
4
Adapting Jumbo Frames in Data center

4.1 INTRODUCTION
Nowadays data centers are attracting attention of researchers in a big way. The performance

of the data centers holds the key in the success of cloud computing. As dimensions of cloud
computing are enhanced by offering multiple services, the responsibility of service provider escalates
many fold. Even hosting a single service per data center requires promising conduct round the clock.
Incompetence in fulfilling such a vow may lead to disappointment in customers. Customers are very
sensitive to delay and long delay may result in losing of customers. Therefore delay in data centers
adversely affects on business revenue. This chapter attempts to focus on how to knock down this
delay in data centers with the help of oversubscribed topology. The proposed idea in this chapter,
Jumbo Frame Enabled Packet Merge (JFEPM), allows in-network data aggregation and with the
help of jumbo frames it utilizes topology architecture of the data center. This idea is based on jumbo
size frames supported by Gigabit and Fast Ethernet switches. This scheme requires modification
to the service policy of queue on the edge switch. This chapter uses oversubscribed data center
topology architecture and transmits large sized frames in higher layers of data center network.

4.2 MOTIVATION
The designers of data center have proposed the idea of oversubscription in which racks

must be connected with higher capacity links. Oversubscription not only reduces the cost of the
infrastructure but also provides a better resource utilization. Generally ToR switches in data center
are connected to aggregation switches with 10 Gbps link. These high speed links require less time
to transmit packets. As discussed earlier in Chapter 1, the data center is owned and operated by
a single organization, and environment in the data center is very much under control compared to
the Internet. In the former, dealing with a large size packet is not an issue.

4.2.1 Data center Topology
A data center topology is a tree like structure as shown in Figure 4.1. Each server is

connected to ToR switch with 1 Gbps link. In this structure, core switches are the root of the tree
and the end hosts or servers are leaf nodes of the tree. As discussed earlier, a rack contains multiple
servers. Each server is connected to a ToR switch with 1 Gbps link. Servers within the rack can
communicate with each other at 1 Gbps. To make a location independent of server assignment
for a service, it is necessary that a server should be able to communicate at its full speed to any
other server in the data center. In other words, if bandwidth between two servers is not dependent
on where they are located then the servers for a given service can be distributed anywhere in the
data center[Greenberg et al., 2008]. To make location independent server assignment possible, it is
necessary that racks must be connected with higher capacity links. In every generation topology,
switch-to-switch links are faster then server-to-switch links. On the other hand, high capacity
switch ports have their own limitation, and they are expensive. Sometimes higher bandwidth links
are underutilized also. Therefore, it is not reasonable to allow all switches with high capacity link
at all ports. The idea of oversubscription helps the designers of data center to reduce the cost of
infrastructure and improve the utilization of resources.

63



Figure 4.1. : Data center topology with oversubscription

4.2.2 Jumbo frames in Ethernet
Traditional Ethernet supports MTU of 1500 bytes but now with the jumbo frame it is

possible to send a frame of size 9000 bytes. Gigabit Ethernet and Fast Ethernet switches support
jumbo frames. Jumbo frames are not part of the official IEEE 802.3 Ethernet standard. Network
interface card providers like Intel, Broadcom, Netxen, Neterion will support jumbo frames. Most
modern switches are capable of jumbo frames, and much of the networking hardware within the
data centers are capable of jumbo frames [Hogg, 2013]. Jumbo frames lower network overheads
because fewer packets and, therefore, fewer headers, are required to move data from the source to
the destination [Murray et al.] [Divakaran et al., 2009]. Jumbo frames also increase the efficiency
of a network because jumbo frames spend more time in the transmission of payload. Besides
these advantages of the jumbo frame, adoption in the Internet is questionable as the designers
were worried about the effectiveness of error detection technique (CRC 32) with 9000 bytes frame.
Additionally in the Internet packet fragmentation is required because of different size of MTU of
different networks. Topology in data center is structured and all operations are controlled by a
single administrator. Hence, allowing large size packets in data center is feasible.

