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A distance constrained synaptic plasticity model of C. 

elegans neuronal network 
 
 
 

 
The quest for understanding broad structural organization, functional building blocks and 

mechanisms of control of nervous systems has been central to neuroscience [E.R. Kandel et al., 
2000]. Vast knowledge of cellular and molecular mechanisms garnered through reductionist 
studies over decades, while enriching our understanding of brain mechanisms, have highlighted 
the need for holistic perspective of neural architecture [Rubinov and Sporns, 2010]. This urge to 
delve into systems properties has propelled efforts into connectome projects that attempt to map 
and model neural wirings to the finest detail possible [Chiang et al., 2011; Sporns, 2013b; White 
et al., 1986; Zingg et al., 2014]. C. elegans connectome is the only complete neuronal wiring 
diagram available till date [Beth L Chen et al., 2006; Towlson et al., 2013; White et al., 1986]. Along 
with the rich understanding available on the biology of this model organism [Altun, Z.F., 
Herndon, L.A., Crocker, C., Wolkow, C.A., Lints, R. and Hall, 2016; Howe et al., 2016], its 
connectome presents an opportunity to learn basic governing principles that drive structure and 
function of neuronal architecture. 

 
Despite its apparently simple nervous system, C. elegans is known to possess complex 

functions associated to sensation, movement, conditioning and memory [Ardiel and Rankin, 
2010; Chatterjee and Sinha, 2008]. This multi-cellular nematode has been extensively investigated 
to understand neural mechanisms involved in response to chemicals, temperature, mechanical 
stimulation as well as mating and egg laying behaviors [Chatterjee and Sinha, 2008; Hobert, 2003]. 
These biological functions have neuronal basis and are a reflection of emergent properties of 
signal dynamics over the network. Its nervous system has evolved to confer evolutionary benefits 
under constant tinkering and is known to undergo synaptic rewiring during the course of its life 
[Eric R Kandel et al., 2014]. Beyond the broad evolutionary architecture, synaptic plasticity offers 
additional adaptive advantage to respond to the environment and perhaps to achieve better 
functional efficiency. The key role of distance constraint in shaping the architecture of complex 
networks has been well studied and highlighted [Amaral, Scala, Barthelemy, and Stanley, 2000; 
Avena-Koenigsberger, Goñi, Solé, and Sporns, 2015; Barthélemy, 2011]. 

 
The C. elegans neuronal system could be modelled as a network and studied for structural 

properties of its neuronal architecture as well as for network dynamics (Figure 5.1). The C. elegans 
neuronal network (CeNN) has been mapped to a high resolution with details of its neurons, their 
locations and synaptic connectivity [Choe et al., 2004]. The network, comprising of 277 neurons 
that are interlinked with 2105 synapses, has been studied for its broad structural features as well 
as towards identification of motifs that potentially contribute to the dynamics over the network. 
Using graph theoretical measures, CeNN has been observed to have a small world architecture 
with small path length and high clustering [Watts and Strogatz, 1998]. This has been proposed to 
be due to processes that leave the network critically poised between absolute order and extreme 
randomness. The small world nature may render this neural network (as well as other neuronal 
systems) efficient for information dynamics. When probing for network sub-structures that could 
form the building block of the CeNN, Milo et al. identified feed forward motifs (FFMs) to be 
significantly over-represented [R Milo et al., 2002]. Such structural building blocks have been 
suggested to be of functional relevance to biological systems (in addition to other networked 
systems). How exactly such building blocks may offer functional advantage to networked 
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systems and whether these entities have evolved to optimize the building blocks is not clearly 
understood yet. 

 

 
 

Figure 5.1 : Network structure of C. elegans nervous system. Functionally relevant driver neurons (34 nodes 
highlighted in white) were identified with maximum matching criterion. Beyond explaining the small world 
nature, saturation of feed forward motifs and observed number driver neurons, the distance constrained 
synaptic plasticity model accurately identifies specific driver neurons. 
 

