
1
Introduction

Computation resource has been a human requirement for a long time. Nowadays, compu-
tation is one of our essential requirements of daily life, like water and electricity. The demand
for computation resource has increased drastically in the last few decades as the world is changing
to a digital era. This demand for computation resource will increase in future also. The current
computation facilities are not able enough to hold the future requirement. To adopt the future
modifications, people always go for over provisioning of some computation resources to minimize
the risk. These over provisioned resources are also utilized by people, as human beings tend to
consume whatever they have. Due to physical limitations, computation capacity of a resource be
under an obligation with some upper bound. Very Large Scale Integration (VLSI) technology is
mainly responsible for speeding up the computation. Although VLSI helps to execute millions of
instructions per second, at the hardware level infinite speedup is not possible.

Designing a large computation resource by means of many small computers is possible with
the help of distributed computing. In distributed computing, a group of servers can execute differ-
ent parts of a program concurrently. MapReduce, Hadoop and Dryad are well known distributed
computing frameworks. This parallel execution of distributed computing is a way to speed up the
execution and meet high computation requirements. Speeding up of execution in distributed com-
puting may hinge on network performance. With the benefits provided by distributed computing
“how to make a giant computer from many small computers?” is a question. This giant computer
is known as data center in the modern world. Data center is a cluster of computers that is owned
and operated by a single organization. It can facilitate heavy computational resource for industries.
Data center is designed for fast computing through distributed computing in mind.

In today’s world, web services are an essential requirement of our daily life. Billions of
users are dependent on these services for business and entertainment purposes. With the help of
smartphones and laptops, online social networking services like Facebook and Twitter change the
style of liaisons among people. Applications like social networking, web search, online gaming are
part of our routine life. Such applications employ service oriented architecture. In this architecture,
retrieval of a single web page requires coordination and communication with hundreds of individual
sub services running on remote nodes. The web services are accessed by millions of users simul-
taneously. The services are rated based on the satisfaction level of the user. Users expect rich
interface, high accuracy, high availability and low latency from web services. Satisfying millions of
users simultaneously with high expectation level, is a tedious job. The requirement of computation
existed before the web services were available. However the web services impose heavy computation
requirement, which cannot be fulfilled by a stand-alone system.

1.1 DATA CENTER
Data center is a bulky computing resource that operates in a controlled environment under

centralized management. The data center is administrated by a single organization. With the
help of data center, enterprises operate round the clock, apropos to their business need. Physically
data center refers to a large cluster of thousands of computers (servers) like a big fish is designed

1

Figure 1.1. : Philosophy of Data center

with many small fish as shown in Figure 1.1. These servers are hosted in the form of racks in
data centers. Every rack contains many servers, and all servers in the rack are connected to Top
of Rack (ToR) switch. In each row, there are multiple racks hosting the servers. ToR switch of
every rack is connected through an aggregation switch. In a data center, there are multiple rows,
and these are connected with each other by core switches. The number of racks and rows can also
be increased depending on the requirement. Core switches act like a gateway between the data
center and the Internet. All incoming and outgoing data must be forwarded through core switch.
The main problems in data center are scalability, bisectional bandwidth 1, compatibility and cost.
Along with above problems dealing with cabling, power management system, and heat in a data
center is a hectic job.

The demand for always-on and fast-responsive online services has led to humongous growth
in the data center technology. A data center may own thousands of servers, for these servers
providing high bisectional bandwidth at low cost (with commodity switch), enforces designers to
go for multiple paths. There are many multipath topologies proposed in literature like Dcell [Guo
et al., 2008], Bcube [Guo et al., 2009], Fat-Tree [Al-Fares et al., 2008], leafspine etc. With the help
of multiple equal cost paths between host pairs, designers try to even up performance limitations
of commercial switches.

