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Literature Survey

We first provide the basic graph theoretic definitions and notations used in the thesis.

2.1 NOTATION AND BASIC DEFINITIONS
A digraph G = V (G),E(G) is a collection of a vertex set V (G) and an edge set E(G)⊆

V (G)×V (G). The cardinality of the set V (G) is also called the order of G. An edge (u,u) is called
a loop at the vertex u. A simple graph is a special case of a digraph, where E(G) ⊆ {(u,v) : u= v};
and if (u,v) ∈ E(G), then (v,u) ∈ E(G). A weighted digraph is a digraph equipped with a weight
function f : E(G)→ C. In general weights of edges can be positive or negative, hence we call G a
weighted signed digraph.

If V (G) = /0 then, the digraph G is called a null graph. A subdigraph of G is a digraph H,
such that,V (H)⊆V (G) and E(H)⊆ E(G). The subdigraph H is an induced subdigraph ofG if u,v∈
V (H) and if (u,v) ∈ E(G) then (u,v) ∈ E(H). Two subdigraphs H1 and H2 are called vertex-disjoint
subdigraphs ifV (H1)∩V (H2) = /0. A path of length k between two vertices v1 and vk is a sequence of
distinct vertices v1,v2, . . . ,vk,vk+1, such that, for all i= 1,2, . . . ,k, either (vi,vi+1) ∈ E(G) or (vi+1,vi) ∈
E(G). Additionally, if v1 = vk+1 then the path is a cycle of length k. We call a digraphG connected, if
there exists a path between any two distinct vertices. A component of G is a maximally connected
subdigraph of G. A cut-vertex of G is a vertex whose removal results in an increase in the number
of components in G.

Unless stated otherwise we consider a signed graph to be a graph G equipped with a
weight function f : E(G)→{−1,0,1}. Let G has n vertices v1,v2, . . . ,vn. Then, the adjacency matrix
A(G)=(ai j) of order n×n associated with G is defined by the components

ai j =






1 if the vertices vi,v j are connected with a positive edge
−1 if the vertices vi,v j are connected with a negative edge
0 if the vertices vi,v j are not connected

where, 1 ≤ i, j ≤ n. Often we denote the adjacency matrix A(G) simply by A when G is the only
signed graph under study. Every signed graph G has a underlying graph |G|, in which all the
negative edges are replaced by positive edges. Thus, the corresponding adjacency matrix of |G| is
|A(G)|or simply |A|.Two signedgraphs are called cospectral if the eigenvalues of the corresponding
adjacency matrices are same including their multiplicities.

In Chapter 1, we briefly described the concepts of strong balance and weak balance in
signed graphs (networks). Unless stated otherwise balance means strong balance in the thesis.

The rest of the chapter is organised as follows. In Section 2.2 we give necessary literature
survey related to social signed networks, their balance and sign prediction. In Section 2.4 we
state the concepts of matching and linear subdigraphs in Coates digraphs. These concepts are
frequently used in the thesis to calculate the determinant, permanent of squarematrices. Although
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the problems ofmatrix determinant and permanent has huge literature, In Section 2.5 we give their
brief literature survey which is used in our work.

2.2 SIGNED NETWORK, BALANCE
Despite the existence of myriad and complex relationships between social entities in the

real world, the main focus in the area of social networks has been friendship relationship. A
network is considered as a social network when the vertices represent social entities and a social
relationship between two vertices is represented by a link in the network. In his seminal work
on the analysis of balance cognitive units the Austrian psychologist, Fritz Heider distinguished
between two major types of relations [Heider, 1946]. One is concerned with the relationship
of love or likings, and the other one is about the relation of hate or disliking. The concept of
the balanced state of a relationship between three social entities was introduced by considering
certain combinations of these relations. Later, in 1956, the American mathematician Frank Harary
modeled the cognitive structure of balance which is consistent with Heider’s concept of balance
by introducing the concept of signed graphs [Cartwright and Harary, 1956; Harary et al., 1953].
In a signed graph, the vertices represent individuals and a positive link (link with a positive sign)
between two vertices reflects the existence of liking relationship, whereas, a negative link (link
with a negative sign) represents disliking.