Control systems approach to complex networks provides a better perspective of dynamics 
[Y.-Y. Liu et al., 2011]. Neuronal architecture of 

CeNN forms an important underlying framework which specifies phenotypic features of C. 
elegans. Important behavioral traits as well as cognitive processes (such as movement, sensation, 
egg laying, mechanoception, chemosensation and memory) are known to have neuronal basis. A 
network is said to be controllable if it can be reached to a desired state from any initial state by 
providing inputs to certain nodes [Lin, 1974; Y.-Y. Liu et al., 2011]. The set of nodes that facilitate 
such a control are named driver nodes [Y.-Y. Liu et al., 2011]. 

 
By studying genotypic and phenotypic aspects of CeNN, in our earlier study (Chapter 4) 

reproduction, signaling processes and anatomical structural development [Badhwar and Bagler, 
2015]. Interestingly, randomized controls have no driver neurons as compared to CeNN which 
presents a sizeable number of driver neurons that are crucial for its control. While earlier studies 
have shown connectivity of neurons in CeNN partially explains the observed number of driver 
neurons [Y.-Y. Liu et al., 2011], no model has so far been developed that accounts for its small 
world architecture, over-representation of FFMs as well as controllability. 

 
In this study, we create one-dimensional (1D) and two-dimensional (2D) network models 

of C. elegans neuronal system to investigate the role of FFMs as building blocks in conferring 
controllability and small world nature. With the help of a simple 1D ring model we show such a 
network is critically poised for the number of FFMs, neuronal clustering and characteristic path-
length in response to synaptic rewiring, indicating optimal rewiring. We found that synaptic 
connections between neurons are characterized with a strong distance constraint in CeNN. Using 
this as a guiding principle, we created a distance constrained synaptic plasticity model that 
simultaneously explains small world nature, FFM saturation and controllability of the network. 
This model accounted for the observed number of driver neurons and also accurately identified 
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specific driver neurons. Thus this model presents realistic process of distance constrained 
synaptic plasticity as a plausible basis of nature of functional sub-structures and controllability 
observed in CeNN.

5.1 TOPOLOGICAL PROPERTIES OF C. elegans NEURONAL NETWORK
The C. elegans neuronal network was modeled as interconnections among 277 somatic 

neurons via 2105 electrical and chemical synapses (For more details, please see Chapter 3). A 
typical neuron in CeNN had on an average 7.59 synaptic connections. Starting with CeNN, we 
studied its topological properties that provide insights into its structure and function [Albert and 
Barabasi, 2002; Dorogovtsev, 2014]. Consistent with previous reports, we observed that C. elegans
neuronal network is a small world network by virtue of high clustering coefficient and 
comparable characteristic path length , with respect to its randomized counterpart 

(Table 3.1) [Watts and Strogatz, 1998]. Beyond these global 
topological features, CeNN is known to be over represented with feed forward motifs [R Milo et 
al., 2002] that are functionally associated with mechanisms of memory [Mozzachiodi and Byrne, 
2010]. We observed that, FFMs were significantly overrepresented in CeNN
as compared to those in corresponding random graphs. In CeNN, feed forward motifs are most 
prevalent among all unidirectional motifs as shown in Figure 5.2.

Table 5.1 : Topological properties of CeNN and its controls.

CeNN ER DD

0.172 0.028±0.001 0.067±0.003

4.018 2.97±0.01 2.981±0.018

34 0.28±0.514 22.38±1.153

3776 438.3±22.1 1699.6±57.5

Figure 5.2 : Statistics for unidirectional three node motifs depicting over-representation of feed forward motifs. 
The Z-Score was computed in comparison to 100 instances of random controls (ER) of CeNN.
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From control systems perspective CeNN can be controlled through a small set of driver 
neurons (34) to any desired state in finite time [Y.-Y. Liu et al., 2011]. The number of driver 
neurons in CeNN is significantly higher in comparison to its random counterpart. As described 
in Chapter 4, driver neurons in CeNN are genotypically and phenotypically associated with 
biological functions such as reproduction and maintenance of cellular processes [Badhwar and 
Bagler, 2015]. This alludes to the fact that driver neurons serve a critical role in the neuronal 
architecture of C. elegans and the number of driver neurons therefore has functional bearing on 
its control. 
 

