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Network biomarkers of schizophrenia by graph theoretical 

investigations of Brain Functional Networks 
 
   

 
 
The state of the brain could be modeled in terms of its neuronal connectivity architecture 

as well as to represent patterns of activities on it. This is analogous to studying road networks of 
a city vis-à-vis measuring traffic dynamics over it. Both the approaches provide insights into the 
state of the system  characteristics of its conduits and architectural constraints. Towards the 
objectives of this thesis, we investigated the neuronal connectivity patterns of C. elegans, to 
identify and characterize its driver neurons (Chapter 4), to propose a model that reflects 
constraints in its synaptic connections (Chapter 5), to capture its robust control response (Chapter 
6), and to characterize structural balance as a collective property of its excitatory and inhibitory 
synapses (Chapter 7). Beyond investigating the nervous systems of a nematode, in this thesis, we 
modeled brain data from human subjects as networks of functional activities, to identify 
topological correlates that differentiate schizophrenic subjects from healthy controls.     

  
Neuronal disorders are known to have basis in abnormal brain functional activities. Brain 

imaging data have been used to investigate underlying structure and function of a healthy brain 
and also to pin down differences in functional activity under pathological conditions such as 

disorders, the need to identify patterns in functional activity has paved way for systems modeling 
of brain activity data and search for higher order features. 

 
Amongst several neuro-imaging techniques, fMRI has gained widespread popularity for 

scrutinizing brain activity, owing to its high spatial and temporal resolutions. The fMRI data is 
collected in terms of voxels where each voxel corresponds to hemodynamic response of the neural 
activity. This four-dimensional spatio-temporal fMRI data could be used to create systems-level 
models of brain activities using graph theoretic (complex networks) approach [Edward T 
Bullmore and Bassett, 2011; De Vico Fallani, Bassett, and Jiang, 2012; Fox, 2010]. 

 
Brain functional networks (BFNs) are graph theoretical models of functional activities that 

provide a systems perspective of complex functional connectivity within the brain. BFNs could 
be utilized to measure anatomical or functional connectivity between different brain regions and 
hence to probe network characteristics of functional connectivity under brain disorders with the 
help of graph theoretical metrics. There is a growing interest in application of BFN models for 
studying various cognitive states as well as pathological conditions and development of methods 
for the same. In the last decade, several advances have happened towards application of network 
theory for investigation of fMRI data [E. Bullmore and Sporns, 2009]. This approach has been 
used to understand the organization of brain at macro-level using BFN models [Fair et al., 2007, 
2009; Power, Fair, Schlaggar, and Petersen, 2010]. A variety of network modelling approaches 
have been implemented for this purpose [Goswami, Szucs, and Kaiser, 2011; Stephen M Smith et 
al., 2011]. These studies have provided insights into the systems architecture of the brain and 
have highlighted salient features such as presence of default mode network in resting state of 
brain [Greicius, Krasnow, Reiss, and Menon, 2003], small-world architecture [Achard et al., 2006; 
Danielle Smith Bassett and Bullmore, 2006], modularity and hierarchical organization [Meunier, 
Achard, Morcom, and Bullmore, 2009; Meunier et al., 2010; Zhou, Zemanová, Zamora, Hilgetag, 
and Kurths, 2006]. 
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Significant structural and functional neuronal abnormalities are known to happen under 
pathological conditions such as schizophrenia [Bluhm et al., 2007; Y. Liu et al., 2008; Yu, Sui, et 
al., 2011], autism [Kennedy and Courchesne, 2008; Monk et al., 2009]  [C J Stam, 
Jones, Nolte, Breakspear, and Scheltens, 2007]. There is an increased focus in finding potential 
network biomarkers for brain disorders. This will not only assist clinical diagnosis but could 
eventually help in early diagnosis and effective treatment at reduced cost. 

 
Schizophrenia, known for altered functional brain state, has been studied with the help of 

