
Annexure A
Data Distribution over Multipath

A.1 INTRODUCTION
Now a days data centers, smart phones and Internet devices are becoming multi-homed. To

effectively utilize multiple links between two communicating end points, it is needed to use all the
available interfaces for data transmission. MultiPath Transmission Control Protocol (MPTCP) is
an effort that enables end points to distribute data over all the available interfaces simultaneously.
However, the mechanism proposed for distributing data over available multiple links can not fully
utilize the network resources because it does not consider the end-to-end delay and congestion
state of subflows. As the conditions in each path are different, the data transmitted by different
subflows arrives out of order at the receiver. The problem is more severe in an environment where
the characteristics of each available link are drastically different. This causes the receiver to send
duplicate acknowledgements which may be wrongly inferred as packet loss by the sender. This
degrades the performance of MPTCP significantly because re-ordering is interpreted as a sign of
congestion. This Annexure proposes a scheduling algorithm to reduce the packet re-ordering by
predicting the data segments to be transmitted by each of the subflows of MPTCP. The proposed
algorithm works based on the RTT and congestion state of subflows. The proposed scheduling
algorithm tries to cope up with the asymmetry of the links.

A.2 MPTCP
Multipath TCP, as proposed by the Internet Engineering Task Force (IETF) [Raiciu et al.,

2011], allows a single data stream to split across multiple paths. This has an obvious benefit for
reliability, and it can also lead to more efficient use of network resources. Since 1980’s TCP/IP
communication is using single path per TCP connection, while today most of the networking devices
are equipped with multiple interfaces. TCP by itself is not capable of efficiently and transparently
using the interfaces available on a multi-homed host. Therefore, in order to fully utilize all the
network resources it is needed to move from single path protocols to multipath protocols.

In MPTCP, available resources are pooled in such a way that they appear as a single
connection to application users. Multipath transmission capability uses a resource pooling proposed
by [Wischik et al., 2008] to increase bandwidth, by simultaneously making use of multiple disjoint
(or partially disjoint) paths across a network. The initial goal of multipath TCP is to use multiple
paths between the end hosts when one or both are multi-homed. MPTCP is more attractive because
it is backward compatible with existing TCP applications. Each subflow of an MPTCP connection
is treated as a single TCP connection. In MPTCP, every subflow has its own sequence number and
congestion window.

A.3 MOTIVATION
The sender generates a data stream with an in-order sequence of data packets. Due to

dynamics of the network, the sequence of data packets may change. Then when an out of order
packet is received, the receiver responds with duplicated acknowledgements (DupACK) indicating

103

the sender to infer wrongly a packet loss and enter into congestion control stage unnecessarily. This
results in lower overall end-to-end performance. In multipath TCP, segment re-ordering would
happen if paths have different characteristics such as end-to-end delay, congestion state, and data
rates etc. as described in [Barré et al., 2011]. Figure A.1 shows the impact of re-ordering at the
receiver side. There are two paths, subflow 1 is low delay path (fast path) and subflow 2 is on high
delay path (slow path). Segments are numbered as 1, 2, 3....etc. and transmitted on both subflows.
Segments 1 and 2 have been transmitted by fast path and received in-order and directly went to the
receive buffer at the receiver side. However the segment 3 is scheduled on slow path and it is still
in-transit before segments 4, 5, 6, and 7 have been reached to the receiver side by the fast path and
waiting for segment numbered 3 into out of order buffer. Segments waiting in out of order buffer
will go in receive buffer when segment number 3 is received by the receiver.

In general, when a data segment arrives out of order at the receiver, it goes into out of order
buffer and waits until receiving a segment that resolves the order. If a packet arrives in-order then
it will go directly into receiver buffer from where data is transmitted to the application layer.

Figure A.1. : Re-ordering problem

A.3.1 Problem with Current Scheduler
Current multipath TCP scheduler takes the next available segment from the shared send

buffer, whenever it is called. To illustrate the problem, consider the following scenario which is
also illustrated by Figure A.2. Suppose two subflows are used, subflow 1 has an estimated RTT of
100ms, while subflow 2 has an estimated RTT of 10ms and both have a current congestion window
of 3000 bytes. Subflow 1 requests the scheduler for new data, because its congestion window has
been fully acknowledged. On the other hand, the faster subflow 2 is not available currently. In such
a situation, current scheduler will allocate segments 3 and 4 (assuming an MSS of 1460 bytes) to
subflow 1, and will receive the corresponding acknowledgements 100ms later. This is clearly sub-
optimal, as by waiting a maximum of 10ms, subflow 2 would have been able to transmit, allowing
the data to be acknowledged within 20ms instead of 100ms. Continuing this reasoning, one can
observe that as many as 18 segments (with a MSS of 1460 bytes) would have been be acknowledged
faster if they had been sent over subflow 2.