Table 5.1 depicts topological features of CeNN that are potentially critical for specifying 
its function. Other than the small world nature, evident from high clustering among neurons, the 
CeNN is characterized with significantly higher number of driver nodes as well as number of 
feed forward motifs. While connectivity/degree of neurons (DD) partially explains the increase 
in FFMs as well as that in , at the same time it cannot account for observed clustering. No 
comprehensive model that can explain all of these functionally relevant features is hitherto 
known. 

 
 
5.2 1D RING MODEL OF CeNN 

We constructed a ring graph model of CeNN so as to maximise the number of FFMs while 
preserving the number of neurons  as well as average neuronal connectivity  of CeNN (Figure 
5.3). While the core idea and strategy implemented in this model is analogous to that of Watts 
and Strogatz's [Watts and Strogatz, 1998], it is extended to represent directed edges (synapses), 
and hence naturally accommodates network motifs and controllability analysis. Starting with 

 nodes arranged in a circular manner, every node was connected (in anti-clockwise sense) to 
its next nearest neighbour with a directed edge. The procedure was repeated to connect every 
node with its nearest neighbour and the next nearest neighbour until the out-degree of every 
node matched with that of average out-degree of CeNN . This strategy maximises 
the number of FFMs to  in the regular graph model of CeNN and represents an 
asymptotic version saturated with FFMs. 
 

 
 
Figure 5.3 : The 1D ring model, with neurons linked for maximizing number of feed forward motifs, was rewired 
with increasing probability of synaptic rewiring. Starting with an asymptotic model (with 277 nodes and 8 out-
going edges) saturated with FFMs, synaptic rewiring was emulated with probability . The model exhibits a 
spectrum of topological variations between extreme regularity and randomness. The figure shows an illustration 
for 10 nodes and 2 outgoing edges. See Figure C.1 of Annexure C for another illustration with larger network size. 
 

Starting from such a regular ring graph maximally saturated with 7756 FFMs, we 
simulated random synaptic rewiring to observe its effect on topological features. We rewired 
every edge in this network with -going edge 
connecting a node to its nearest neighbor was chosen and rewired randomly with probability  
by ensuring that there were no duplicate edges or self-edges and that the network is always 
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connected. In the second lap, the process was repeated for the edges made with next-nearest 
neighbors and so on. All edges are thus exhaustively considered for rewiring in  laps. For every 
probability of rewiring 1000 instances of graphs were created for a range of  to . 
Topological properties  and  were computed for every instance of graph thus 
generated. 
 

In addition to FFM saturation, the regular graph had very high average clustering 
coefficient  as well as characteristic path-length . From an analogous 
undirected Watts and Strogatz model it was anticipated that with increase in synaptic rewiring 
the clustering as well as path-length would decrease to approach that of random graph 
asymptotically [Watts and Strogatz, 1998]. This simulation of synaptic rewiring was also expected 
to provide insights into its impact on number of FFMs and driver neurons. As shown in the Figure 
5.4, with increasing probability of synaptic rewiring the number of FFMs is unaffected up to 

 before falling sharply. While this result points at a critical threshold for number of FFMs in 
response to probability of synaptic rewiring, no driver neurons were presented by the model 
across the simulation . For 1D ring graph, these results highlight a critical 
threshold of rewiring for which the network has optimum saturation of FFMs. Such a simple 
model can only provide topological insights devoid of biological basis. Search for a more realistic 
model prompted us to look for biological constraints that may dictate synaptic rewiring as well 
as to build a 2D model that could possibly reveal mechanisms that render observed controllability 
in CeNN. 
 

