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2.1 NETWORK NEUROSCIENCE 
 Brain is one of the most intricately organized systems that exhibits functional repertoire 
critical for survival of organisms. Its complexity arising out of cellular circuits and molecular 
orchestration makes it extremely difficult to find laws governing its structure and function 
[Herculano-Houzel, 2009]. While advances in molecular biology have provided insights into 
functioning of individual neurons, better understanding of how tiny electrical impulses, elegantly 
orchestrated by a group of neurons, enable a living system to interact with its environment has 
been out of reach [Eric R Kandel, Dudai, and Mayford, 2014]. This lack of systems-level 
understanding of brain is an obstacle in finding ways of its control [Edward T Bullmore and 
Bassett, 2011; Park and Friston, 2013; Sporns, 2013b]. Advances in techniques for mapping brain 
and ways for more precise ways of external control are opening up new avenues in brain science. 
For example, functional brain imaging, non-invasive brain stimulation, and optogenetics have 
provided unprecedented abilities to record and perturb nervous systems [Fenno, Yizhar, and 
Deisseroth, 2011; Orrison, Lewine, Sanders, and Hartshorne, 1994; Rossini et al., 1994]. Using the 
abstract formalism of graph theory, brain mechanisms could be modeled as networks in search 
of general principles underlying its function and control. This integrative approach has been 

 
   

In this thesis, taking an integrative approach to brain, we asked questions delving on 
systems biology of structural and functional brain networks. We study the C. elegans neuronal 
network, to find their driver neurons using controllability analysis and characterize them based 
on their phenotype and genotype. Asking questions about their structural constraints that play 
role in specifying prevalence of motifs and nature of control, we propose a distance constrained 
model. We find distance constrained rewiring to be a key feature for maintaining robust control 
in CeNN. Further, by applying the concept of structural balance, we show that inhibitory 
synapses are central to achieve the observed balance in CeNN. In these investigations we invoke 
structural connectivity of neurons, features of neurons and synapses as well as gene level details. 
Beyond structural networks, we constructed graph theoretical models of brain functional 
networks to identify topological biomarkers that characterize activity patterns of schizophrenia. 
Using features from different layers of nervous systems, as depicted in Figure 1.2, our studies 
provide new insights into brain structural and function. 

 
 

2.2 NETWORKS IN BRAIN 
Neural networks are web of interconnected neurons through which they interact and 

produce paths of activations leading to behavior [Thomas and McClelland, 2008]. These paths 
consist of several axon terminals which are connected via synapses to other neurons. The 
activation patterns can be seen as functional neural circuits which regulate its own activities via 
feedback, thus providing substrate to produce response in accordance with external stimuli [E.R. 
Kandel et al., 2000]. For example, an obnoxious stimuli suggesting urgency and dangerous 
situation for the animal are detected via specialized nerve cells called sensory neurons. These 
receptors then send signals which are relayed to muscles to get away from the harmful stimuli. 
This simple example demonstrates evolution of structural features in brain networks (Figure 2.1).  
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Figure 2.1 : The structure of a simple neuronal circuit required to respond to an external stimulus.

These connections between neurons or interconnected neuronal regions in higher animals 
display spatial as well as temporal characteristics. Spatial layout of the nervous system is 
represented by the structural connectivity of the neurons. Activity-dependent temporal 
synchrony between brain regions are captured by functional brain networks [Park and Friston, 
2013; Sporns, 2013a]. The study of these structural and functional brain networks can offer 
insights into emergent properties of the nervous system [Rubinov and Sporns, 2010; Sporns, 
2011].

Such studies involving the structure and dynamics of nervous systems require the 
knowledge of neuronal connectivity. It is difficult to assess the structure of large scale neuronal 
networks found in humans or other vertebrates [Sporns, 2013b]. The available data of structural 
connectivity in higher organisms are course grained and not comprehensive. On the other hand, 
it is easier to construct detained neuronal wiring diagram for invertebrates. The nematode
Caenorhabditis elegans is the only example of a nervous system for which a complete, fine-grained 
map is available [Hall and Russell, 1991; Oshio et al., 2003; White, Southgate, Thomson, and 
Brenner, 1986]. Availability of high resolution details of anatomy and developmental processes 
in C. elegans further facilitates mathematical modelling and computational analysis. Thus C. 
elegans comes out as an interesting model system.