Data centers are very important for business purposes in the IT industry. Amazon, Google,
Microsoft, Yahoo and Facebook all have their own data centers for different applications such as
online gaming, web search, social networking, data mining etc [Vamanan et al., 2012][Wilson et al.,
2011][Hong et al., 2012]. These industries increase the size and number of data centers rapidly. Data
centers are the source of revenue of these industries. For these industries, data center down time,
service degradation or inability to enroll new services lead to loss in business. The topology and
protocols used in data center have an effect on the performance of service. The TCP/IP protocol
stack used in the Internet is not suitable in data center, as it is optimized for throughput and

1The minimum achievable bandwidth between two equal parts of network, for further details see Chapter 2.1

2

Figure 1.2. : Industries relying on the Data center

fairness. Although, users of data center applications just want to finish flows as fast as possible,
they are unconcerned about the throughput or efficient utilization of network. Similarly topological
structure of data center decides the bandwidth on which communication among the servers is
possible. This bandwidth among servers is very important for performance of any distributed
computing application.

Virtualization is used in data center to achieve better server utilization, more flexible re-
source allocation, reducing hot-spot and limiting power consumption. With the help of hypervisor,
multiple Virtual Machine (VM) can operate on one physical server. Although virtualization in-
creases server utilization, due to additional processing at hypervisor layer, it increases the latency
in communication. As a result ping between two virtual machines that are running on different
servers takes more time as compared to that of ping between these servers.

Nowadays cloud data center offers on demand computational resources for business enter-
prises in pay-as-you-go manner. Amazon EC2 (Elastic Compute Cloud) charge $0.85/Hr per VM.
By utilizing the cloud facility, customers are free from planning, purchasing, operating and main-
taining physical hardware and software. Customers dub up only for VMs they hired. In such
cloud services, applications of multiple customers are multiplexed and share computing resources
with others. Cloud providers do not offer guaranteed network resources to customers. Most of the
applications hosted by these customers are distributed which require bandwidth, and hence they
are dependent on network. These VMs (hired by customers) communicate over the shared network
among VMs of other customers. Therefore the performance of customer’s application is not only
dependent on the number of VMs hired but also depends on the network bandwidth. Bandwidth
achieved by customer’s application depends on traffic load and VM placement. The cloud service
provider does not provide any control over VM placement to customer. In order to provide a good
quality of service to customers, without sharing application and data storage locations, a service
provider should achieve a predictable network latency.

Generally there are two high level choices for building the network for large scale computers.
One option uses specialized hardware and protocols like InfiniBand and Myrinet. These solutions
are scalable and provide sufficient bandwidth. However, these solutions are not compatible with
traditional network standards and are also more expensive [Kant, 2009]. For example InfiniBand
has its unique cabling /connectors, Physical layer, Link layer, Network layer and Transport layer.
This architecture does not support Ethernet.

3

1.2 CHALLENGES FOR LATENCY CRITICAL APPLICATIONS
For the success of any business, the satisfaction of customers is very important. In cloud

computing, the satisfaction of users is centered around availability, data security, cost, performance
etc. Applications, such as online gaming require continuous interactions with the users. Millions
of users are accessing such type of same application simultaneously. All users expect the response
of keystroke or mouse click on screen as soon as possible. Such type of applications impose greater
pressure on the service provider for meeting Service Level Agreement (SLA). Applications that
require extensive database consultation before responding to user’s request are called data intensive
applications. Web search is an online data intensive application.

Figure 1.3. : Importance of Latency

Service providers of online data intensive applications are very concerned about low latencies
as the low latency communication is essential for overall user experience. A good user experience
relies on predictable latency and bandwidth across varying traffic pattern. The small amount of
latency at micro level can be seen as liable for losing service level agreement Figure 1.3 which in turn
compounded as unacceptable performance at user level. Google observed a 20% traffic reduction
from an extra 500ms of latency, and Amazon found that every additional 100ms of latency cost
them a 1% loss in business revenue [Alizadeh et al., 2010] [Hoff, 2009]. Interactive applications
such as online search are significantly impacted by network activity [Mai et al., 2014]. In Microsoft
Bing search engine network contributes 12% of latency [Jalaparti et al., 2013]. Network transfers
in Facebook for MapReduce jobs, responsible for on average 33% of the execution time of the jobs
[Chowdhury et al., 2011]. This latency imposed by the network can be presumed as snag for service
performance.