Figures A.1 and A.2 describe the problems in concurrent transmission due to an asymmetric
link between two ends. Figure A.1 describes the problem at the receiver side, due which the overall
application latency increases. Figure A.2 describes the problem of blocking of fast path due to
slow path at sender side when bottommost segment (i.e., next available segment in send buffer) is
scheduled and links are asymmetric in nature. The problem with the data scheduler of MPTCP is

104

how to distribute data among subflows with different characteristics?

The solution of the above stated problem is to choose an appropriate segment for subflow
in order to minimize the re-ordering at receiver side. The new scheduler would then take directly
segments 19, 20 and feed them to subflow 1. Doing so will reduce the connection level re-ordering
at the receiver and avoid the transmission of DupACKs by the receiver and thus reducing the total
latency of application.

Figure A.2. : Proposed algorithm for subflow segment estimation

A.4 PROPOSED ALGORITHM
The proposed algorithm assumes that for all subflows the size of the segment is same. In

this algorithm each chunk of size 1400 bytes in the sender’s send buffer is assigned a number called
segment number. At the receiver side, there are two buffers, one is receiver buffer (which receives
the data segments that are in-order and delivers them to application layer) and other is out of order
buffer (which holds the data segments that arrive out of order). The proposed algorithm tries to
predict the segment number for a given subflow based on the RTT and congestion state information
by assuming that the remaining segments with lower number will be sent by other subflows which
have lower RTT. The algorithm predicts the segment number by integrating the round trip time
and the congestion state of the subflow. Each subflow has a unique identifier, subflow id. A segment
number is assigned to a chunk of bytes coming from application layer to the send buffer at transport
layer. The proposed algorithm further assumes that the lost segments are re-transmitted on the
same subflow.

The following notations are used in the proposed algorithm to estimate the segment number
for a subflow c with round trip time rttc and congestion window cwndc, This approach considers
all the subflows i with round trip time rtti and congestion window cwndi that satisfy the following
conditions.

∀ subflowi ∈ subflowlist

105

Algorithm 5 Segment Estimation Algorithm for Subflow c

Estimate Seg Number(subflow id)
rttc ← subflowc(RTT) and
cwndc ← subflowc(cwnd)
segment#estimated ← next segment in send buffer
if (rttc = 0) then
return (segment#estimated) /*if this is the first packet to be transmitted by subflow c*/

else
for each subflowi ∈ (subflow list− subflowc) do

rtti ← subflowi(RTT) and
cwndi ← subflowi(cwnd)
ratio = rttc

rtti
if (ratio > 1) then
Estimate cwndi = CalCwnd(ratio, subflowi) /* CalCwnd() returns the number of segments
that will be sent by subflowi before the estimated segment */
segment#estimated += cwndi

end if
end for
return (segment#estimated)

end if

rtti < rttc and subflowi ̸= subflowc

The ratio of round trip times of subflows c and i (i.e., RT Tc

RT Ti
) indicates that the subflow i will

get RT Tc

RT Ti
times higher number of chances (or transmission opportunities) to transmit the data

before the subflow c gets a chance to transmit data. The algorithm also considers congestion
window growth of the subflow i. That is on an average how much data it will be able to transmit
in a iterations. To estimate the congestion window growth of subflow i, our proposed algorithm
considers the congestion phases for subflow (i.e. slow start and congestion avoidance). Based on the
congestion phase of subflow, the algorithm tries to calculate the growth of congestion window. To
calculate the offset, the procedure CalCwnd (), given in Algorithm 6, uses the congestion control
mechanism used by MPTCP.

To obtain the data segment to be transmitted by sublows c, this scheme adds the offset for
each subflow i that satisfies the following condition.