 
 
Figure 5.4 : Response of 1D ring model with changing probability of synaptic rewiring was measured in terms of 
average clustering coefficient , characteristic path-length ,  number of FFMs  and number of driver 
nodes . For intermediate values of , the model exhibits small world phenomenon as well as FFM saturation, 
but cannot account for controllability . All parameters were normalized with respect to the initial 
ring graph . Error bars represent standard deviation over 100 instances. Please see Figure C.2, Figure C.3 
and Figure C.4 in Annexure C for non-normalized data. 
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5.3 CeNN FOLLOWS DISTANCE CONSTRAINED SYNAPTIC CONNECTIVITY PATTERN
We measured the connectivity pattern in CeNN by enumerating number of neuron pairs 

that are synaptically connected and Cartesian distance between them. We observed that the 
synaptic connections were constrained by distance as evident from the power law observed from 
neuronal connectivity data Figure 5.5. The probability of two neurons being connected scales as 
a power law , with presence of a few exceptional long distance connections with an 
exponent . The power law nature of data was established following 
the strategy prescribed by Clauset et al. [Clauset et al., 2009].

Figure 5.5 : Empirical distance constrained synaptic connectivity pattern observed in C. elegans neuronal wiring. 
The number of synapses that connect neurons at distance follows a power law pattern with an exponent of 

[Clauset et al., 2009].

To incorporate this empirical distance constrained connectivity pattern, we created more 
realistic 2D models: (1) Distance constrained random (DCR) model that adds distance constraint 
starting from ER control, and (2) Distance constrained plasticity (DCP) model that overlays the 
distance constraint starting from the DD control. Along with the ER and DD random controls 
these models allow us to segregate the contribution of degree (connectivity) vis-à-vis distance 
constrained synaptic wiring towards conferring observed topological features upon CeNN.

5.4 DISTANCE CONSTRAINED MODELS OF CeNN
We created 2D distance constrained models that, similar to distance constraint observed 

in CeNN, follow a restraint on synaptic connectivity based on distance between two neurons. 
These 2D models are based on positional data of C. elegans neurons, that have been mapped to a 
high resolution [Choe et al., 2004]. In these models, the probability that two neurons at a 
distance are connected with a synapse approximately follows a power law pattern observed 
from empirical data (Eq.(5.1)).

(5.1)
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The distance constraint is modulated by the exponent . Here, the distance between 
neurons  and , , was calculated as the Euclidean distance (Eq.(5.2)). 
 

       (5.2) 

 
The power law nature of neuronal connectivity was established following the recipe suggested 
by Clauset et al. [Clauset et al., 2009]. 
 
 We created two models of CeNN based on the distance constraint: Distance constrained 
random (DCR) and Distance constrained synaptic plasticity (DCP). 
 
5.4.1 Distance constrained random (DCR) model 

The underlying framework for DCR model is that of ER control. Starting with ER 
(random) control, we rewired every edge to impose distance constraint for specific exponent . 
Statistics of topological parameters were computed over 100 instances. Response of DCR model 
was observed by varying the value of exponent between . 
 
5.4.2 Distance constrained synaptic plasticity (DCP) model 

In contrast to DCR model, the underlying framework for DCP model is that of DD control 
which preserves the synaptic connectivity of each neuron. Starting with DD control, every edge 
was rewired to impose distance constraint for specific exponent  and statistics of 
topological parameters were computed over 100 instances. 
 
5.4.3 Cartesian graph model of CeNN 

The deterministic Cartesian graph model of CeNN was created by ensuring that every 
neuron is connected to its spatially nearest neurons. Beginning with 277 neurons placed at 
Cartesian coordinates matching their observed position in the nervous system of C. elegans [Choe 
et al., 2004], every neuron was connected to 8 spatially nearest neurons. This model reflects 
preferential deterministic connections made by a neuron based on its distance from another 
neuron. 
 
 
5.5 RESULTS 
 
5.5.1 Distance constrained random model 

The distance constrained random model is a 2D model in which the number of neurons, 
number of synapses and neuronal locations were preserved. Starting from initial random 
connectivity (ER) every synapse was probabilistically rewired to follow distance constraint with 
a certain  Figure 5.6. The lower asymptotic limit of this model converges to ER model for . 
With increasing  the probability of long distance synaptic connections decreases. For extremely 
large values of  this model converges to the Cartesian model in which every neuron is 
deterministically connected to its spatially nearest neighbors. We varied the value of  between 
0 and 3 to assess its impact on the topology of neural network. We found that the average 
clustering coefficient, characteristic path-length and number of FFMs monotonously increase 
with increasing . For these parameters the DCR model was closest to actual neuronal network 
of C. elegans for . While this model took us closer to CeNN, it did not reflect controllability 
measured in terms of . The driver neurons vanish for asymptotic limits of  with maximum 