1.3 MEETING USER INTERACTIVITY DEADLINES
Data centers are designed mainly for heavy computation purposes. Heavy computation task

with strict SLA, enforces the requirement of breaking down a large computation into small pieces. In
order to meet SLAs in data intensive applications like web search, the whole task is divided among
thousands of servers [Alizadeh et al., 2010][Zats et al., 2012]. Aggregation/Partition (horizontal
scalability) technique is used to divide a large computation task into many small computations
[Wilson et al., 2011][Alizadeh et al., 2010]. In this technique, master server distributes each task

4

of small chunks to thousand of workers at multiple layers. Each worker after completing its job,
sends back a response to the respective master where the master server prepares final response as
shown in Figure 1.4. To meet a deadline these workers have to send back responses within a time
limit. Any task that does not complete by its deadline is not included in response, thus hurting
the quality of response and wasting network bandwidth [Joy and Nayak, 2015]. The maximum
response time of any sub task dictates the overall response time. Completion time of the request
(demand) is defined as the time taken for the last flow to complete. Even in the presence of thread
level parallelism, the communication response overhead imposed by network and protocol stack can
ultimately limit the performance of the application.

Figure 1.4. : Example of Aggregation/Partition technique [Wilson et al., 2011]

Generally switches are designed to face temporary oversubscription and they require buffer-
ing of packets to absorb rate variations and avoid throughput losses. When thousands of workers
respond simultaneously to a master, the buffer of the switch connecting workers and master will
face overflow problem and several packets are lost as shown in Figure 1.5. In Aggregation/Partition
technique, workers are unaware of this incident, and wait for acknowledgment which finally leads
to timeout event [Vasudevan et al., 2009]. Waiting till the timeout increases the response time at
the master. This problem is known as Incast which arises due to communication pattern, loss re-
covery mechanism of Transmission Control Protocol (TCP), and buffer space at the switch. Due to
this problem in Aggregation/Partition technique a master server excludes those responses that are
leading to missing the SLA due to high latency, which leads to further degradation of the quality
of the final response.

1.4 TRAFFIC IN DATA CENTER NETWORK
For fully understanding the problem and its importance, it is necessary to know about the

differences of traffic in the data center networks and the Internet. As described in literature, most
of the Internet traffic either starts or ends in a data center. The amount of traffic on the Internet
is less compared to that in data centers. According to the report [Cisco, 2015], the amount of total
global traffic over the Internet is projected to reach 2.3 zettabytes per year by 2020. On the other
hand the amount of annual global data center traffic was already estimated as 4.7 zettabytes per
year in 2015. This is expected that by 2020 annual data center traffic will triple to reach 15.3
zettabytes per year. Further the traffic of data center can be classified as

5

Figure 1.5. : The problem of Incast in Aggregation/Partition

• Traffic that remains within the data center

• Traffic from one data center to another data center

• Traffic between the data center to the end users via the Internet

Generally in literature, researchers use the nomenclature as East-West traffic and North-
South traffic to describe data center traffic. All traffic between the data center to the end users is
treated as North-South traffic. Whereas the rest of the traffic is treated as East-West traffic. In
other words, all traffic within the data center or traffic between one data center to another data
center is called East-West traffic. As one can observe in Figure 1.6 that most of the traffic (approx
77%) never leaves the data center. The East-West traffic represents 86% of the total traffic and
North-South traffic is only 14% of traffic associated with data centers.

Figure 1.6. : Global Data center traffic in 2020 [Cisco, 2015]

Web services hosted by data center have two tiers namely front-end and back-end. The
front-end tier is responsible for the user interface, which is accessed by the users through the
Internet. On the other hand, the back-end is responsible for storage and structure of workflow.
In data center storage system, data is stored across many servers to improve both reliability and

6

performance. Most of the traffic that remains within the data center is generated by these back-end
tier of a web application. These applications need to dig out many servers and terabytes of data
for a single user request.