RT Tc

RT Ti
> 1

Initially, when a subflow requests data, the algorithm returns the bottommost segment (i.e., next
available segment) from send buffer as the scheduler has no idea about the characteristics of subflows
(or paths). From the next time step, the segment is to be transmitted by a subflow is estimated by
considering the RTTs and the state of the congestion information of all subflows. The algorithm
estimates the segments to be transmitted by subflow c when the ratio of the RTTs of subflow c and
subflow i is greater than 1. If the ratio is less than 1, the proposed algorithm simply schedules the
next available segment in send buffer for subflow c. In other words, all subflows having larger RTTs
compared to that of the subflow c will not get a chance to transmit in the current time instance.

106

Algorithm 6 Segment Estimation Algorithm
CalCwnd(ratio, subflowi)
i_cwnd ← subflowi(cwnd)
Incrementss ← 1 /* for slow start */
Incrementca ← 0 /* for congestion avoidance */
if (subflowi is in slow start phase) then

for i = 1 to ratio do
Incrementss ← (2*Incrementss)

end for
for j = 1 to (Incrementss*cwndi) do

cwndestimated = INCR_CWND(subflowi, cwndi)
cwndi += cwndestimated

end for
return (cwndi)

else
/* subflow is in congestion avoidance phase */
for i = 1 to ratio do

Incrementca ← (1+Incrementca)
end for
for j = 1 to (Incrementca + cwndi) do

cwndestimated = INCR_CWND(subflowi, cwndi) /* INCR_CWND() is used by MPTCP to
increase the congestion window when it receives acknowledge */
cwndi += cwndestimated

end for
return(cwndi)

end if

During the estimation of segment number for a subflow c, for all subflows i which satisfy the above
stated condition (ratio>1), the algorithm checks the congestion state of subflow i. Depending on
the state of the congestion control mechanism, the function CalCwnd() calculates on an average
how many segments will be transmitted by subflow i after RT Tc

RT Ti
iterations. As followed in previous

versions of TCP, the congestion window of subflow i would become double after every RT T time
when it is in slow start phase. The congestion window increases by one per RTT when it is in
congestion avoidance phase. In order to avoid over estimation of segments the proposed algorithm
considers only the value of congestion window after RT Tc

RT Ti
iterations for the offset.

The advantages of the proposed algorithm are:

• Less re-ordering at receiver side,

• Small receive buffer at connection level at the receiver,

• Reduced average waiting time of segment in order to deliver to the receiver application,

• Less number of re-transmissions and out of order segments received at receiver side, and

• Fast data delivery to the application.

107

A.5 EVALUATION
The proposed algorithm is implemented in NS-3 simulator. The segment size for each sub-

flow is taken as 1400 bytes in simulations. The performance of the proposed algorithm is compared
with that of simple MPTCP, in which data scheduler schedules the next available segments from
the sender’s send buffer to the available subflow whenever it is called.

A.5.1 Simulation Setup
The simulation studies are performed for two scenarios, two subflows and three subflows.

Two Subflows
The simulation topology for two subflows is shown in Figure A.3. The characteristics of

subflows for different scenarios are presented in Table A.1. To simulate two subflows scenario, 6
configurations have been taken to compare the performance of the proposed algorithm with that of
MPTCP.

Figure A.3. : Simulation Topology for 2 subflows

Delay Ratio Subflow0 Subflow1

1: 1 10 ms,10 Mbps 10 ms,10 Mbps
1: 5 10 ms,10 Mbps 50 ms,10 Mbps
1: 10 10 ms,10 Mbps 100 ms,10 Mbps
1: 15 10 ms,10 Mbps 150 ms,10 Mbps
1: 20 10 ms,10 Mbps 200 ms,10 Mbps
1: 25 10 ms,10 Mbps 250 ms,10 Mbps

Table A.1. : Characteristics of subflows in two subflow scenario

Three Subflows
The simulation topology for three subflows is shown in Figure A.4. The characteristics of

subflows for different scenarios are presented in Table A.2 for three path scenario. For the three
subflows, three configurations namely Type1, Type2 and Type3 are considered.

A.5.2 Simulation Results
To compare the results, the performance metrics used in this work are the number of re-

transmissions, the number of re-ordered segments received at receiver, and the average waiting time.
In case of link asymmetry, the overall performance of multipath TCP suffers as re-ordering at the
receiver causes re-transmission of segments and also increases the waiting time of segments at out
of order buffer. One can notice that MPTCP shows improved performance when it is augmented
with the proposed algorithm which predicts the segment to be transmitted in order to minimize
the re-ordering at the receiver.