4.2.3 Latency Vs Packet Size
Several ways of reducing latency by designing of network protocols were discussed in Chapter

2. Average Flow Completion Time (AFCT) is a measure of network latency [Hong et al., 2012][Munir
et al., 2013][Xu and Li, 2013]. The effect of packet size on average flow completion time has not been
analyzed yet. To determine the effect of packet size on average flow completion time we simulate
the topology shown in Figure 4.1 with 40 servers in each rack in NS-2. In this simulation, different
TCP versions were used as transport layer protocol. With a single FTP flow per ToR, mice flows
are simulated with an average size of 100 KB. The flows arrival time follows Poisson process. The
size of the flow is chosen from a uniform distribution within the interval of [2KB,198KB][Munir
et al., 2014]. In simulation studies, after a certain load, as packet size is increased, both average
flow completion time (AFCT) and number of packets dropped decreased. Figure 4.2 and Figure
4.3 show the average flow completion time and the number of packets dropped with increasing
packet sizes. These results motivate us to take an initiative for capitalizing the effect of packet size
in order to reducing latency.

64



 0.12

 0.15

 0.18

 0.21

 0.24

 0.27

 0.3

 0.33

 0.36

 500  800  1000  1200  1460

A
F

C
T

(in
 m

s)

Packet-size(in Bytes)

Tahoe
Sack1
Reno

Newreno
Linux

Figure 4.2. : Average flow completion time Vs Packet size

 18000

 24000

 30000

 36000

 42000

 48000

 54000

 60000

500 800 1000 1200 1460

P
ac

ke
t d

ro
pp

ed

Packet−size(in Bytes)

Tahoe
Sack1
Reno

Newreno
Linux

Figure 4.3. : Number of packets dropped Vs Packet size

4.3 JFEPM: JUMBO FRAME ENABLED PACKET MERGE
As discussed in the previous section, end server can communicate at 1 Gbps rate. However

ToR switches can deliver frames at 10 Gbps, these links are also jumbo frame enabled. For a frame
to go through a link of 1 Gbps, it requires more time compared to a 10 Gbps link. A ToR switch,
for the same size of the frame, can transmit comparatively faster to end server. The use of jumbo
frames enables a high capacity switch to match transmission time of frame with end server. This
feature of jumbo frame empowers a switch to investing more time in the transmission of data.
This approach is also helpful in minimizing frequent switching activities [Salyers et al., 2007]. The
basic idea of JFEPM is to reduce habitual switching through the jumbo frame at the aggregation
and core switches. Aggregation and core switches in the topology architecture of data centers use
higher capacity links. JFEPM utilizes this data center topology architecture to reduce the latency.
JFEPM may increase queuing time for some packets due to transmission of the jumbo frames,

65



regardless of guarantee. As guarantee in a data center is at the flow-level not at the packet-level,
this scheme will not hamper such a guarantee.

JFEPM assumes that all applications are transferring data only through fixed sized packets.
As discussed in Section 4.2.3 flow completion time and number of packets dropped, which are
shown in Figure 4.2 and Figure 4.3 respectively, are being reduced with an increase in packet size.
Allowing end servers to use bigger packet at 1 Gbps might seize a link for a longer time, as well as
increase the waiting time for other applications. JFEPM provides a way to increase the packet size
for a path segment between intermediate devices. These intermediate devices are connected with
high capacity links in the data center. This scheme is not an end-to-end scheme like in [Prakash
et al., 2013], and no change is required at the end servers. In this approach of JFEPM, only ToR
switch is responsible for combining and separating the packets. When a ToR switch gets a packet
from a sender and if enough space is available, the packet is simply inserted at the rear of the queue.
Service policy is changed for removing a packet from the queue; the packet from the front of the
queue was served first. While searching the next slot for forwarding a packet, it also searches for
other packets of the same flow in the queue as shown in Figure 4.4. Data center uses small size
buffers due to small RTT. These small sized buffers help in reducing latency[Alizadeh et al., 2010].
Hence, the cost of the packet searching is less O(buffer size) because the time complexity of the
search is linear in nature. During the search if identical packets of the same flow are found, then
the switch removes those packets from the queue and merge them after extracting headers of each
as shown in Algorithm 1. The maximum allowable size of the packet in this scheme is 8960 bytes.
Once either packet size reached a threshold or traversal of the queue is completed, the merged
packet will be transmitted with a single header. This new header contains information about total
number of merged packets as well as some transport layer information like sequence number and a
time stamp. This newly constructed jumbo frame is forwarded to an aggregation switch.