Traffic within a data center can be classified as deadline sensitive and deadline insensitive.
Flows that are used for data replication and database update do not have the requirement of
completion in time limit. These flows are bursty and very large in size (elephant flows2) compared
to the deadline sensitive flows (mice flows). Flows sensitive to the deadline (mice flows) are more in
number compared to the deadline insensitive flows (elephant flows). These deadline sensitive flows
are responsible for achieving SLA, whereas deadline insensitive flows are responsible for consistency
and freshness of database. Traffic within the flow is generally ordered, hence elephant flows can
create a set of “hot-spot”. Elephant flows will build up queue at the switch and the mice flows will
patiently wait behind these elephant flows [Abts and Felderman, 2012] [Alizadeh et al., 2010]. The
large buffer size is good for the higher throughput of elephant flows, but it also increases queuing
time for mice flows as shown in Figure 1.7. Due to this queuing time, mice flows struggle to
achieve SLA. The amalgam of delay sensitive and deadline insensitive traffic on the same network
may necessitate QoS mechanisms for performance isolation.

Figure 1.7. : Queuing of mice flows

1.5 ISSUESWITH TRADITIONAL TCP IN DATA CENTER NETWORKING
Traditional TCP used in the Internet is not suitable in a data center. TCP was designed

for transferring data from one host to another host in a reliable manner. The congestion control
algorithm in TCP is designed for black box network topology. The limitations pertaining to the
usage of original TCP in data center are described as follows.

1.5.1 Data Copy
In traditional socket interface, the data is mimed from application buffer to kernel buffer and

back from kernel buffer to application buffer at the sender and receiver respectively. This copying
of data from one buffer to another can incur significant delay for application. The techniques such
as OS bypass or zero copy aim at removing this copying for every message. In data center, latency
is very critical and this copying back and forth can be problematic.

1.5.2 Time Scale of RTT and RTO
In Data center, the Round Trip Time (RTT) is in the order of microsecond, whereas the

RTT in the Internet is in the order of millisecond. In Traditional TCP, the timeout interval is
one or two order of magnitude higher than the RTT. In data center, where the round trip time

2A flow is called as a large flow (elephant) or a small flow (mice) depending on the number of packets that it would
send.

7

is in order of microseconds, TCP timeout interval imposes the delay of few milliseconds. Due to
this additional latency, performance of delay sensitive applications may suffer. Researchers have
suggested that in data center at transport layer, Re-transmission Timeout (RTO) should have at
the same scale as network latency [Vasudevan et al., 2009].

1.5.3 Small BDP
In data center due to low RTT, Bandwidth Delay Product (BDP) is small. When multiple

flows are contending for its own share in this small BDP, each flow gets a small congestion window.
Due to this small congestion window, when a packet is dropped, flow can not recover via fast re-
transmission and is stuck until a TCP timeout. For delay sensitive flows this single timeout may
be the reason for missing the deadline of the flow. For early detection of packet drop, scale of RTO
may be reduced to microsecond level. However reducing RTO at microsecond scale leads to chance
of spurious re-transmission.

1.5.4 Designing Goal
Original TCP was designed for optimizing throughput and fairness. If multiple competing

flows share a link, they all utilize the bandwidth equally. Fair sharing of original TCP protocol is
far from optimal, for satisfying the latency requirements (in turns of minimizing latency) in data
center. Protocols designed for high throughput increase the average latency of flow, which impacts
on the quality of service.

1.5.5 Delayed Convergence
TCP uses Additive Increase and Multiplicative Decrease (AIMD) to find fair share band-

width. Finding a fair share of a flow, with the help of AIMD, requires multiple RTTs. These multiple
RTTs, increase the duration of the flow [Dukkipati and McKeown, 2006]. It is also possible that a
small flow in data center will complete before finding its fair share.

1.5.6 Heavy Congestion Control
As data centers have fewer hops, low packet drop probability and administrated by a single

authority, the congestion control mechanism of older TCP is heavy and puts extra processing burden
on the transport layer protocol in data center.

1.6 MULTIPATH ROUTING IN DATA CENTER
In today’s network, resources like bandwidth and processing power increase continuously.

However often these resources are not being fully utilized by the users due to protocol constraints.
When the original Internet was designed, hosts had a single interface and only intermediate devices
were equipped with several physical interfaces. Nowadays most of the equipment have more than
single network interface. For instance, laptops have usually at least both a wired (Ethernet) and a
wireless (Wi-Fi) network adapters. Similarly smart phones and tablets have more than one interface
such as Wi-Fi and 3G/4GLTE. In data centers each pair of nodes have more than one path. In order
to improve the robustness and reduce the latency, a device must utilize all the paths concurrently. If
a flow could make use of all the available paths between two end points, there would be performance
improvement as each of the paths would carry some amount of data in parallel.