BFN models and machine learning techniques for its classification from healthy brain states. 
Anderson and Cohen classified schizophrenia patients from healthy under resting and tasked 
activities using distance matrices modeled from ICAs of fMRI scans with classification accuracies 
up to 90% [Anderson and Cohen, 2013]. Yang et al. demonstrated hybrid machine learning 
method using fMRI and genetic data of schizophrenic patients for their classification with high 
accuracy [Yang, Liu, Sui, Pearlson, and Calhoun, 2010]. Similar studies were performed using 
features extracted from default mode network and motor temporal ICA components employing 
two level feature detection technique [W. Du et al., 2012]. Using linear and non-linear 
discriminative methods, resting state functional connectivity features were examined for disease 
classification to achieve up to 96% accuracy using non-linear classifiers [Arbabshirani, Kiehl, 
Pearlson, and Calhoun, 2013]. Multiple kernel learning was further used by Castro et al. to modify 
the feature selection method thereby achieving improved accuracies [Castro, Arbabshirani, 
Castro, Calhoun, and Fellow, 2014]. Chyzhyk et al. used extreme learning machines to build a 
computer aided diagnostic system employing features derived from fMRI data [Chyzhyk, Savio, 
and Graña, 2015]. Beyond these key studies, many efforts have gone into application of machine 
learning techniques on fMRI derived brain network parameters for classification of schizophrenia 
with higher accuracy [Castro, Martinez-Ramon, Pearlson, Sui, and Calhoun, 2011; Y. Du et al., 
2015; Hayasaka et al., 2013; Pouyan and Shahamat, 2014; Savio and Graña, 2015; Silva et al., 2014]. 

 
In this study, we investigated BFNs constructed from fMRI data of schizophrenia subjects 

and healthy subjects so as to identify higher order topological features that characterize the 
disease. Starting with dataset provided by center for biomedical research excellence (COBRE), we 
constructed BFN models for their graph theoretical investigations. Towards identification of key 
distinguishing network features of schizophrenia, we exhaustively investigated 17 and 28 first 
order derived network features of binary (unweighted) and weighted BFNs, as well as their 
higher order tuples. We believe that features thus identified could be effectively used for semi-
automated diagnosis of schizophrenia, and may further be used for early detection protocol. 
 

 
8.1 CONSTRUCTION OF BRAIN FUNCTIONAL NETWORKS 

For investigating systems-level differences in brain activity of healthy subjects and pre-
diagnosed schizophrenic patients we used the COBRE dataset. This dataset, obtained from 
International Neuroimaging Data-Sharing Initiative under 1000 Functional Connectomes Project, 
comprised of fMRI data of 148 subjects. Out of which 74 were healthy subjects (controls) and 72 
were patients prediagnosed with schizophrenia and 2 subjects (0040070 and 0040083) were 
marked as disenrolled, with age groups ranging from 18 to 65 years in all classes. In initial steps 
of preprocessing, it was found that 2 subjects (0040075 and 0040126) had discrepancies in their 
data (time points 67-149 were not available and the data was of high frequency nature 
respectively) which led their removal from the subjects under study. With this, there were 70 
patients and 74 healthy controls. The patients were pre-diagnosed with schizophrenia based on 

DSM disorders. Echo-planar imaging was used for resting 
state fMRI data collection with (Repetition Time) TR=2s, (Echo Time) TE=29ms, matrix size: 

, slices = 32, voxel size= . 
 
The fMRI data is a 4-Dimensional metadata comprising of information from spatial and 

temporal dimensions of blood oxygen-level dependent activities under resting state of the brain. 
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We implemented a protocol to preprocess fMRI data as described in 1000 functional connectome 
project [Biswal et al., 2010]. To convert preprocessed raw fMRI data we decomposed 4-D data 
into spatial and time series components using ICA and creating functional graphs from the 
components by forming correlation matrix [Anderson and Cohen, 2013]. Finally we evaluated 
graph theoretical properties of brain functional networks, and analyzed it in combinations to find 
its role as diagnostic biomarkers for schizophrenia. 

 
8.1.1 Preprocessing 
 For construction of functional networks the COBRE data needs to be processed before 
further analysis. The preprocessing step is aimed at removal of artifacts and standardizing 
locations of brain regions across all subjects. As a first step of pre-processing, we performed 
deobliquing such that anatomical and time series data correspond to each other. The data is then 
oriented to match it to a reference master dataset making xyz grid coordinates similar in all the 
subjects. Motion correction was implemented for each subject by synchronizing signals recorded 
in each voxel across all slices. This step corrects any misrepresentation of data from individual 
voxels due to subject's head motion. The corrected recording from each voxel was obtained by 
shifting images from each slice with respect to the reference image. To eliminate extra tissue 
around the brain skull stripping was performed, this is done by expanding spherical surface to 
envelop the brain and exclude rest of the tissues. This step was then followed by smoothing and 
filtering steps, which include spatial smoothing and temporal filtering to remove high 
frequencies enhancing low frequencies. To reduce the noisy signals we used grand-mean scaling 
for normalising the data and applying band-pass filtering. The lowpass and highpass cut-off 
frequency was set to 0.1 Hz and 0.005 Hz respectively using fast Fourier transform of the data. To 
focus on fluctuations in the signal, removal of linear and quadratic trends was carried out. To 
identify potential area of interest masking of the preprocessed data was carried out. This brain 
data had to be registered in accordance with standard brain for which we used linear registration 
process. Segmentation was performed over the data to acquire information about grey matter, 
white matter and cerebro-spinal fluid in brain. Finally we applied nuisance signal regression to 
remove nuisance signal and noises thus obtaining filtered 4-D fMRI data for each subject. Pre-
processing steps were performed using packages from Analysis of Functional NeuroImages 
(AFNI) and fMRI Software Library (FSL) [Cox, 1996; S M Smith, Jenkinson, and Woolrich, 2004]. 
 