Algorithm 1 Deque method
Remove a packet from front
Flow ID:= Packet.Flow ID
Size:= Packet.Size
if Within rack flow then
return Packet

end if
for Each packet in queue do
Temp:= Packet
if Flow ID==Temp.Flow ID && Size ≤ 8960 then

Remove temp from queue
Remove header from temp
Merge temp with packet
Number of packet merge += 1
Size += Temp.Size
Drop temp

end if
end for
return Packet

At the receiver side, ToR switch receives a jumbo frame from an aggregation switch. The
recognition of a jumbo frame is based on the field name, as the number of packets merged, in the
header. This field is set to 0 for normal packets and more than 1 for jumbo frames. Switches treat
a normal packet and jumbo frame differently; the procedure to handle jumbo frame is described in
Algorithm 2. Whenever free buffer space at the switch is not adequate to accommodate the packet,
it simply drops the packet. On the other hand, the giant packet is split into original and equal size

66



packets. Before inserting packets in the queue, transport layer information of the packets is also
put in appropriate header fields. Once packets are reconstructed in their original form, all packets
are inserted at the rear of a queue and the jumbo frame is dropped. The merging and splitting
process of packets is invisible to the source and destination nodes.

Algorithm 2 Enque method
if Packet size ≤Available buffer space then

Find number of packets merged
if Number of packets merged ≥ 1 then

Remove header of jumbo packet
Split original PDU into equal size PDUs
for Each small PDU do
Attach header with PDU
Set number of packets merged field to 0
Insert at the rear end of the queue

end for
Drop original jumbo packet

else
Insert into the queue

end if
else

Drop packet
end if

For simplicity, an example shown in Figure 4.4 is discussed here. The packets of different
flows (1, 2, and 3) occupy the queue at the ToR switch on the sender side. Packet of flow 1 is
pointed by the front pointer and packet of flow 2 is at the rear of the queue. The switch removes
the packet from the front (in this case packet of flow 1) for forwarding to next slot and also searches
for packets of the same flow. Other packets of the same flow (flow 1) will be found at position 3, 4,
and 6 of the queue. JFEPM removes all packets of flow 1 from the queue and merges them after
extracting the headers. This merged packet is sent to aggregation switch after affixing new header.
This new header also carries information about number of packets merged (4 in this situation). On
the ToR switch at the receiver side, when this jumbo frame is reached, the switch seeks for the
number of packets merged information. Upon getting this information, the jumbo PDU is divided
into original size PDUs of equal size. In the figure PDU is divided into 4 original size packets.
Original headers are included in these all PDUs, and number of packets merged field is set to zero.
All these packets are inserted at the rear of the queue.

Aforementioned scheme of the jumbo frame is not applicable for intra-rack communication.
Packets of such flows only need to traverse ToR switch through 1 Gbps link; ergo, the only bene-
ficiary of this scheme is the flows going outside of racks. Jumbo frame based approach can yield
profit only between ToR’s due to high rate links. This scheme is helpful in reducing processing time
at aggregation and core switches.

4.4 ANALYTICAL CHARACTERIZATION
This section illustrates theoretical characterization of the total processing time of the packets

sent by a host to all the hosts in the same rack (intra-rack), same row (intra-row) and other rows
(inter-row). Keeping simplicity in mind we analyze JFEPM for the topology shown in Figure 4.1
with two aggregation switches and two ToR switches per aggregation switch. This reasoning can be
extended for any larger topology also. Symbols used for this purpose are listed in Table 4.1. This

67



Sender’s TOR Receiver’s TOR

  1    2    1    1    3   1    2   5    5    7    1    1   1    1

Jumbo Frame Jumbo Frame

To Aggregation switch From Aggregation switch

Figure 4.4. : Packet merge and split at ToR switch

analysis considers a situation where a node in the data center wants to send N packets to all other
hosts.