The topological layout of C. elegans neuronal connectome has been mapped by 
representing the nervous system as a graph in which each node denotes a neuron and each 
(directed or undirected) edge denotes a synaptic connection between neurons [Beth Li-ju Chen, 
2007; Choe et al., 2004]. The C. elegans neural network is a small-world network possessing a 
combination of high local clustering of connections between neighboring neurons and short path 
lengths between neurons [Towlson, Vértes, Ahnert, Schafer, and Bullmore, 2013]. This network 
achieves efficient communication with sparse connectivity (low synaptic density) and decreased 
energy consumption [Ahn, Jeong, and Kim, 2006]. Similar to many other real world networks, 
this network is also known to be robust to random errors [Ahn et al., 2006; Itzhack and Louzoun, 
2010; Pérez-Escudero and de Polavieja, 2007].

While comprehensive data of structural connectivity in human brain remains elusive, its 
functional connectivity can be mapped using non-invasive techniques like EEG and fMRI. These 
techniques provide a platform for finding temporal activity correlations between parts of the 
brain. By virtue of its structure human brain exhibits a wide repertoire of functions [Park and 
Friston, 2013]. It is proposed that the resolution of -to- may reside
in [Eric R Kandel et al., 2014; Sporns, 2011; E. Tang and 
Bassett, 2017]. Recent analyses of human functional brain circuits suggest the presence of small-
world nature  and scale-free connectivity distribution [Achard, Salvador, Whitcher, Suckling, and 
Bullmore, 2006; Meunier, Lambiotte, and Bullmore, 2010; Rubinov and Sporns, 2010; Cornelis J 
Stam and Reijneveld, 2007]. It has been hypothesized that neurological disorders arise due to 
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change in underlying structural or functional schema [Anderson and Cohen, 2013; Rish et al., 
2013; van den Heuvel and Hulshoff Pol, 2010]. One powerful approach to examine these 
connected regions based on activity correlations between the regions of the brain is functional 
Magnetic Resonance Imaging (fMRI) [K J Friston, Jezzard, and Turner, 1994; Karl J. Friston, 1994]. 
Using Blood Oxygen Level Dependent (BOLD) data from fMRI imaging provides an indirect 
measure of brain activity. The functional organization of brain could be understood by studying 
temporally correlated activity between brain regions. Resting state functional MRI (R-fMRI) is a 
relatively new and powerful method for evaluating regional interactions that occur when a 
subject is not performing an explicit task. The spatial patterns of R-fMRI correlations are stable, 
i.e. -open, eyes-closed, and fixation, 
and also across individuals and sessions [Biswal et al., 2010; Fox, 2010]. Hence R-fMRI can be 
utilized for comparison between individuals for detecting variations in activity over time, which 
may help in diagnosis or study of progression of a neuropathology. 

 
In this thesis we investigated structural and functional networks of the brain. For the 

study of structural networks we have considered neuronal network of C. elegans (Chapter 4  
Chapter 7); whereas R-fMRI data from humans was used to analyze functional brain networks 
for finding graph theoretical markers of schizophrenia (Chapter 8). 
 
 
2.3 NETWORK MOTIFS 

Real-world networks are known to be characterized with global properties such as small 
world nature, by virtue of compactness and high clustering [Dehmer, 2011; Ravasz and Barabási, 
2003; Watts and Strogatz, 1998]. They are also known to have scale free distribution of 
connectivity with presence of hubs [Albert and Barabasi, 2002]. Neuronal networks tend to follow 
these broad topological features, while presenting with some exceptions [Biswal et al., 2010; He, 
Chen, and Evans, 2007; Towlson et al., 2013]. For grasping the functional specifics, it is necessary 
to look beyond these global properties [Alon, 2007b; R Milo et al., 2002; Sporns and Kötter, 2004].  