In the context of understanding relationships of a person with others, the concept of
balanced state was introduced by Heider [Heider, 1946]. Besides, the attitude of a person towards
other persons was assessed by two types of triples which are involved in signed relations: those
involving three individuals and those of two individuals and a social object such as a belief. Later,
Cartwright and Harary [Cartwright and Harary, 1956] generalized and extended this concept in
the language of signed graphs in 1956, where such a graph structure was proposed in order to
obtain a mathematical model of the balanced cognitive unit. In their study of structural balance,
the concept of balance for a triad was proposed. A triad, which is a completely connected graph
on three vertices, is called balanced when the product of signs of its edges is positive. Otherwise,
a triad is called unbalanced. When this notion of balanced cycles is applied to signed networks it
leads to obtaining the following theorems for structural balance. As an outcome of the study of
Heider, it is believed that a signed social network evolves towards a balanced state otherwise a
state of unbalance will produce tension.

Theorem 2.1. [Harary et al., 1953] A signed network is balanced if and only if for each pair of distinct
vertices u and v all paths connecting u and v have same sign.

Theorem 2.2. [Acharya, 1980] Graphs G and |G| are isospectral if and only if G is balanced.

It may be noted that the theorems mentioned above can be used as criteria to determine
whether a given signed graph is balanced. Nonetheless, for substantially large networks, it could
be a computationally challenging task to verify these criteria, especially in dynamic networks.
Further, if a very small fraction of cycles in a large signed network is unbalanced it would be
unfair to call the entire network unbalanced. It is also shown in [Estrada and Benzi, 2014] that
the undirected versions of some real world signed social networks are not structurally balanced.
Indeed, Epinions: a trust-distrust network among users of the product review site Epinions[Guha
et al., 2004], Slashdot: a friend-foe network in the technological news site Slashdot [Lampe et al.,
2007], and WikiElection: a network representing the votes of the election of administrators in
Wikipedia [Burke and Kraut, 2008] are all unbalanced real networks. These observations trigger
off the following question: what is the level of balance exists in these networks. This calls for new
criteria to measure the balance of a signed networks, especially for large signed networks.

We recall that several metrics are proposed in the literature for measuring structural
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balance. For example, closed cycle-based methods are proposed in [Estrada and Benzi, 2014;
Cartwright and Harary, 1956].

One of such measures which is used in model conflict dynamics [Pelino and Maimone,
2012] is given by the ratio of the number of signed to unsigned triangles in a signed network as
follows

K =
trace(A3)

trace(|A|3) (2.1)

where A denotes the adjacency matrix of the signed network and |A| is the adjacency matrix of
the unsigned network constructed from the signed network by replacing all negative edges in to
positive edges. Obviously, −1 ≤ K ≤ 1. Indeed, K = −1 when the all triangles are unbalanced
and K = 1 when all triangles are balanced in the signed network. We mention that Equation (2.1)
is a special case of the relative m balance which is defined as the ratio of the number of positive
cycles of length at most m to the total number of cycles of length at most m introduced by Norman
and Roberts in 1978. The relative balance which was proposed in [El Maftouhi et al., 2012] is given
by

Km =
∑m≥3 f (m)X+

m

∑m≥3 f (m)(X+
m +X−

m )
, (2.2)

where X+
m (X−

m ) denotes the number of positive (negative) cycles of length m, and f (m) is a
monotonically decreasing function that weights the relative importance of cycles of length m.
Recently, a closed walk-basedmethod for measuring balance of signed networks is developed and
it concludes that signed social networks are highly unbalanced [Estrada and Benzi, 2014; Estrada
and Hatano, 2008; Crofts and Higham, 2009].