Symbol Description
n Number of hosts per ToR
N Number of packets of each flow
M f Merge factor (Max number of packets merge)
B f Buffer size (in bytes) of a switch
Tf Forwarding time of a packet at a switch
T Po Total processing time with original size packets
T Pj Total processing time with jumbo size packets
α Time required to find a packet belongs to a particular flow
Sp Size of original packet (in bytes)
S j Size of Jumbo frame (in bytes)
E[.] Expectation function

Table 4.1. : Symbols used for analysis

Here the term merge factor (M f ) defines the maximum number of original packets that can
be carried by a jumbo frame, which is the ratio of size of the jumbo frame and the original packet.

M f = ⌊ Size of Jumbo frame (S j)

Size of original packet (Sp)
⌋

The term M f > 1 because S j > Sp (size of jumbo frame is larger than size of original packets) and is
always an integer. The expectation of the variable M f is defined as the average number of packets
carried by a single jumbo frame.

E[M f ] =
1

M f

M f

∑
i=1

i

68



4.4.1 Processing time without Jumbo frame (Original size)
The processing time required for intra-rack flows is

(n−1)NTf

The processing time required for intra-row flows is

3nNTf

Similarly the processing time for inter-row flows is

10nNTf

The total processing time required for sending N packets to all other hosts in the network by a
single host can be obtained as

T Po = (14n−1)NTf

4.4.2 Processing time with Jumbo frame (JFEPM)
The processing time required for intra-rack flows is

(n−1)NTf

The processing time required for intra-row flows is

nN
E[M f ]
{α(B f

Sp
)+2Tf}+nNTf

Similarly the processing time for inter-row flows is

2nN
E[M f ]
{α(B f

Sp
)+4Tf}+2nNTf

The total processing time required for sending N packets to all other hosts in the network by a
single host with JFEPM is

T Pj = NTf [(4n−1)+
3nk

E[M f ]
+

10n
E[M f ]

]

where

k = α(B f

Sp
) 1

Tf

69



Here α is a constant because it requires comparison of few fields of packet header and Tf is O(n)
because of forwarding table will have maximum of n entries. Hence α

Tf

∼=
1
n
, and if the ratio of size

of buffer and size of original packet i.e. B f

Sp
= n then k ∼= 1.

Dividing T Po by T Pj we get

T Po

T Pj
=

14n−1

4n+
10n

E[M f ]
+

3nk
E[M f ]

−1

So for large n, rewrite the equation as

T Po

T Pj
=

14

4+
10

E[M f ]
+

3k
E[M f ]

Here E[M f ] > 1 which is the average number of packets combined in a single jumbo frame. As
the ratio of the sizes of jumbo frame and original packet increases, this expectation also increases.
When buffer size B f

Sp
is equal to the number of hosts per ToR then k ∼= 1. In this situation T Po

T Pj
> 1, which is the ratio of the total processing time without jumbo frame and with jumbo frame.
Hence, one can argue that the total processing time in case of jumbo frame is less as compared to
the original case; if the number of hosts per ToR is large and buffer size at the switches is not larger
than the number of hosts per ToR.

This buffer size restriction limits the cost of searching in this technique. However, it does
not mean that smaller buffer size gives more advantage. As the buffer size is reduced, jumbo frame
will merge fewer packets which also limits its performance. Hence, a buffer size which is equal to
the number of hosts per rack is an appropriate choice for this scheme.

4.5 ARGUMENT ON THE APPROACH OF PACKET MERGE
Store and forward technique with small size packets provide a way to increase parallelism.