 
Nervous systems are integrated devices made up of several neurons. Neurons have 

pronounced tendency to make synaptic connections within the local neighborhood [Beth L Chen, 
Hall, and Chklovskii, 2006; Gushchin and Tang, 2015]. This results in high clustering and 
formation of circuits with unique pattern of connectivity, the sub-structures. Some sub-structures 
are known to be over-represented in real-world networks compared to their random 
counterparts, and are referred as motifs [R Milo et al., 2002]. Presence of local patterns was 
observed in one of the early studies while construction of neuronal wiring diagram of C. elegans 
[White et al., 1985].  In a pioneering study by Milo et al., and subsequent investigations, have 
reported overabundance of certain three and four node motifs (Figure 2.2) [Beth L Chen et al., 
2006; R. Milo et al., 2004; R Milo et al., 2002; Reigl, Alon, and Chklovskii, 2004]. 

 
In biological systems, such as metabolic and gene regulatory networks, motifs are known 

to contribute to biological functions [Alon, 2007b; Mangan and Alon, 2003].  However, the 
relevance of motifs in brain networks is under constant interrogation. The biological relevance of 
neuronal motifs could be understood by considering examples of evolutionary forces. Animals 
need to appropriately respond to different situations. For example, they need to move their body 
when they sense food, and move away in the presence of danger. Thus, the animal needs to 
continuously monitor and assess its environment so as to suitably respond to external stimuli.  
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Figure 2.2 : Different network motifs prevalent in biological systems. The feed-forward loop, bi-fan and biparallel 
are over-represented, whereas feedback loop is under-represented in gene regulatory networks and neuronal 
connectivity networks [R Milo et al., 2002]. Figure adapted from [Tran et al., 2013].

Neuronal network form the underlying information processing system that process the 
external stimuli as well as respond to it. Sensory neurons capture the signals in the form of action 
potential and learn by strengthening/weakening of neuronal pathways (synaptic plasticity). This 
gives rise to topological patterns in structural connections (motifs) [Beth L Chen et al., 2006; E.R. 
Kandel et al., 2000] Thus in principle, different classes of motifs can support different modes of 
information processing and their distribution can be of adaptive value [Ron Milo, Itzkovitz, 
Kashtan, Levitt, and Alon, 2004]. It has also been suggested that motifs facilitate synchronization 
in networks Fischer, 2008; Vicente, Gollo, Mirasso, 
Fischer, and Pipa, 2008]. In this thesis we studied the role of synaptic plasticity in modulating 
Feed Forward Motifs in C. elegans neuronal network which renders robust control response to the 
network.

2.4 STRUCTURAL CONTROLLABILITY
Structural controllability is an engineering concept from control theory which deals with 

nature of control in a networked system and aims to identify points of interventions through 
which the system could be controlled to achieve a desired state. A network is said to be 
controllable if it can be driven from any initial state to a desired final state by providing suitable 
inputs in finite amount of time [Lin, 1974]. This implies that a dynamical system could be nudged 
into some of its plausible configurations (states) through external inputs. As a simple example 
let s consider a linear time-invariant system with state , state matrix and input matrix , such 
that the state at time with input signal can be represented as:

(2.1)
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is the state of the system at time . The matrix describes adjacency 
matrix. is a matrix that depicts nodes controlled with an input signal 

. The state of such a system is proven to be controllable if and only if the
matrix possesses full rank. 

The concept of the structural controllability was first introduced by Lin (1974), which was 
independently extended by Shields and Pearson (1976) as well as Glover and Silverman (1976) 
[Glover and Silverman, 1976; Lin, 1974; Shields and Pearson, 1976]. The necessary conditions for 
a linear time invariant system to be structurally controllable include the requirement that the 
system is spanned by cacti structure, and is devoid of dilations as well as inaccessible nodes. 
These have clear graph theoretical interpretations as illustrated in Figure 2.3. In graph 
vertex is said to be inaccessible if there exists no direct path from the origin. The graph 
contains a dilation if there is a subset having neighborhood set which is defined as a 
set of all vertices containing an edge impinging on a vertex in i.e. 

. The origins are not allowed to belong to S but may belong to . or is 
the cardinality of set or , respectively.

Figure 2.3 : Illustrations explaining structural control in graphs. (a) Structurally controllable cacti structure where 
the driver node is represented in red. (b) Presence of dilations and inaccessible nodes makes the network 
structurally uncontrollable.