Data centers typically own thousands of servers with multiple paths as shown in Figure 1.8.
The data center network designers go for multiple paths in order to provide high bisection bandwidth
for the servers at a low cost (with commodity switches). With the help of multiple equal cost paths
between host pairs, designers try to overcome performance limitations of commercial switches.
Balancing traffic between these multiple paths is very critical to the performance of data center

8

Figure 1.8. : Multipath topology in Data center

[Alizadeh et al., 2014]. If a flow has multiple paths, it is more likely to meet its deadline by following
the least congested path. Load-balancing across multiple paths is important for both latency and
throughput of application. A naive approach (load oblivious) may lead to creation of congestion
on some paths unnecessarily, while other paths will go underutilized. With such a naive approach
benefit of multiple paths is scaled down. Even static load oblivious flow-to-path assignment performs
worse than a single path due to long lasting congestion [Kabbani et al., 2014]. To overcome this
limitation, researchers come up with load sensitive traffic balancing. By means of load sensitive
balancing adaptive routing is possible. Through adaptive routing, the path of a flow can be changed
whenever it faces congestion. The adaptive load-balancing approach is supplementary to the other
congestion control approach.

In the literature, there are several ways of classifying load-balancing solutions. One way to
classify the load-balancing schemes, is based on centralized or distributed. In centralized schemes
only single host or controller is responsible for finding appropriate path for flows. The controller
calculates a path arrangement and periodically updates the routing table of switches. In the net-
works, with dynamic traffic pattern (small inter-arrival time), centralized solutions face scalability
problem. Due to single point of all processing, centralized schemes are less fault-tolerant. In dis-
tributed schemes, there is nothing like controller, all intermediate nodes are self sufficient to handle
traffic. Hence, in distributed approaches, since all hosts calculate path independently, the solutions
are more reliable (more fault-tolerant). Distributed solutions are also scalable and not affected by
dynamic pattern of traffic. Coordination between the hosts is a problem in distributed solution,
which is not present in centralized solution. However, once coordination among hosts is completed,
the distributed schemes perform better compared to the centralized one.

On the other hand load-balancing can be classified based on the path that was taken by the
packets. In flow-level (per flow) solutions, all the packets of a flow take the same path [Cui and
Qian, 2014]. While in per-packet load-balancing, packets of a flow go through different paths as
shown in Figure 1.9. Per-packet solutions use multiple paths simultaneously for each flow as shown
in Figure 1.9(b). Such techniques, work well only with a symmetric topology, but they incur high
degree of packet re-ordering [Zats et al., 2012]. In case of link failures or asymmetry in the network,
these approaches are inefficient. Efficient load-balancing does not necessarily mean that a flow
should spread its packets across multiple paths simultaneously and then stitch back together at the

9

(a) Flow-level Solution (b) Packet-level Solution

Figure 1.9. : An example of flow and packet-level multipath routing

receiver even before starting the congestion. On the other side, in per flow solutions, the flows are
evenly distributed over all the available paths. That is all flows are balanced over multiple paths.
These schemes balance load less efficiently as compared to the packet-level schemes. However these
schemes follow strict packet ordering shown in Figure 1.9(a) and have very little to do with re-
ordering problem [Hopps, 2000]. Due to this strict packet ordering, flow-level approaches perform
well compared to a single path, and able to cope up with asymmetry in the networks.

In addition to re-routing, deciding next appropriate path for a congested flow is also an
essential component of the dynamic multipath routing scheme. Due to re-routing, a congested
flow can be re-routed to any other path (highly utilized path) naively, may lead to the multiple
re-routing events. An intelligent scheme is required at switches for assigning a new path to the flow.
This decision of new path assignment is based on either local information or global information.
As described in literature, decision making based on local information is not optimal compared to
decision making based on global information. However, collecting global information for all links
and switches in the network itself is a complex task; whereas, any switch can collect and maintain
local information easily.