Due to small size packets, any intermediate switching element can collect and pass on packets si-
multaneously. At first look, it seems like packet merging scheme is unfriendly to parallelism because
merged packets seize the link for more time, and earnings made by parallelism are diminished. With
JFEPM, the benefits of parallelism obtained are maintained intact by the virtue of the topological
structure in the data center. High capacity links from one ToR switch to another are supportive to
sustain the gain of the parallel pipeline. The transmission time of the merged packet at ToR switch
is never more than the transmission time of the original packet at end server. In this approach,
only merged packet go through high capacity links. Merged packets are divided into original size
packets at the receiver side ToR switch so that any single packet can not seize the link for a longer
time. As discussed earlier in Section 4.2.1 links between the end servers and the ToR switch are of
1 Gbps. Hence, the final remark about JFEPM is, proposed scheme is not a foe of parallelism with
oversubscribed topology structure.

Service policy used in this scheme for merging packets requires different structures. Removal
of the packets in the middle of a queue is not possible with First In First Out (FIFO) discipline.
For merging packets, this approach requires removal of packets from anywhere in the queue. This
unsystematic removal of a packet from queue requires additional overhead to maintain consistency.

70



Packets after merging take a longer time to transmit than usual owing to the bigger size.
Due to this longer transmission time, a few of the packets may get delayed to get service, which
increases queuing time of these packets. On the other hand, this approach serves some of the packets
earlier than expected time. This packet merging scheme is responsible for disturbing the order of
packets being served as well as delayed or advanced reception of packets. However, this uncertainty
of one way delay at the packet-level increases jitter at the receiver; the flow completion time is still
not influenced by such fluctuations. Flow completion time is defined as the time duration from the
beginning to the end of flow. Fortunately service level agreements in a data center require guarantee
at flow-level not at the packet-level.

4.6 EVALUATION
JFEPM is evaluated using NS-2 simulator. A 3-tier topology with ToR switches, aggre-

gation switches and single core switch is simulated as shown in Figure 4.1. Such a topology is
commonly used for data center simulation purpose [Munir et al., 2014][Vamanan et al., 2012][Wil-
son et al., 2011]. The total number of hosts in this topology is 160, which are interconnected by
4 ToR switches that are connected through 2 aggregation switches. Single core switch facilitates
connections between aggregation switches. Each link between the end host and ToR has 1 Gbps,
and all other links are 10 Gbps. Hence, the topology is oversubscribed by 4:1 for up link from ToR
switch. In the simulation, the minimum round trip propagation delay (without queuing) for flows
between end hosts going through core switch is 300µs.

4.6.1 Simulation Setup
In simulation, flow arrivals follow Poisson process. The size of the flow is chosen from a

uniform distribution within the interval of [2KB,198KB] [Munir et al., 2014]. With the help of
load, the arrival rate of flows is changed. Such a traffic pattern is already used in previous study
[Hong et al., 2012][Munir et al., 2014][Wilson et al., 2011]. These flows are the replication of mice
flows in data center. For simulating elephant flows long-lived FTP flows are generated. In this
simulation drop-tail queue with a maximum size of 40 packets (number of hosts per ToR) is used.
The maximum size of jumbo frame allowed here is 9000 bytes. For comparison purpose different
versions of TCP (Tahoe, Reno, Newreno, Sack) were used. JFEPM is compared with the different
version of TCP besides different packet sizes (800, 1000, 1200, 1460 bytes) at different loads (0.1 to
0.95). The load was divided into three categories moderate (0.1 - 0.4), average (0.5 - 0.7) and heavy
(0.8 - 0.95). The Average Flow Completion Time (AFCT) and the number of packets dropped are
the performance metrics to compare JFEPM with the original version of TCP.

4.6.2 Simulation Results
In the graphs, one can note that JFEPM is more beneficial when packet sizes are small;

because in this case, a jumbo frame can merge more small packets. Here Max difference represents
the maximum FCT difference between JFEPM and original version of TCP in the microseconds.
The load at which the maximum difference is achieved is also shown after ‘/’ sign. For example,
when packet size is 800 bytes JFEPM can reduce maximum 33 µs at load 0.6 in Tahoe (Table 4.2).
Avg gain represents an average reduction of FCT, irrespective of load. In this section for better
explanation of results, the term percentage change is defined as

original FCT− jfepm FCT
original FCT ×100

which represents comparative change. Max percentage at load is the maximum gain in percentage
change and Avg percentage is average percentage change.

