Contents

		Page
Abs	tract	1
	nowledgements	iii
	tents	. V
	of Figures	ix
	of Tables	xii
	of Symbols	xiii
LISU	of Abbreviations	XV
ch.,		
	pter 1: INTRODUCTION	
1.1	Motivation Objective of the Theorie	1
1.2	Objective of the Thesis Brief Results, Scope and Future Prospects of the Work	3
1.3	blei Results, scope and future frospects of the work	3
	pter 2: Review of Literature	
2.1	MW Loss Mechanisms	7
	2.1.1 Impedance Matching Criterion	8
	2.1.2 Microwave Losses in Materials 2.1.2.1 Dielectric Losses in Materials	9
	2.1.2.1 Magnetic Losses in Materials	10 11
	2.1.3 EM Absorption on Single Layer Microwave Absorber (Dallenbach Layer)	12
2.2	Synthesis Techniques for Microwave Absorbing Materials	14
	2.2.1 Sol-gel Technique	14
	2.2.2 Solvo-Thermal / Hydrothermal Method	14
	2.2.3 Chemical Co-precipitation	15
	2.2.4 Polymer encapsulated Nanoparticles	15
	2.2.5 Precursor Method	15
	2.2.6 Arc-Discharge Method	16
	2.2.7 Self Propagation High Temperature Synthesis (SHS)	16
	2.2.8 Conventional Ceramic Route/Solid State Reaction/High Energy Ball Milling	16
2.3	History of Development of Radar/Microwave Absorbing Materials	17
2.4	Ferrite based Magnetic Materials 2.4.1 Ni-Zn Spinel Ferrites and their composite Systems	19 20
	2.4.2 Z-type Strontium Hexaferrite and its Composites	20
2.5	Core-Shell Nanomaterials and their Composites	23
2.6	Perovskite Oxide Materials	25
	2.6.1 Tetragonal Phase Barium Titanate (BaTiO ₃) Ferroelectric and its Composites	25
	2.6.2 Bismuth Iron Oxide (BiFeO ₃) Multiferroic and its Composites	26
2.7	Preparation of MW Absorbing Rubber Composites	27
2.8	Identified Gaps	27
2.9	Summery	28
Cha	pter 3: Experimental Details	
3.1	Bulk Materials Preparation Technique	29
	3.1.1 Gel to Carbonate Precipitation Route (Spinel and Hexagonal Ferrite Powders)	29
	3.1.2 Wet Chemical Synthesis of Polymer Nanocomposites Followed by Pyrolysis	30
	3.1.2.1 Synthesis of Metal Oxide Nanocomposites in Copolymer Matrix	30
	3.1.2.2 Synthesis of Core-Shell Metal Nanoparticles	31
	3.2.3 Sol-Gel Synthesis Route (BiFeO ₃ Multiferroics)	31
~ ~	3.2.4 Solid State Synthesis (Tetragonal BaTiO ₃ Ferroelectrics)	32
3.2	Fabrication of Rubber Based Composites Sample Characterization Techniques	33
3.3	3.3.1 Powder X-ray Diffraction (XRD) Method	34
	3.3.2 Fourier Transform Infra-Red (FTIR) Spectroscopy	34 35
	3.3.3 Vibrating Sample Magnetometer (VSM)	36
	3.3.4 Raman Spectroscopy	37

3.3.5 Scanning Electron Microscope (SEM)	38
3.3.6 Transmission Electron Microscope (TEM)	39
3.3.7 Superconducting Quantum Interference Device (SQUID) Magnetometer	39
3.3.8 Particle Size Analyzer	40
3.3.9 Microwave Characterization	41
3.3.9.1 Basic Principle of Measurement	41
3.3.9.2 Vector Network Analyzer Measurement System	42

Chapter 4: Ni_{1-x}Zn_xFe₂O₄ Spinel Ferrite Materials and their Composites for 2-12.4 GHz MW Absorption

4.1	Introduction	45
4.2	Experimental Procedure	47
4.3	Results and Discussion	48
	4.3.1 X-ray Diffraction Analysis	48
	4.3.2 FTIR Analysis	50
	4.3.3 Morphological Analysis	51
	4.3.4 Elemental Analysis	51
	4.3.5 Magnetic Studies	52
	4.3.6 Microwave Studies	54
	4.3.6.1 Estimation of EM parameters of Ferrite Powders	54
	4.3.6.2 Estimation of Loss Tangent Values for Ferrite Powders	55
	4.3.6.3 Estimation of EM parameters and MW Loss Characteristics of Ferrite Loaded Rubber Composite	56
	4.3.6.4 Computation of Reflection Loss Characteristics	57
4.4	Concluding Remarks	60

Chapter 5: Graphite Coated Ni Core-Shell Nanomaterial and its Composites for 12.4-18

	GHZ MW ADSORPTION	
5.1	Introduction	61
5.2	Experimental Procedure	62
5.3	Results and Discussion	63
	5.3.1 X-ray Diffraction Analysis	63
	5.3.2 FTIR Analysis	64
	5.3.3 TEM Studies	65
	5.3.4 Raman Studies	66
	5.3.5 Magnetic Studies	67
	5.3.6 Microwave Studies	69
5.4	Concluding Remarks	71

Chapter 6: Ferroelectric and Multiferroic Class of Perovskite Oxides and their Rubber Composites for 8-18 GHz MW Absorption 6.1 Introduction

6.1	Introduction	73
6.2	Development of Tetragonal Barium Titanate (BaTiO ₃) Ferroelectrics and its Rubber	73
	Composites	
	6.2.1 Experimental Procedure	74
	6.2.2 Results and Discussion	75
	6.2.2.1 X-ray Diffraction Analysis	75
	6.2.2.2 FTIR Studies	76
	6.2.2.3 Raman Studies	77
	6.2.2.4 Morphological Studies	78
	6.2.2.5 Microwave Studies	78
6.3	Development of Bismuth Ferrite (BiFeO $_3$) Multiferroics and its Rubber Composites	82
	6.3.1 Experimental Procedure	83
	6.3.2 Results and Discussion	85
	6.3.2.1 X-ray Diffraction Analysis	85
	6.3.2.2 FTIR Studies	85
	6.3.2.3 Morphological Studies	86
	6.3.2.4 Magnetic Studies	86
	6.3.2.5 Microwave Studies	87

6.4	Concluding Remarks	89
Cha	pter 7: Co Substituted Z-Type Sr Hexaferrite and its Composites for 8-18 GHz MW	
	Absorption	
7.1	Introduction	91
7.2	Experimental Procedure	94
7.3	Results and Discussion	97
	7.3.1 X-ray Diffraction Analysis	97
	7.3.1 Morphological Studies	98
	7.3.1 Magnetic Studies	98
	7.3.1 Microwave Studies	99
7.4	Concluding Remarks	103
Chapter 8: Conclusion and Scope of the Future Work		105
Ann	exure A: MATLAB Program for Thickness Dependent Reflection Loss (R.L.) Characteristics	
A.1	MATLAB Program for MW Reflection Loss Calculations	107
	References	113