Relative MFPT of nodes is plotted.	89
7.4	Comparison of MFPT under simple random walk (RW) and biased random walk (BRW). Simulation is done on a network of 5000 nodes which is generated under BA model.	90
7.5	Single particle diffusion defined by Eq. (7.13) is simulated over a network of 100 nodes which is generated unde BA model.	93

7.6	Information spreading is simulated as a diffusion defined by Eq. (7.13) over a network of 100 nodes which is generated unde BA model. Probability distribution is plotted for the reachability of information to a node within considered time τ . Simulation performed 1000 times with same parameter α and different source node which is selected randomly to calculate the probability distribution.	93
7.7	Single particle diffusion defined by Eq. (7.14) is simulated over a network of 100 nodes which is generated unde BA model.	94
7.8	Information spreading is simulated as a diffusion defined by Eq. (7.14) over a network of 100 nodes which is generated unde BA model. Probability distribution is plotted for the reachability of information to a node within considered time τ . Simulation performed 1000 times with same parameter α and different source node which is selected randomly to calculate the probability distribution.	94
7.9	Vertical axis represents correlation coefficient (correcoef) between considered metric (Degree and PageRank) and distribution of density of walkers and and horizontal axis corresponds to parameter β .	96
7.10	Vertical axis represents PageRank and horizontal axis corresponds to parameter $eta.$	97
8.1	Case I-State vector $\mathbf{x}(t)$ is plotted for the diffusion process in (a) Bellcanada (b) Bellsouth (c) RedBestel networks (static networks) after setting $\Omega = D$. Different colors in the plots are correspond to the diffusion started from different initial points, $\mathbf{x}(0)$. It shows the unique state convergence ($\mathbf{x}^* \propto \mathbf{d}$) of diffusion process in the considered networks while $\Omega = D$.	112
8.2	Case II- State vector $\mathbf{x}(t)$ is plotted for the diffusion process in (a) Bellcanada (b) Bellsouth (c) RedBestel networks (dynamic networks) after setting $\Omega = D$. Plots in multiple colors are correspond to the diffusion started from different initial points, $\mathbf{x}(0)$. It shows the unique state convergence ($\mathbf{x}^* \propto \mathbf{d}$) of diffusion process in the considered networks while $\Omega = D$.	113
8.3	Change in the Orientation of Links among the Considered Nodes during the Rewiring Process.	113
8.4	Case III- After setting $\Omega = D$, Error in trajectories of diffusion in (a) Bellcanada (b) Bellsouth (c) RedBestel static networks and corresponding dynamic networks (incorporating rewiring) is shown. Diffusion started from different initial conditions, $\mathbf{x}(0)$.	114
8.5	Case IV- State vector $\mathbf{x}(t)$ of diffusion in (a) Bellcanada (b) Bellsouth (c) RedBestel networks is plotted. Link-failure during the diffusion process is captured by vertical sift in converging state \mathbf{x}^* .	115
8.6	Case V- For a constant matrix Ω which has non-zeros diagonal entries, difference (<i>error</i>) in trajectories of diffusion in (a) Bellcanada (b) Bellsouth (c) RedBestel static networks and corresponding dynamic networks (incorporating rewiring) are plotted. Diffusion started from different initial conditions, $\mathbf{x}(0)$.	116
8.7	Plots in blue color represents the diffusion in static network and plots in black color represents the diffusion in dynamic network that is corresponding to considered static network of Bellcanada.	117
8.8	Shifting in the Resources due to Link Failure. Plot shows the change in converging state, $(\bar{x}^* - x^*)$, after the deletion of a link in (a) Bellcanada (b) Bellsouth (c) RedBestel networks.	118
8.9	Fixed point Convergence over the Static Network Structure. State vector $\mathbf{x}(t)$ is plotted for the diffusion process in (a) Bellcanada (b) Bellsouth (c) RedBestel networks (static networks) for a constant diagonal matrix Ω , having non-zeros diagonal entries. Plots in multiple colors are correspond to diffusion started from different initial points, $\mathbf{x}(0)$. It shows the convergence of diffusion process in (a) Bellcanada (b) Bellsouth (c) RedBestel potworks	110
	networks.	119

ix

8.10	Fixed point Convergence over the Static Network Structure. State vector $\mathbf{x}(t)$ is plotted for the diffusion process in (a) Bellcanada (b) Bellsouth (c) RedBestel networks (dynamic networks) for a constant diagonal matrix Ω , having non-zeros diagonal entries. Plots in multiple colors are correspond to diffusion started from different initial points, $\mathbf{x}(0)$. It shows the convergence of diffusion process in (a) Bellcanada (b) Bellsouth (c) RedBestel	
	networks.	120
9.1	Graphical representation of diffusion dynamics in a network in which the network provides	
	a platform for the diffusion. Output of the diffusion at time step t , $\mathbf{x}(t)$ acts as an input for the next time step.	124
9.2	(a) Example of wrongly reconstructed network. (b) Considered network (original). (c)	124
<i>.</i>	Example of reconstructed network which is partially correct.	127
9.3	Graphical representation of the framework that is used to validated the proposed network reconstruction method. Accuracy ΔE is calculated which counts the mismatches in the	
	entries of adjacency matrix A and reconstructed matrix C.	129
9.4	Improvement in accuracy of network reconstruction from time series data of diffusion.	
	SIS diffusion model is applied in KARATE network to produce STS data. Horizontal axis	
	represents the length of status-time-series (STS) data and vertical axis corresponds to accuracy (ΔE) of network reconstruction.	131
9.5	Comparison of two methods of network reconstruction. One is our proposed method	151
3.7	(C1) and second is CST based network reconstruction ($C2$).	131
9.6	(a) Adjacency matrix, A, of football network. (b) Reconstructed Adjacency matrix, C.	132
9.7	Calculation of the threshold value to generate connection matrix C from the matrix M	
	correspond to KARATE club network of $n=34$ nodes and $m=78$ edges. (a) W_{ij} Weights	
	of matrix M. (b) Magnified view of plot inside the red-rectangle in 9.7(a) (Left). (c)	
	Difference of consecutive weights (ΔW) of matrix M when these are sorted. Second	
	highest peak is inside the red-rectangular. (d) Magnified view of plot inside the red-rectangle in a $\pi(x)$ (1 of t). The bair has a first end of the amount of the difference of the sum in a $\pi(x)$ (1 of t).	100
9.8	in 9.7(c) (Left). The height of the arrow represents the difference shown in 9.7(b) (Top). Weights of recovered links using CST based network reconstruction method. There are	133
9.0	two group of points in which upper group (blue circles) corresponds to existing links	
	and lower group (green stars) representing the indirectly connected node pairs.	135