71



TCP-Tahoe
Tahoe is the simplest version of TCP. The proposed scheme, JFEPM, performs better with

TCP-Tahoe compared to original one. These graphs are 3-d graphs that represent the load on one
axis and packet size in bytes on the other axis. For clarity, tables of profit gained by JFEPM are
given.

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0.95 800

 1000

 1200

 1460

 0.1

 0.2

 0.3

 0.4

 0.5

A
F

C
T

(in
 m

s)

Tahoe
with JFEPM

Load Packet-size(in Bytes)

A
F

C
T

(in
 m

s)

Figure 4.5. : AFCT of Tahoe

Size Max
difference
(in µs)/load

Avg gain
(in µs)

Max% /load Avg gain % Reduction
factor

800 33/0.6 19.58 42.17/0.1 21.33 0.90
1000 26.5/0.5 13.81 31.90/0.4 14.38 0.93
1200 21.2/0.5 9.98 33.39/0.4 11.76 0.94
1460 14.4/0.5 5.89 28.16/0.3 13.11 0.96

Table 4.2. : Difference of AFCT between JFEPM and Tahoe

The performance of JFEPM with Tahoe for AFCT is shown in Figure 4.5 and Table 4.2. As
shown in Table 4.2, Avg gain for AFCT of JFEPM decreases with the increase of packet size. The
maximum FCT difference is achieved on average load while the maximum percentage is achieved
on moderate load. When the packet size is 800 bytes JFEPM is able to reduce flow latency by a
factor of 0.90. Similarly for packet size of 1000 bytes the latency is reduced by a factor of 0.93; for
1200 bytes packets this factor is 0.94; for 1460 bytes packets this factor is 0.96 for FCT.

72



Size Max
difference
/load

Avg
difference
(packets)

Max
difference
%/load

Avg
difference
%

Reduction
factor

800 5477/0.95 3015.4 60.66/0.1 24.82 0.92
1000 3266/0.6 1963.8 32.74/0.4 15.72 0.94
1200 2509/0.6 1150.8 34.36/0.4 12.09 0.96
1460 1732/0.5 375.3 35.71/0.1 14.60 0.98

Table 4.3. : Difference of dropped packets between JFEPM and Tahoe

Figure 4.6. : Number of packets dropped of Tahoe

The performance of JFEPM with Tahoe for the number of packets dropped is shown in
Figure 4.6 and Table 4.3. As shown in Table 4.3, Avg difference for the number of packet dropped
between JFEPM and original Tahoe decreases with the increase of packet size. The maximum
percentage is achieved on a moderate load. When the packet size is 800 bytes JFEPM is able to
reduce the number of dropped packets by a factor of 0.92. Similarly for packet size 1000 bytes same
factor is 0.94; and for 1200 bytes packets this factor is 0.96; for 1460 bytes packets this factor is
0.98 for dropped packets.

TCP-Reno
TCP-Reno can detect the packet loss before a timeout with three duplicate acknowledg-

ments. Reno after detecting loss sets the congestion window to half of the current congestion
window.

The performance of JFEPM with Reno for AFCT is shown in Figure 4.7 and Table 4.4.
As shown in Table 4.4, Avg gain for AFCT of JFEPM is reduced with the increase of packet size.
The maximum FCT difference is achieved on average load while maximum percentage reduction of
FCT is achieved on moderate load. When the packet size is 800 bytes JFEPM is able to reduce
flow latency by a factor of 0.82. Similarly for packet size of 1000 bytes this factor is 0.86; for 1200
bytes packets same factor is 0.89; for 1460 bytes packets this factor is 0.91 for FCT.