The benefit of cacti structure is that it lacks dilations and inaccessible nodes, thus making 
a network controllable through an external input given to a small subset of nodes. These set of 
nodes capable of driving the state of the network are called as driver nodes [Y.-Y. Liu, Slotine, 
and Barabási, 2011]. These nodes have property of being downstream of a node which is 
necessary condition for being controllable [Lombardi and Hörnquist, 2007]. Using graph theory, 
structural control theory, and statistical physics, it has been shown that minimum number of 
inputs required to maintain full control over the network can be determined

[Y.-Y. Liu et al., 2011]. Matching is a subset of a graph where at least 
one edge is incident upon each node. Maximum matching set of edges can be defined as 
maximum number of links which share start or end nodes. These edges are referred to as matched 
edges. The nodes which are linked by unmatched edges form the minimum set of driver nodes. 
In an undirected graph matching, is an independent edge set which is without common nodes. 
A node is matched if it has a matching incident edge, otherwise it is unmatched. For a directed 
graph two edges are matching if both are not starting or ending in a common vertex. Similarly, a 
vertex is matched if it is pointed by a matching edge. Maximum matching is easier to implement 
in undirected networks. In directed networks the most efficient way to compute the minimum 
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set of driver nodes is by using a bipartite representation of graph with the help of classical 
Hopcroft-Karp algorithm. This algorithm runs with a worst case computational complexity of 

, where  is the number of nodes in the graph and  represents the number of edges 
[Hopcroft and Karp, 1973]. A matching with the maximum size is called a maximum matching . 
If all the vertices are matched then the matching will be called perfect  and it is referred as 
unique  if there exists only one type of matching set. In a perfect matching graph the minimum 

number of inputs needed for full control of the network is zero i.e. any node in the graph can act 
as a driver node. Otherwise, it is equal to the number of unmatched nodes. 

 
Identification of the number of unmatched nodes as defined by the Hopcroft-Karp 

algorithm is computationally inexpensive and is used widely. However it has certain 
shortcomings: (a) In directed networks this algorithm cannot tackle cycles of odd length. (b) The 
matching presented is ambiguous and is sensitive to the initiation point. 

 
Since the brain networks, studied in this thesis, are directed (and hence may contain cycles 

of odd length) and obtaining exact set of driver nodes is important for deriving biological 
interpretations, we implemented an algorithm which finds exact set of driver nodes. In 1990, 
Pothen and Fan presented a two-step algorithm for finding an augmenting path to update the 
minimum set of driver nodes [Duff, Kaya, and Uçcar, 2011; Pothen and Fan, 1990]. Although 
finding augmented path makes its worst case computational complexity , this algorithm is 
still efficient compared to the brute force method which has a complexity of . 
 

Brain networks are particularly interesting from the perspective of control, as its 
underlying architecture predisposes certain components to specific control actions [Gu et al., 
2015; E. Tang and Bassett, 2017; Y. Tang, Gao, Zou, and Kurths, 2012]. Brain is a system of neurons 
and neuronal ensembles or regions (nodes) that are interlinked via anatomical bridges (edges). 
This underlying architecture of brain is responsible for its function, development, and disorders 
[Danielle S Bassett and Bullmore, 2009; E. Bullmore and Sporns, 2009; Cao et al., 2014; Weiss et 
al., 2011]. The theory of structural controllability in brain networks utilizes the fact that network 
controllability might be a mechanism of cognitive control. Specific nodes (neurons) at critical 
locations within this anatomical network can act as drivers, inducing it into specific modes of 
action (cognitive functions) [Gu et al., 2015].  
 
 
2.5 STRUCTURAL BALANCE 
 The dynamics of complex networks is often determined by nature of connections, other 
than the patterns in connectivity. For example the stability of social networks depends on the 
positive/negative relations shared by individuals. This was demonstrated by Granovetter to 
provide interesting insights into strong and weak ties in social networks [Granovetter, 1973]. The 
variability of edge strengths is also observed in neuronal networks by virtue of dynamic nature 
of synaptic strengths [Abbott and Nelson, 2000]. Cartwright and Harary have studied dynamics 
of social networks by considering friendly and antagonistic relationships to explore the 
frustration in the network (Figure 2.4) [Cartwright and Harary, 1956; Harary, 1953]. These studies 
form the foundation of an area that focuses on structural balance in the network as an emergent 
property arising out of cross talks among its elements.  
 