 for . The fact that DD control, in which number of synapses of every neuron is 
preserved, matches with CeNN better in controllability (Table 5.1) prompted us to create a more 

distance constr . 
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Figure 5.6 : Response of distance constrained models of CeNN (DCR and DCP) with increasing constraint  
measured in terms of (a) average clustering coefficient , (b) characteristic path-length ,  (c) number of 
FFMs , and (d) number of driver nodes . The lower the  more heterogenous are the synaptic lengths 
(larger proportion of long range synapses). For , DCR and DCP models converge to ER and DD controls, 
respectively. For asymptotic limits of  both the models converge to the Cartesian model, a regular model 
with saturation of FFMs coupled with high clustering but devoid of driver nodes. While the small world nature 
(reflected in high clustering and low path-length) and FFM saturation is realized by both DCR and DCP models, 
DCP model stands out in reproducing all key features of CeNN for  (highlighted with gray 
background). Please see Figure C.5, Table C.6 and Table C.7 of Annexure C for data associated with this figure. 
 
5.5.2 Distance constrained synaptic plasticity model 

The distance constrained synaptic plasticity (DCP) model preserves the number of 
synapses of every neuron over and above the number of neurons and their locations. While 
following the distance constraint, this model mimics synaptic rewiring that is known to take place 
in CeNN [Eric R Kandel et al., 2014; Shen and Bargmann, 2003]. We observed the response of 
topological features for varying extent of distance constraint  (Figure 5.6). In addition 
to the clustering and characteristic path-length, interestingly, this model successfully realised 
number of FFMs as well as number of driver neurons. We found that for an intermediate distance 
constraint of  this model is closest to CeNN in reproducing number of driver neurons that 
are critical for control of the network (Figure 5.6(d)). This model presents a range of distance 
constraint parameter  for which the small world nature as well as functionally 
relevant features of regulatory motifs and controllability were realistically exhibited. The number 
of driver nodes in DCP model was always higher than those returned by DCR model. For  
i.e. in the presence of strong distance constraint, DCP model returned significantly high number 
of driver nodes higher than maximally displayed by DCR model. This points at the role of long 
distance synaptic connections in conferring observed nature of control in CeNN. 
 
5.5.3 Identification of specific driver neurons 

We obtained the set of specific driver neurons using maximum matching algorithm 
[Pothen and Fan, 1990]. The success of DCR, DCP models in accurate identification of driver 
neurons was measured with the help of . Using the driver neurons set identified from 
the CeNN (34) as the basis (Details of driver neurons is provided in Table C.8 of Annexure C), we 
identified true positives  and true negatives  (neurons that are correctly classified) as 
well as false positives  and false negatives  (neurons that were incorrectly marked as 
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driver neurons, and neurons that were incorrectly marked as non-driver neurons, respectively) 
for DCR and DCP models across 100 instances. The , which is used for computing the 
quality of binary classification is defined as Eq.(5.3). 
 

         (5.3) 

 
While the DCP model successfully reproduces key topological features important for 

function and control of CeNN (Figure 5.6), the question is whether it can also capture specific 
neurons implicated in control of the network and not just the number of driver neurons (Figure 
3.5(d)). We compared specific neurons identified by the minimum driver neurons set obtained 
from real-world CeNN with that obtained from distance constraint models, for varying extent of 
distance constraint (Figure 5.7). Neurons that were consistently identified as driver neurons over 
100 random instances of DCP and DCR models were distilled (True Positives). The classification 
accuracy of these models was assessed using . Interestingly, we found that the 
performance of DCP model was significantly better compared to DCR model (the accuracy of 
which was indistinguishable from that obtained from random sampling) and superior to DD 
control in the presence of dominant long distance connections . Thus DCP model is not 
only closer to real-world network in terms of number of driver nodes but also accurately 
identified specific neurons that can drive the network dynamics. In summary, the DCP model, 
that embeds empirically observed phenomenon of neuronal rewiring in addition to fixed 
neuronal connectivity, successfully recreates topological features of functional relevance to C. 
elegans. 
 