The performance of JFEPM with Reno for number of packet dropped is shown in Figure
4.8 and Table 4.5. As shown in Table 4.5, Avg difference for number of packet dropped between
JFEPM and original Reno is reduced with the increase of packet size. When the packet size is 800

73



 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0.95 800

 1000

 1200

 1460

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

A
F

C
T

(in
 m

s)

Reno
with JFEPM

Load Packet-size(in Bytes)

A
F

C
T

(in
 m

s)

Figure 4.7. : AFCT of Reno

Size Max
difference
(in µs)/load

Avg gain
(in µs)

Max% /load Avg gain % Reduction
factor

800 61.94/0.7 49.91 54.74/0.1 26.82 0.82
1000 51.62/0.7 38.13 39.43/0.1 21.22 0.86
1200 34.67/0.7 27.40 36.76/0.1 19.0 0.89
1460 28.87/0.6 18.52 45.49/0.1 18.84 0.91

Table 4.4. : Difference of AFCT between JFEPM and Reno

bytes JFEPM is able to reduce the number of dropped packets by a factor of 0.84. Similarly for
packet size 1000 bytes same factor is 0.88; for 1200 bytes packets this factor is 0.90; for 1460 bytes
packets this factor is 0.93 for dropped packets.

TCP-Newreno
TCP-Newreno is able to detect multiple packet losses and improves re-transmission during

the fast recovery of Reno. Newreno does not exit fast recovery until all the data that was transmitted
before congestion episode is acknowledged, so reduction of the congestion window is only once even
there are multiple packets dropped in Newreno.

74



Figure 4.8. : Number of packets dropped in Reno

Size Max
difference
/load

Avg
difference
(packets)

Max
difference
%/load

Avg
difference
%

Reduction
factor

800 13778/0.95 7790.3 56.57/0.1 27.37 0.84
1000 9263/0.8 5730 40.65/0.1 21.31 0.88
1200 6800/0.95 4077.5 38.02/0.1 19.28 0.90
1460 4142/0.6 2521.2 48.52/0.1 19.40 0.93

Table 4.5. : Difference of dropped packets between JFEPM and Reno

Size Max
difference
(in µs)/load

Avg gain
(in µs)

Max% /load Avg gain % Reduction
factor

800 20.27/0.5 10.67 38.39/0.3 19.19 0.94
1000 18.17/0.5 7.14 33.34/0.4 13.60 0.96
1200 14.58/0.5 6.82 32.61/0.4 11.88 0.96
1460 9.72/0.9 4.51 27.89/0.2 12.16 0.97

Table 4.6. : Difference of AFCT between JFEPM and Newreno

The performance of JFEPM with Newreno for AFCT is shown in Figure 4.9 and Table
4.6. As shown in Table 4.6, Avg gain for AFCT of JFEPM decreases with the increase of packet
size. As shown in Table 4.6, The maximum percentage is achieved on moderate load. When the
packet size is 800 bytes JFEPM is able to reduce flow latency by a factor of 0.94. Similarly for a
packet size 1000 bytes this factor is 0.96; for 1200 bytes packets same factor is 0.96; for 1460 bytes
packets this factor is 0.97 for FCT.

75



 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0.95 800

 1000

 1200

 1460

 0.1

 0.2

 0.3

 0.4

 0.5

A
F

C
T

(in
 m

s)

Newreno
with JFEPM

Load Packet-size(in Bytes)

A
F

C
T

(in
 m

s)

Figure 4.9. : AFCT of Newreno

Size Max
difference
/load

Avg
difference
(packets)

Max
difference
%/load

Avg
difference
%

Reduction
factor

800 4196/0.95 1969.4 53.90/0.1 24.20 0.94
1000 2504/0.9 1308.9 35.83/0.4 15.80 0.96
1200 2311/0.95 1041.4 35.59/0.4 13.28 0.96
1460 1123/0.5 478.8 35.68/0.2 14.29 0.98

Table 4.7. : Difference of packets dropped between JFEPM and Newreno

The performance of JFEPM with Newreno for the number of packet dropped is shown in
Figure 4.10 and Table 4.7. As shown in Table 4.7, Avg difference for the number of packet
dropped between JFEPM and original Newreno is reduced with the increase of packet size. When
the packet size is 800 bytes JFEPM is able to reduce the number of dropped packets by a factor of
0.94. Similarly for packet of size 1000 bytes this factor is 0.96; for 1200 bytes packets same factor
is 0.96; for 1460 bytes packets this factor is 0.98 for dropped packets.