2.3 SIGN PREDICTION
Sign prediction problem deals with the inference of sign of an unknown link based upon

observation of the entire signed network. The key idea for a prediction of the sign of an edge is
the minimization of social unbalance [Chiang et al., 2014] assuming that a signed network evolves
towards balance. Since signs of edges contribute to calculate the degree of lack of balance in a
network, assigning of the sign of an edge and keeping the signs of other edges fixed, it either
minimizes or maximizes the social balance of a given network. Indeed, let us explain the idea of
using the balance for sign prediction as mentioned in [Chiang et al., 2011] as follows. Consider two
vertices u and v in the network such that Auv = 0 and we have a task to predict the sign of Auv. First,
add a positive edge between them and call the resulting augmented graph as G+(uv) and set Auv = 1
in the original graph. Similarly, add a negative edge between u and v to construct the augmented
graphG−(uv) and set Auv=−1 in original graph. Let (G) be number ofweighted unbalanced closed
walks in graph G of length > 2. Then the predicted sign of a link between u and v is defined by

sign (G−(uv))− (G+(uv)) = sign
k

∑
t=3

tAt−1
uv . (2.3)

2.4 MATCHINGS AND COATES DIGRAPH
A matching in a signed graph G is a collection of edges in which no two have a vertex

in common. The largest number of edges in a matching in G is the matching number m(G). A
matching with k edges is called a k-matching. A perfect matching of G, also called a 1-factor, is a
matching that covers all vertices of G.
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Figure 2.1 : Coates digraph and linear subdigraphs of (a) A2×2, where L1 and L2 are linear subdigraphs
(b) BalancedC4 where L1,L2,L3, and L4 are linear subdigraphs.

The Coates digraph D(A), generated from a matrix A of order n, has n vertices labeled as
1,2, . . . ,n and for eachpair of such vertices i, j a directed edge exists from j to i ofweight Ai, j [Brualdi
and Cvetkovic, 2008]1. The elements of the main diagonal of A corresponds to loops at vertices in
D(A). If diagonal elements of A are zero, then no loops are considered on corresponding vertices
of D(A). A linear subdigraph of D(A) is a spanning subdigraph of D(A) in which each vertex has
indegree 1 and outdegree 1, that is, exactly one edge into each vertex and exactly one (possibly the
same, in the case of the loop) out of each vertex. Thus a linear subdigraph consists of a spanning
collection of pairwise vertex-disjoint cycles. The weight of a linear subdigraph is the product of the

weights of edges in it. For example, the Coates digraph representation of the matrix A=
a11 a12
a21 a22

is given in Figure 2.1(a).

By the Coates digraph of a signed graph, wemean the Coates digraph corresponding to the
adjacency matrix of the signed graph. Consider a signed graph G and denote its Coates digraph
by D(G). For an edge between vertices i, j in G, there are two directed edges of equal weights
in D(G), one from i to j and other from j to i. This forms a directed cycle of length 2 which
we call a directed 2-cycle. In a linear subdigraph of D(G), if there are k such directed 2-cycles
then these appear due to the k matchings in G. So, there is a one-one correspondence between
matchings inG and directed 2-cycles in a linear subdigraph ofD(G) if it exists. Thus, by k-matching
in linear subdigraphs, we mean the existence of k vertex-disjoint directed 2-cycles. For example,
the Coates digraph of balanced C4 in Figure 1.1(a) is depicted in Figure 2.1(b). Note that, there are
two 2-matchings in balancedC4 in Figure 1.1(a). These are {(1,2),(3,4)}, and {(2,3),(1,4)}. In Figure
2.1(b), corresponding to thesematchings, there are two directed 2-cycles in linear subdigraph L3, L4,
respectively, in Coates digraph of the balancedCn. Nowwe recall the definition of the determinant
of the adjacency matrix A of G in terms of its linear subdigraphs in D(G) [Brualdi and Cvetkovic,
2008].

Theorem 2.3. Let A be square matrix of order n. Then

det(A) = (−1)n ∑
L∈L (A)

(−1)c(L)w(L), (2.4)

per(A) = ∑
L∈L (A)

w(L), (2.5)

1The direct edge for weight Ai, j can be taken from vertex i to j, it will not change the result
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where, w(L) is the weight of linear subdigraph L of the Coates digraph D(A), c(L) is the number of directed
cycles in L, and L (A) denotes the set of all linear subdigraphs of D(A).