8.1.2 Independent Component Analysis (ICA) 

Extracting meaningful features from this high dimensional fMRI data is expected to 
reduce the redundancy and noise that is not removed at the pre-processing stage. Towards this 
end ICA was implemented to bring down the complexity of this high dimensional data to a 
manageable level [Biswal and Ulmer, 1995; McKeown, Hansen, and Sejnowsk, 2003]. The four 
dimensional space-time fMRI data was represented in terms of an array of dimension 

 such that the fMRI scan of time length  and space  can be represented by a linear combination 
of  components and corresponding time series:  where  represents raw 
scan intensity at time  and space point ,  is the amplitude of component  at time ,  is the 
magnitude of component  at space point  and  stands for total number of components. For 
the COBRE data the time points  in the signal were 150 and  and  were 64, 64 and 32, where 

 and  are number of points in two dimensional space and  is the slice number. 
 
In ICA, data is assumed to be a linear combination of signals and fMRI data complies with 

this assumption. Spatial ICA was employed to decompose fMRI data into a set of maximally 
spatially independent maps and their corresponding time-courses. These time-courses show 
considerable amount of time-dependencies between distinct functional activities captured in 
various components, indicating their potential for use in functional network connectivity 
analysis. The time-courses, which measure time-varying activity of components, were used for 
further analysis. These components represent spatially independent time-varying functional 
activities of the brain under resting state. The ICA of fMRI data was implemented using FSL. 
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8.1.3 Brain Functional Networks and enumeration of network parameters
Brain functional network is a complex networks model of brain where a node represents 

ICA
n functional 

activities were measured by finding correlations between them. Dependencies were computed 
using a correlation based distance metric that is a transformation of the maximal absolute cross-
correlation between two time-series. Correlations were calculated for each pair of nodes using 
cross-correlation function (CCF) over a range of temporal lags,

(8.1)

where, are time series of and components, is the temporal lag between them and 
varied from 0 to 3 points (total 6 seconds with an interval of 2 seconds).  The distance matrix 

was determined by subtracting maximal absolute CCF from Eq.(8.1) and is given 
by,

(8.2)

This distance signifies temporal similarity between two components; the higher the distance 
lesser the correlation. The distance matrix, thus calculated, represents the weighted brain 
functional network of a subject.

The weighted BFN was further pruned to remove weak connections on the basis of k-
nearest neighbor approach where k was chosen as 10% of total components of the subject or 2, 
whichever was maximum. This pruned BFN was used for computation of graph theoretical 
parameters. While the graph creation was implemented by R programming language [The R Core 
Team, 2012], computation of graph theoretical metric was done in MATLAB. Figure 8.1 shows 
the strategy implemented to obtain BFN of each subject and for its graph theoretical 
characterization.

Figure 8.1 : Strategy implemented for modeling 4-D fMRI data as brain functional network and its topological 
characterization.
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Binary BFNs were obtained by thresholding the weighted BFNs. The threshold was 
chosen on trial and error basis such that a single component network is maintained. Following 
network parameters were computed on both the binary as well as weighted BFNs for each subject: 
degree, edge density, node betweenness, edge betweenness, clustering coefficient, characteristic 
pathlength, efficiency, modularity, closeness, coreness, eccentricity and weak ties. This study was 
aimed at identification of network parameters that play crucial role in discriminating BFNs of 
schizophrenia subjects from those of controls. Towards this end we computed higher order 
statistics (mean, median and standard deviation) for the above mentioned network parameters. 
We obtained 28 and 17 such statistical features for weighted and binary BFNs, respectively. Table 
D.1 in Annexure D provides an exhaustive list of all network-derived features. 

 
8.1.4 Feature Classification 
 The BFNs were classified into schizophrenic and control subjects on the basis of the 
network features derived from weighted as well as binary BFNs. Support Vector Machine (SVM) 
was used as a classifier with radial basis function as its kernel function. When trained with 
features of BFNs along with their predefined classes, SVM can classify test cases of BFNs. The 
performance of SVM classification was assessed with 10-fold cross validation statistics. 
 