TCP-Sack
Sack uses selective acknowledgment for minimizing re-transmission. Due to selective ac-

knowledgment, the sender comes to know about lost packets and then transmit only the lost packets.

76



Figure 4.10. : Number of dropped packets in Newreno

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0.95 800

 1000

 1200

 1460

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

A
F

C
T

(in
 m

s)

Sack
with JFEPM

Load Packet-size(in Bytes)

A
F

C
T

(in
 m

s)

Figure 4.11. : AFCT of Sack

The performance of JFEPM with Sack for AFCT is shown in Figure 4.11 and Table 4.8.
As shown in Table 4.8, the maximum percentage is achieved on moderate load. When the packet
size is 800 bytes JFEPM is able to reduce the flow latency by a factor of 0.96. Similarly for packet
size 1000 bytes the latency is reduced by factor of 0.96; for 1200 bytes packets this factor is 0.96;

77



Size Max
difference
(in µs)/load

Avg gain
(in µs)

Max% /load Avg gain % Reduction
factor

800 9.83/0.95 6.77 33.76/0.2 13.97 0.96
1000 10.57/0.5 5.85 37.86/0.1 14.36 0.96
1200 8.77/0.5 6.61 30.31/0.2 13.40 0.96
1460 11.02/0.5 5.23 44.03/0.1 16.33 0.96

Table 4.8. : Difference of AFCT between JFEPM and Sack

for 1460 bytes packets this factor is 0.96 for FCT.

Figure 4.12. : Number of dropped packets in Sack

Size Max
difference
/load

Avg
difference
(packets)

Max
difference
%/load

Avg
difference
%

Reduction
factor

800 5264/0.95 2013.3 40.88/0.1 17.81 0.93
1000 3130/0.9 1465.6 43.18/0.1 17.15 0.95
1200 2646/0.95 1335.1 33.33/0.2 15.46 0.95
1460 1407/0.5 806.3 48.94/0.1 18.37 0.97

Table 4.9. : Difference of packets dropped between JFEPM and Sack

The performance of JFEPM with Sack for number of packets dropped is shown in Figure
4.12 and Table 4.9. As shown in Table 4.9, Avg difference for number of packets dropped between
JFEPM and original Sack is reduced with the increase of packet size. The maximum difference
of packet drop is achieved on heavy load while the maximum percentage is achieved on moderate
load. When the packet size is 800 bytes JFEPM is able to reduce number of dropped packets by a
factor of 0.93. Similarly for packet size 1000 bytes the same factor is 0.95; for 1200 bytes packets
this factor is 0.95; for 1460 bytes packets this factor is 0.97 for dropped packets.

78



4.7 SUMMARY
JFEPM opportunistically utilizes the oversubscribed topology structure of data center. This

chapter shows that the approach of jumbo frames is helpful to reduce the latency of the flows in the
data center networks when the buffer size at the switch is equal to the number of hosts in the rack.
With the help of jumbo frames, frequent switching on higher level switches can be reduced. JFEPM
does not require any change at end hosts. However it requires modification in buffer management
policy at ToR switch only. JFEPM does not require any prior information about flow like deadline or
size. This scheme treats all types of flows equally, so it is a deadline agnostic approach to reducing
flow completion time. For the sake of validation of the scheme a simple analytical reasoning is
presented, as well as simulation is performed with multiple well known TCP versions. Simulation
results show that JFEPM is helpful to scale down the latency in data center. The amount of benefit
given by JFEPM is different for different TCP versions. This reduction in average flow completion
time would encourage application developers to invest more time for processing. As well service
provider can also meet their service level agreements.

…

79




