List of Figures

Figures	Title	page
1.1	Philosophy of Data center	2
1.2	Industries relying on the Data center	3
1.3	Importance of Latency	4
1.4	Example of Aggregation/Partition technique [Wilson et al., 2011]	5
1.5	The problem of Incast in Aggregation/Partition	6
1.6	Global Data center traffic in 2020 [Cisco, 2015]	6
1.7	Queuing of mice flows	7
1.8	Multipath topology in Data center	9
1.9	An example of flow and packet-level multipath routing	10
2.1	Bisectional width of network	14
2.2	An example of 2 and 3-tier topologies	16
2.3	An example of Tree-based topology	17
2.4	An example of k=4 Fat-Tree topology	18
2.5	Example of n=4, Bcube1 topology [Guo et al., 2009]	19
2.6	Example of n=4, DCell topology [Guo et al., 2008]	20
2.7	An example of VL2 topology	20
2.8	Example of c-Through topology [Wang et al., 2010]	21
2.9	Example of Helios topology [Farrington et al., 2010]	22
2.10	DCTCP congestion control	25
2.11	HULL architecture [Alizadeh et al., 2012]	25
2.12	HULL topology	26
2.13	Gamma-correction function [Vamanan et al., 2012]	27
2.14	Resource reservation-based scheme (PDQ)	28
2.15	Disadvantages of fair share policy for delay sensitive traffic	28
2.16	Dynamic mapping of 4 flows to 2 queue and its advantage	29
2.17	Max-min timeslot allocation [Perry et al., 2014]	29
2.18	Priority based scheduling/dropping in pFabric	30
2.19	On-path data aggregation [Mai et al., 2014]	31
2.20	Base RTT estimation in DX	31
2.21	QJUMP design	32
2.22	Key components of NDP [Handley et al., 2017]	33
2.23	Path change in dynamic load-balancing scheme	35
2.24	Flow and Packet-level load-balancing	35
2.25	Source and Switch based load-balancing	36
2.26	Flow placement in Hedera with GFF	37
2.27	CONGA load-balancing	38
2.28	Cross-layer protocol stack of DeTail	39
2.29	Problem of load oblivious load-balancing in ECMP	39
2.30	MPTCP architecture	40
2.31	load-balancing in MPTCP	40
2.32	Presto architecture	41

2.33	Packet aggregation using GRO [He et al., 2015]	41
2.34	Hermes overview [Zhang et al., 2017]	43
2.35	Working of Flowtune	44
3.1	3-tier data center topology	48
3.2	2-tier simulation topology for TAP	51
3.3	3-tier simulation topology for TAP	52
3.4	2-tier: Average flow completion time	53
	2-tier: Total timeout events	53
3.5 3.6	2-tier: Total flow duration	54
3.0 3.7	2-tier: Average throughput of large flows	54 54
3.8	CDF of 99.5 th percentile flow completion time of 2-tier data center	55
	3-tier: Average flow completion time	56
3.9 2.10	3-tier: Total timeout events	56
3.10 3.11	3-tier: Total flow duration	50 57
3.12	3-tier: Average throughput of large flows	57
-	CDF of 99.5 th percentile flow completion time of 3-tier data center	58
3.13	Simulation topology for TP-SRSF	59 59
3.14	Average flow completion time for TP-SRSF	59 59
3.15	Total timeout events for TP-SRSF	59 59
3.16	Total flow duration for TP-SRSF	59 60
3.17	Average throughput of large flows for TP-SRSF	60 60
3.18	Effect of flow preemption	61
3.19 3.20	CDF of 99.5 th percentile flow completion time of TP-SRSF	61
4.1	Data center topology with oversubscription	64
4.2	Average flow completion time Vs Packet size	65
4.3	Number of packets dropped Vs Packet size	65
4.4	Packet merge and split at ToR switch	68
4.5	AFCT of Tahoe	72
4.6	Number of packets dropped of Tahoe	73
4.7	AFCT of Reno	74
4.8	Number of packets dropped in Reno	75
4.9	AFCT of Newreno	76
4.10	Number of dropped packets in Newreno	77
4.11	AFCT of Sack	77
4.12	Number of dropped packets in Sack	78
5.1	Fat-Tree Data center topology	82
5.2	Flow collision in faulty network	82
5.3	Network after re-routing of flow F2	83
5.4	An example of naive path selection scheme	83
5.5	An example of FlowFurl Algorithm	85
5.6	Topology used for simulations	91
5.7	Flow distribution with size at different load	92
5.8	Mean flow latency	93
5.9	Tail flow latency	93
5.10	Average throughput of flows	94
- 5.11	Total number of packets dropped	94
5.12	Number of re-routeing events	95
- 5.13	Deadline achieve	95
5.14	Mean flow latency normalized to ECMP	96

5.15	Tail flow latency normalized to ECMP	96
5.16	Number of re-routeing events normalized to FlowFurl-Basic	97
5.17	Deadline achieve	97
5.18	Toy topology with only two path between end hosts	98
5.19	Behavior of flow-level switching	98
A.1	Re-ordering problem	104
A.2	Proposed algorithm for subflow segment estimation	105
A.3	Simulation Topology for 2 subflows	108
A.4	Simulation Topology for 3 subflows	109
A.5	Total number of re-transmissions	110
A.6	Total number of re-ordered segments	110
A.7	Average waiting time per segment	111
A.8	Total number of re-transmissions	112
A.9	Total number of re-ordered segments	112
A.10	Average waiting time per segment	113