1.7 OVERVIEW OF THESIS
As requirements of industry and users for computing facility are growing day by day, the data

center technology is an attempt to fulfill the needs of computational demand, presently. In order
to provide best services to the customers, the performance of a data center must be predictable.
Otherwise, any kind of dissatisfaction at customers end, may lead to a toppling the repute and
market of business. The gratification of customer mainly depends on UI (user interface) and UX
(user experience). UI of any application refers to its presentation, look and feel. For providing high
level presentation (look and feel) many tools are available. UX of any application highly depends
on the speed of interactive nature of an application. The small amount of protraction at user end,
after submitting the request to the web based application may hamper the UX.

In order to offer good UX to the user, the performance of the data center must be predictable.
With predictable performance of data center, a web application designer may infer and reserve
required resources. As UX rely on the interactive capability of the service, a predictable network
latency is exigency of a web based distributed application. Reducing the network latency not only
provides good UX to the user but it is also crucial to increasing the resources utilization of data
center, which can further reduce the over all cost of service.

Presently, web based distributed applications adhere to service oriented architecture, in
which a single page is a collection of multiple services. In order to respond to a user request in
timely fashion, computation related to all the services must be finished on time. These services are
distributed over multiple servers and depend on the data transfer by the flows to complete the jobs.

10

The flows responsible for data transfer of such services are delay sensitive, and must go through
networking stack. A networking stack optimized for latency, can assist such flows in transferring
the data in a timely manner. Further, an optimized design of network may help to serve a better
UX to the customers and business management operations.

This thesis tries to utilize different structures of data center network to reduce the latency
of the flows. The topological structures used in the data centers are discussed in Chapter 2. The
topologies in data center are well defined, symmetric and under the control of a single authority. This
motivates us to take the initiative for utilization of topological structures for reducing the latency.
In order to reduce the latency for the delay sensitive flows, a prioritization scheme with topology
information is proposed in Chapter 3 of the thesis. An algorithm to utilize the oversubscribed
topology structure in data center, with the help of jumbo frames, is also proposed. A flow-level
adaptive routing proposal, for well defined topological structure like Fat-Tree, is proposed. This
adaptive routing helps the flows to finish quickly even in the presence of faulty links in data center.
Further, the same proposal tries to improve the path selection with the help of Analytic Hierarchy
Process (AHP) on local information.

1.8 THESIS ROADMAP
The rest of the thesis is organized as follows.

Chapter 2 discusses the related work done in the area of data center. This chapter is
divided in three main parts, namely Topologies for Data center Network, Data Transport Protocols
and Multipath load-balancing Protocols in data center. Each of the three parts is further divided
in two sub parts. The first sub part discusses the classification of approaches and second sub part
presents the prominent existing solutions.

Chapter 3 improves the priority scheme of shortest remaining size first scheduling. In this
proposal, namely Topology Aware pFabric (TAP), the priority of a flow is computed as a function of
both flow size (the amount of data being transferred by flow) and flow distance (in number of hops).
In addition to the TAP, Topology aware Preemptive-Shortest Remaining Size First (TP-SRSF) gives
higher priority to the newer flows compared to the older ones.

Chapter 4 utilizes the oversubscribed topology structure of data centers. This proposal
uses jumbo size frames to minimize the overhead at higher layers of data center topology. The
proposed approach requires modification to queue management policy at ToR switches.

Chapter 5 proposes an adaptive routing scheme namely FlowFurl, in which a flow with
multiple paths to the destination can be re-routed in case of congestion. The level of comfort for
re-routing of a flow is reduced as the number of paths to the destination goes down, and finally
re-routing of a flow is not possible when there exists only one path to the destination. This proposal
uses connectivity information of topology with congestion information and provides a better way
to take re-routing decision.

Chapter 6 finally concludes the thesis by giving a summary of the research work, and
proposes future work that can be taken to reduce the latency in data center network.

In addition to these works, in Annexure A, a scheme to minimize the packet re-ordering
problem in packet-level load-balancing is presented. In the Annexure MPTCP is used as a multipath
packet-level scheme.

11

…

12