2.5 DETERMINANT, PERMANENT AND THEIR COMPLEXITIES
The calculation of determinant and the permanent of a matrix is a classical problem

in literature [Abdollahi, 2012; Helton et al., 2009; Bibak, 2013; Pragel, 2012; Huang and Yan,
2012; Bibak and Tauraso, 2013; Bapat and Roy, 2014; Hwang and Zhang, 2003]. The digraph
representation of a matrix has also been used to calculate its determinant and the permanent
[Harary, 1962; Greenman, 1976; Brualdi and Cvetkovic, 2008]. In 1957, Collatz and Sinogowitz
proposed a well-known problem, to characterize graphs with positive nullity [Von Collatz and
Sinogowitz, 1957; Bibak, 2013]. The zero determinant of the adjacency matrix of a graph ensures
its positive nullity. Nullity of graphs is applicable in various branches of science, in particular,
quantum chemistry, Huckel molecular orbital theory [Lee and Li, 1994; Gutman and Borovicanin,
2011] and social network theory [Leskovec et al., 2010]. The permanent of a square matrix
has significant graph theoretic interpretations. It is equivalent to finding out the number of
cycle-covers in the directed graph corresponding to its adjacency matrix. Also, the permanent
is equivalent to a number of the perfect matching in the bipartite graph corresponding to its
biadjacency matrix. Theory of the permanent provides an effective tool in dealing with order
statistics corresponding to random variables which are independent but possibly nonidentically
distributed [Bapat and Beg, 1989].

The determinant of a square matrix can be solved in polynomial time using
LUP-decomposition, whereas computing the permanent of a matrix is an “NP-hard problem”
[Valiant, 1979; Wei and Severini, 2010]. The characteristic polynomial of a square matrix A, of
order n, is given by the determinant of matrix (A− I), where I is an identity matrix of order n. We
denote the characteristic polynomial, det(A− I) by (A). Similarly, the permanentpolynomial ofA
is given by the permanent of matrix (A− I). We denote the permanent polynomial, per(A− I) by

(A). For convenience, we can relabel the vertices in graph G. In graph theory, these relabelling
are captured by permutation similarity of adjacency matrix A. The determinant of permutation
matrices is equal to 1. Thus, relabelling on vertex-set keep the determinant, and characteristic
polynomial unchanged.

Theorem 2.4. [Laplace expansion] Let AS,T denote the submatrix of a square matrix A of order n with rows
indexed by the elements in S and columns indexed by the elements in T . Let AS,T denote the submatrix of A
with rows indexed by the elements not in S and columns indexed by the elements not in T ,

det(A) = ∑
T
(−1)w(S,T ) det(AS,T )det(AS,T ).

per(A) = ∑
T
per(AS,T )per(AS,T ).

Here, S is a fixed k-subset of the rows of A; T runs over all k-subsets of the columns of A, for k < n. Also,
w(S,T ) = |S|+ |T |, where |S| and |T | represent the sum of all the elements in S and T , respectively.

The theorem which relates complexity of matrix product and matrix determinant is as
follows.

Theorem 2.5. [Aho and Hopcroft, 1974] Let M(n) be the time required to multiply two n×n matrices over
some ring, and A is an n×n matrix. Then, we can compute det(A) in O M(n) steps.

In general the complexity of product of two matrices of order n is O(n ) where 2 ≤
≤ 3. Complexities of the product of two n order matrices by different methods are as
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follows. Schoolbookmatrixmultiplication: O(n3), Strassen algorithm: O(n2.807)[Aho andHopcroft,
1974], Coppersmith-Winograd algorithm: O(n2.376)[Coppersmith andWinograd, 1990], Optimized
CW-like algorithmsO(n2.373)[Davie and Stothers, 2013;Williams, 2011; LeGall, 2014]. Complexities
of the determinant of n ordermatrix by different methods are as follows. Laplace expansion: O(n!),
Division-free algorithm: O(n4)[Rote, 2001], LUP decomposition: O(n3), Bareiss algorithm: O(n3)
[Bareiss, 1968], Fast matrix multiplication: O(n2.373)[Aho and Hopcroft, 1974]. Note that according
to the Theorem 2.5 the asymptotic complexity of matrix determinant is equal to that of matrix
multiplication. The complexity of matrix determinant by fast matrix multiplication is same as the
complexity of Optimized CW-like algorithms for matrix multiplication, as depicted by Theorem
2.5. The fastest known method to compute permanent of matrix of order n is Ryser’s method,
having complexity O(2nn2).
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