 Structural balance connects the local and global properties of the network. The principles 
underlying the concept of structural balance are based on theories in social psychology dating 
back to the work of Heider in 1940s [Heider, 1946]. This was generalized and extended to the field 
of network science in 1950s by Cartwright and Harary [Cartwright and Harary, 1956; Harary, 
1953]. Since then the study of structural balance has grown into an important discipline in 
network science. Research looking at the dynamics of structural balance seeking evolution over 
time has produced models of social evolution via reassessin [Antal, 
Krapivsky, and Redner, 2005; Marvel, Strogatz, and Kleinberg, 2009]. Emerging from the analysis 
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of relationships among individuals, research in political science has shown that during 
international crises structural balance among nations can provide a good rational for their actions 
[Moore, 1978]. Based on analysis of plethora of data coming from online social networks, it has 
been suggested that the dichotomy of trust/distrust in online ratings has similarities with 
dichotomy in structural balance [Guha, Kumar, Raghavan, and Tomkins, 2004; Kunegis, 
Lommatzsch, and Bauckhage, 2009].

Figure 2.4 : The labelled four node complete graph. Red edges represent animosity and green edges represent 
positive relationship. Figure adapted from Chapter 5 [Easley and Kleinberg, 2010].

Analogous to the idea of relationships, neurons are known to have cross talk with each 
other via electrical and chemical synapses. These synapses can be excitatory or inhibitory in 
nature [Strata and Harvey, 1999]. The synaptic connections are plastic in response to external 
stimuli. At the same time, internal dynamics also contributes to this plasticity of nervous systems. 
Hence, we borrowed the concept of structural balance for its application in C. elegans neuronal 
network. Apart from investigating the nature of structural balance in this network, we also 
developed a metric to quantify the extent of structural balance. Our analysis has led to interesting 
insights into the nature of excitatory and inhibitory subgraphs of CeNN (Chapter 7).

2.6 BRAIN FUNCTIONAL NETWORKS
Structural connectivity in itself is not sufficient to explain the operations of brain. Complex 

emergent properties of brain function are not apparent from its wiring diagram alone. This is 
because wiring alone does not account for the physiology of neuronal interactions responsible for 
the repertoire of task-dependent neuronal responses. These details can be captured by examining 
the functional connectivity among remotely located brain areas [K. J. Friston, Frith, Liddle, and 
Frackowiak, 1993; K J Friston et al., 1994; Karl J. Friston, 1994; Park and Friston, 2013]. Functional 
connectivity, which records time series along with neuronal activity, can be extracted with 
various techniques such as cellular recordings, electro encephalon graph, magneto encephalon 
graph, positron emission tomography, and functional magnetic resonance imaging. 
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Figure 2.5 : Temporal and spatial resolution of different brain imaging techniques. Figure adapted from [Meyer-
Lindenberg, 2010]

Unlike its structural counterpart, functional connectivity is highly time dependent and 
can change on the scale of hundreds of a millisecond (Figure 2.5). It is also dependent upon the 
surrounding and task. A balance of spatial and temporal resolution is required to extract the 
functional connectivity of the brain. Functional magnetic resonance imaging (fMRI) provides 
such a balanced representation of brain activity. fMRI relies on the assumption that brain 
functions depend on recruitment and coordinated interaction among different regions. The 
temporal dynamics causes hemodynamic response functions which in turn has its origin in blood 
oxygen level dependent changes (BOLD) that are associated with neuronal activity in the brain 
[Gore, 2003] (Figure 2.6).

Figure 2.6 : 
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A general framework for capturing deviations from statistical independence involves 
following steps: Pre-processing, Component extraction, Finding correlations and Creating 
networks. fMRI signals can be utilized for construction of brain functional networks which  can 
be analysed to extract graph theoretical features which are further exploited for disease diagnosis 
[E. Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; van den Heuvel and Hulshoff Pol, 
2010]. Techniques such as multivariate classification and deep learning can be used in conjunction 
with functional brain network analysis for clinical diagnosis of neuropathologies such as 
schizophren [Demirci et al., 2008; Sarraf and Tofighi, 2016; 
Sundermann, Herr, Schwindt, and Pfleiderer, 2014]. Based on empirical data of functional activity 
from patients and healthy subjects, we implemented construction and analysis of brain functional 
networks towards identification of network features useful as markers of schizophrenia (Chapter 
8).  
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