 
 
Figure 5.7 : Accuracy of identification of specific driver neurons with changing distance constraint exponent. The 
DCR model, with random synaptic connectivity pattern, fared poorly. The performance of DCP model was 
consistently better than that of the DCR model indicating the critical role played by the distance constraint in 
specifying the control of the neuronal network. For optimum distance constraint  DCP model provides 
the best match with the reality , better than what could be accounted for by only neuronal 
connectivity (DD control; indicated with a dashed line). The spectrum of distance constraint regime for which 
DCP model is closest to CeNN  is highlighted with gray background. 
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5.6 DISCUSSION 
 Brain research has been driven by inquiry for principles of brain structure organization 
and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome 
available till date, presents an incredible opportunity to learn basic governing principles that 
drive structure and function of its neuronal architecture. Despite its apparently simple nervous 
system, C. elegans is known to possess complex functions. The neuronal architecture forms an 
important underlying framework which specifies phenotypic features associated to sensation, 
movement, conditioning and memory [Ardiel and Rankin, 2010]. CeNN seemingly has evolved 
as a small world network with high clustering and low characteristic path-length for functional 
benefits [Watts and Strogatz, 1998]. Other than the small world global architecture CeNN is 
reported to be enriched with number of feed forward motifs among all possible three and four 
node motifs [R Milo et al., 2002]. Our results suggest that the heterogeneous composition of motifs 
dictated by FFMs contributes to increased clustering as well as control of the network. 
 
 Analysis of neuronal architecture of CeNN has revealed that the network is optimally 
wired [Beth L Chen et al., 2006; Pérez-Escudero and de Polavieja, 2007] and is dictated by 
constraints [Itzhack and Louzoun, 2010; Pan, Chatterjee, and Sinha, 2010; Towlson et al., 2013]. 
Till date a few simple null models of CeNN have been implemented with network feature 
constraints [Erdös, P., 1984; Maslov and Sneppen, 2002]. These studies suggest that neuronal 
connectivity plays a key role in rendering clustering as well as presentation of as many driver 
neurons as observed in CeNN [Y.-Y. Liu et al., 2011; Maslov and Sneppen, 2002]. None of these 
models has been able to explain all network features, especially clustering and number of driver 
neurons, claimed to be of biological relevance [Badhwar and Bagler, 2015; Y.-Y. Liu et al., 2011]. 
 
 Here, we present a distance constrained synaptic plasticity model that accounts for high 
clustering, FFMs saturation and large number of driver nodes. With a 1D ring model maximized 
for feed forward motifs, we show that such a model exhibits critical phenomenon in response to 
increased probability of synaptic rewiring. While this simple model lends interesting insights into 
the mechanisms of CeNN architecture, it cannot capture the aspect of controllability. Rooted in 
empirical observation of distance constraint followed in neuronal connections, we built more 
realistic 2D distance constrained models with random connectivity (DCR) and degree preserved 
connectivity (DCP). The latter model, that mimics real-world C. elegans neuronal wiring and 
follows a distance constrained synaptic plasticity mechanism, comes closest to the CeNN in 
presenting small world architecture, dominance of FFMs and nature of controllability within a 
range of free variable . The DCP model also successfully captures specific driver neurons with 
impressive accuracy. Our results suggest that the extent of synaptic plasticity in CeNN is 
optimized so as to acquire key structural and dynamical network features. 
 
 Clearly, while the DCP model highlights the role of synaptic plasticity and distance 
constrained neuronal connectivity in specifying structural features and control architecture of 
CeNN, it is limited in many ways. The present study overlooks functional differences of synaptic 
links such as chemical synapses and gap junctions. Also, the strength of synaptic connections 
(edge weight) were ignored in these unweighted network models. Models that factor in such 
biologically relevant aspects, which are ignored in this study in favor of simplicity, may yield 
more enriched representations of CeNN. 
 
 
 

 
  