We investigated the feature set consisting of individual network features (of binary and 
weighted BFNs) as well as their combinations  (from 2 to 8, and from 2 to 6, respectively) with a 
total of 144 subjects. Combinations with more than 8 and 6 networks features were not only 
computationally challenging ( , where  is the number of features and 2 is the order of feature 
combination) but were also found to be redundant towards identification of optimal feature set 
in binary and weighted BFNs respectively. To identify topological features of BFNs with potential 
for accurate classification between schizophrenia and healthy subjects by an exhaustive search of 
network features and their higher combinations we did not exclude any feature. Investigation of 
each feature's contribution towards classification was carried out by enumerating the features 
appearance in best 100 accuracies within each feature combinations (2-8 in binary BFNs and 2-6 
weighted BFNs). 

 
 

8.2 RESULTS 
 
8.2.1 Brain Functional Networks 

Brain Functional Networks represent systems model of brain functional activities. Figure 
8.2 depicts detailed process used for creation of BFNs starting from raw fMRI data. The raw fMRI 
data was pre-processed to obtain a filtered fMRI signal which was further decomposed into 
spatially independent components to fetch time-series for each component using ICA. Using 
time-series data in components, correlation based normalized distance matrix was calculated. 
This matrix was transformed into weighted and binary adjacency matrices, which represent the 
network of independent components. These networks have  average number of 
nodes and  average number of edges between them, thus making graph theoretical 
properties comparable. Various graph theoretical properties of BFNs were further computed so 
as to generate a unique feature set to be used for classification (Table D.1 of Annexure D). These 
final features set comprised of combinations of one to eight features derived from binary and up 
to combinations of one to six features for weighted BFNs. The classification between healthy and 
schizophrenic subjects was performed with the help of these feature sets. 
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Figure 8.2 : Detailed procedure implemented for pre-processing of raw fMRI data, creation of brain functional 
network of independent components and its characterization using graph theoretical metrics. 
 
8.2.2 Topological biomarkers of schizophrenia 

Towards identification of topological biomarkers of schizophrenia, we investigated 
network features derived from BFNs of patients and healthy controls. Figure 8.3 illustrate 
differences between healthy and schizophrenic subjects with the help of distance matrices and 
weighted BFNs created in synchronization with a topological property (clustering coefficient). 
The differences that are almost indiscernible at the level of distance matrices, become more 
apparent when seen through the lens of topological features. 

 
First, a feature set using individual parameters was created. For weighted and binary 

BFNs 28 and 17 such parameters were independently trained and tested in the classifier. 
Motivated with the idea of creating a better feature set that could potentially enhance the ability 
to distinguish between correlations across the BFNs, we created combinations ranging from 2 to 
6 parameters for weighted and 2 to 8 parameters for binary BFNs. Interestingly, the classification 
performance for higher order feature combination was much better than that of individual 
features. We increased the order of combination until the accuracies were declining or the number 
of combinations become exponentially large. To identify the contribution of each feature in 
combinations, top 100 accuracies were fetched from each set and their individual contributions 
were calculated over all combinations. 
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Figure 8.3 : Normalized distance matrices and their corresponding weighted BFNs for a representative healthy 
control (40018) and schizophrenic patient (40009). In the distance matrices lighter gray colours represent lower 
distances thus higher correlation. The weighted BFNs with 30 components (nodes) show nodes sizes scaled to 

. The larger the node, higher is its clustering coefficient. The networks were visualized 
using Cytoscape 3.2.0 [Shannon et al., 2003]. 
 
8.2.3 Top contributing features in binary and weighted BFNs 

Among the 17 binary and 28 weighted BFNs features, the features whose combined 
contribution was more than 50% in classifying healthy and schizophrenic subjects are shown in 
Figure 8.4 for (a) binary and (b) weighted BFNs. Maximum matching index and maximum 
modularity were among the few topological features that contributed significantly to 
classification accuracy in binary and weighted networks respectively. Matching index quantifies 
similarity between two nodes' connectivity profiles, excluding their mutual connection. 
Modularity quantifies the degree to which the network may be subdivided into delineated 
groups. The difference in networks belonging to two categories support the hypothesis that 
recognizes schizophrenia as a disorder of dysfunctional integration between distant brain regions 
[E T Bullmore, Frangou, and Murray, 1997; K. Friston, 2005]. While the ability to consistently 
classify schizophrenia BFNs from that of healthy subject may be limited with single features, we 
anticipated better efficacy for higher order  features. 
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Figure 8.4 : Percentage contribution of features with combined discrimination accuracy above 50% in binary and 
weighted BFNs (Table D.1 of Annexure D) represents remaining parameters in both types of BFNs.