108

Figure A.4. : Simulation Topology for 3 subflows

(a) Type1

Subflow0 Subflow1 Subflow2

20 ms 50 ms 100 ms
25 Mbps 10 Mbps 10 Mbps

(b) Type2

Subflow0 Subflow1 Subflow2

20 ms 50 ms 100 ms
20 Mbps 10 Mbps 25 Mbps

(c) Type3

Subflow0 Subflow1 Subflow2

10 ms 50 ms 250 ms
10 Mbps 50 Mbps 25 Mbps

Table A.2. : Characteristics of subflows in three subflow scenario

Two Subflows
Figures A.5, A.6, and A.7 show the performance of MPTCP and the proposed algorithm for

two subflows. It is clear from these results that the proposed algorithm augmented with MPTCP is
able to reduce the number of re-transmitted segments, total number of re-ordered segments received
at receiver and average waiting time per segments as compared to MPTCP.

In case of symmetric links, the performance (in terms of total re-transmissions, total re-
ordered segments and average waiting time per segments) of the proposed algorithm augmented
with MPTCP is same as that of original MPTCP as shown in Figures A.5, A.6 and A.7 for two
subflows when delay ratio is 1: 1. In asymmetric scenarios when delay ratio between subflows are
1: 5, 1: 10, 1: 15, 1: 20 and 1: 25 with two subflows, the proposed data distribution algorithm
estimates segments for subflows by considering their characteristics and performs much better than
original MPTCP.

Three Subflows
Figures A.8, A.9, and A.10 show the performance of MPTCP and the proposed algorithm

for three subflows with different flows characteristics. In the case of three subflows, Figures A.8,
A.9, and A.10 show the performance improvement of the proposed algorithm over MPTCP.

109

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1:1 1:5 1:10 1:15 1:20 1:25

N
um

be
r

R
et

ra
ns

m
itt

ed
 S

eg
m

en
ts

Different Link Asymmetry

MPTCP+Proposed Algo
MPTCP

Figure A.5. : Total number of re-transmissions

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1:1 1:5 1:10 1:15 1:20 1:25

N
um

be
r

R
eo

rd
er

 S
eg

m
en

ts

Different Link Asymmetry

MPTCP+Proposed Algo
MPTCP

Figure A.6. : Total number of re-ordered segments

A.5.3 Our Contribution
To meet the requirements of data distribution mechanism in multipath TCP, this algorithm

proposes a scheduler at transport layer that predicts the data segment to be transmitted for a
subflow that is currently requesting segments for transmission. The segment to be transmitted by
a subflow is estimated based on round trip time and current congestion window (CWND). The
scheduler minimizes the total re-ordering at the destination and reduces the segment waiting time
of segment in the receive buffer at the receiver.

110

 0

 0.005

 0.01

 0.015

 0.02

 0.025

1:1 1:5 1:10 1:15 1:20 1:25

A
ve

ra
ge

 W
ai

tin
g

T
im

e

Different Link Asymmetry

MPTCP+Proposed Algo
MPTCP

Figure A.7. : Average waiting time per segment

A.6 SUMMARY
This work examined that how to improve the overall performance of multipath TCP by

estimating the segment for a given subflow in order to minimize the re-ordering at the receiver.
With the proposed algorithm, the number of re-transmissions, average waiting time of segments
and out of order segments received at receiver side are reduced. This work found that in case of
asymmetric link, the overall performance of simple multipath TCP suffers due to re-ordering at
the receiver. The performance of the proposed algorithm with MPTCP is same as that of simple
MPTCP in the case of symmetric links between end nodes.

…

111

 0

 100

 200

 300

 400

 500

 600

Type 1 Type 2 Type 3

N
um

be
r

R
et

ra
ns

m
itt

ed
 S

eg
m

en
ts

Different Link Asymmetry

MPTCP+Proposed Algo
MPTCP

Figure A.8. : Total number of re-transmissions

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

Type 1 Type 2 Type 3

N
um

be
r

R
eo

rd
er

 S
eg

m
en

ts

Different Link Asymmetry

MPTCP+Proposed Algo
MPTCP

Figure A.9. : Total number of re-ordered segments

112

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

Type 1 Type 2 Type 3

A
ve

ra
ge

 W
ai

tin
g

T
im

e

Different Link Asymmetry

MPTCP+Proposed Algo
MPTCP

Figure A.10. : Average waiting time per segment

113