8.2.4 Efficacy of feature combinations
It was observed that increasing the order of feature combinations yields improvement 

over individual or pairwise sets. This trend continues till combination of 8 and 6 for binary and 
weighted BFNs respectively. Figure 8.5 summarizes the effectiveness of higher order 
combinations of network features. The figure shows the trend in highest average accuracy with 
increasing number of features in the feature set. Improved classification accuracy was observed 
with increased order of features up to 8 combinations in binary BFNs and 6 combinations in 
weighted BFNs. Interestingly, features extracted from weighted BFNs yielded better classification 
accuracy than those from binary BFNs. With increased complexity of features the accuracy, after 
initial increase, plateaued.  Increased redundancy was observed among the top features obtained.

8.4 DISCUSSION
Brain functional networks, graph theoretical models of brain activity data, provide macro-

level understanding of complex functional connectivity in the brain [E. Bullmore and Sporns, 
2009; Edward T Bullmore and Bassett, 2011; De Vico Fallani et al., 2012; Rubinov and Sporns, 
2010]. Neurological disorders are known to have basis in abnormal functional activities, which
could be captured in terms of network markers. Schizophrenia is a pathological condition 
characterized with altered brain functional state. Functional networks of brains associated to 
pathological conditions, such as schizophrenia, have been reported to have altered properties 
quantifiable in terms of topological features (For eg: low average clustering, long characteristic 
path-length, lower degree of connectivity, lower strength of connectivity and reduced 
modularity) [Alexander-Bloch et al., 2010; Danielle S Bassett et al., 2008; Y. Liu et al., 2008; Lynall 
et al., 2010; Yu, Plis, et al., 2011]. Such disruptions of topological features are understood to be an 
indication of dysfunctionality in schizophrenic BFNs as studied in fMRI scans of dorsal and 
ventral prefrontal, anterior cingulate, and posterior cortical regions [Ellison-Wright, Glahn, Laird, 
Thelen, and Bullmore, 2008; Rish et al., 2013].

Here, we created weighted and binary BFN models of schizophrenia patients as well as 
healthy subjects starting from fMRI data in an effort to search for network biomarkers of the 
disease. We performed an exhaustive investigation of graph theoretical features of binary and 
weighted BFNs and their higher order combinations towards classification of BFNs of 
schizophrenia and healthy subjects. One of the objectives of our study was to assess the utility of 
increased order of features on classification accuracy. Other than that we also aimed to identify 
network metrics and their possible implication for altered brain functional patterns.
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Figure 8.5 : Best accuracy obtained for classification between BFN models of healthy and schizophrenia brain 
data with increased order of feature combinations. The error bars represent standard error for 100 experiments 
of 10-cross fold tests.

Our study provides some of the key features that can play an important role in 
characterizing schizophrenia. Liu et al. had shown that small-world organization in brain 
networks of schizophrenic patients are significantly altered in many brain regions with decreased 
clustering and increased characteristic path length [Y. Liu et al., 2008]. Beyond disrupted small 
world nature, our study presents other properties that may be associated with BFNs of 
dysfunctional schizophrenic phenotype. Weighted BFNs of schizophrenia subjects were distinct 
in terms of maximized modularity, sum of product of degrees across all edges, vertex eccentricity 
and betweenness. On the other hand, binary BFNs presented matching index, edge overlap, edge 
betweenness, assortativity and global efficiency among the best features that could be used for 
classification of schizophrenia patients from healthy subjects. Broadly, these properties reflect on 
connectivity, modularity and hierarchical organization of the network.

One of the highest accuracies reported with BFN-based models equals 65% as reported by 
Anderson and Cohen [Anderson and Cohen, 2013]. Although, the classification accuracies 
achieved in our study were not exemplary, our study highlights the role of topological features 
derived from weighted BFNs for classification of schizophrenia fMRI data. The study also 
underlines limits on higher order feature combinations indicating saturation of classification 
accuracy. Specific network features obtained from our study could further be used for designing 
better disease classification algorithms as well as early detection systems.

These results suggest, that instead of exhaustive search for features through higher order 
combinations of features (n-tuples), appropriate use of feature selection methods could be the 
way forward. Our study provides insights into network biomarkers and limitations of higher 
order features as well as mechanisms of functional activity underlying the disease phenotype.
These could further be used for designing algorithms for clinical diagnosis of schizophrenia as 
well as its early detection.
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