
3
Measuring Balance of Signed Networks and its Application to

Sign Prediction

In this chapter, wewill use the term “network” for “graph” and by balancewemean strong
balance. We first show that the walk based metric introduced in [Estrada and Benzi, 2014] for
the detection of “lack of balance” in social networks could be quite misleading as it tells that
large real networks, for example, the empirical networks Wikielection, Slashdot, and Epinion
are 100% unbalanced. We justify our arguments by showing that this happens due to the curse
of the formulation of the metric proposed in [Estrada and Benzi, 2014]. Thus we introduce a
new parameterized metric for the measure of the degree of balance of signed networks by using
weighted closed walks and the Katz measure of similarity. This, in contrast to the claim in [Estrada
and Benzi, 2014], shows that the real world signed networks are not 100% unbalanced in fact it all
depends upon what weights are being used for the closed walks of finite length in a walk-based
metric. The proposed measure in this chapter also contradicts the claim made in [Estrada and
Benzi, 2014] that large signed random networks are 100 % unbalanced.

Here we mention that while there is no method to be sure whether a new measure better
quantifies the balance of the empirical networks, since the absolute balance is not universally
defined and is not known, nevertheless, one can compare the performance of the old and new
measures on randomly generated networks. For instance, if the old measure cannot distinguish
two networks having approximately same number of vertices and edges generated by using
different values of q (the probability for negative edges), while the new measure gives different
values of lack of balance for these two networks, then it objectively shows that the new measure
provides a better quantification of balance. Besides, in that case, the new measure determines
structural dissimilarity of two random networks of approximately same size.

We employ the proposed metric to three different random signed networks having an
approximately same number of vertices and edges generated by considering different probabilities
for the creation of negative edges and show that their lack of balance differs. Whereas, themeasure
proposed in [Estrada and Benzi, 2014] can not distinguish the lack of balance in these networks and
show that they are 100% unbalanced. Finally, we consider the problem of sign prediction in signed
networks that deal with predicting the sign of an edge by using the signs of edges in the rest of
network. Here, we use the well-known Katz prediction rule as discussed in [Chiang et al., 2011].
Thus we conclude that not the longer cycles but the use of cycles of lengths 4,5,6 can better predict
the sign of edges in the signed networks considered in this chapter.

3.1 WALK-BASED MEASURE FOR DEGREE OF LACK OF BALANCE
Walk-basedmeasures to study structural properties of networks have becomepopular after

the success of the idea of communicability for unsigned networks [Estrada and Hatano, 2008]
[Crofts and Higham, 2009]. It would not be exaggerated to say that the idea of communicability
has been exploited to introduce the walk-based measure for lack of balance for signed networks in
[Estrada and Benzi, 2014]. In this section, we briefly review the walk-based measure for balance
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which was introduced in [Estrada and Benzi, 2014] and provide a mathematical reasoning how it
led to conclude that real networks are poorly balanced. First, we recall the following preliminaries.

LetG= (V,E) be a signed graph. The adjacencymatrix A= (ai j) of order |V |×|V | associated
with G is given by

ai j =






1 if (i, j) ∈ E+

−1 if (i, j) ∈ E−

0 if (i, j) /∈ E

where E+ and E− denote the set of positive and negative edges of G respectively, such that E =
E+∪E−. Awalk of length k in G is a sequence of (not necessarily distinct) vertices v1,v2, . . . ,vk−1,vk
such that for each i= 1,2, . . . ,k−1, there is a edge from vi to vi+1. If all vertices are distinct in a walk
then the walk is called a path. If vk = v1 the walk (path) is called a closed walk (cycle). In addition,
the sign of a walk is defined as the product of the signs of its edges. Similar to triads, a walk is
called balanced if its sign is positive, otherwise it is called unbalanced.

Further, every signed network has an underlying unsigned network which consists of the
same set of vertices and edges as G and all edges are having a positive sign. Let us represent
the underlying network of G by |G|. Adjacency matrices of G and |G| are denoted by A and |A|
respectively. Evidently, the total number of closed walks of length k in G is given by trace(Ak).
A Balanced Weighted Closed Walk (BCW ) is a positively signed closed walk of nonzero length.
Similarly, an Unbalanced Weighted Closed Walk (UCW ) is a negatively signed closed walk of
nonzero length.

Thewalk-basedmeasure for the degreeof lack of balance in a signednetworkG on n vertices
is defined by

U =
1−K
1+K

, where K =
trace(eA)
trace(e|A|)

=
∑n

j=1 exp( j(G))

∑n
j=1 exp( j(|G|))

, (3.1)

j(G) and j(|G|), j= 1, . . . ,n are eigenvalues of A and |A| respectively, in ascending order [Estrada
and Benzi, 2014]. ThusU can be interpreted as the ratio ofUCWs to BCWs. Note that, in calculating
the lack of balance the weights of an m length walk is assumed to be 1/m! which is a decreasing
function of length. Note also that this measure (3.1) has a resemblance of the measure (2.2). It
follows from the Theorem 2.2, when { j(G) : j = 1, . . . ,n} = { j(|G|) : j = 1, . . . ,n}, the network
is balanced and U = 0. On the other hand, when the graph is highly unbalanced, U ≈ 1, that is
∑n

j=1 exp( j(G)) ∑n
j=1 exp( j(|G|)).

3.1.1 Limitations of this method for undirected large signed networks
It is not obvious from the definition of K why the weight 1

m! is considered for a closed
walk of length m. Nonetheless, it gives a compact representation of U. When this measure is
applied to the real world networks Slashdot, Epinions, and WikiElection, it shows these are
100% unbalaced networks [Table II, [Estrada and Benzi, 2014]]. This result has been justified by
supposing “the triads with only one negative edge orwith all three negative edges havebeen found
to be overrepresented in the three online networks” which is an observation made in [Leskovec
et al., 2010]. However, it follows from the definition of K that

K =
∑n

j=1 exp( j(G))

∑n
j=1 exp( j(|G|))

=
exp( n(G))

exp( n(|G|))
O(n)
O(n)

(3.2)

and from the Table 3.1, exp( n(G)) exp( n(|G|)) which finally conclude that K ≈ 0. Let (G)
denote the spectral radius of G, that is, the maximum absolute value of the eigenvalues of G. We
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Table 3.1 : n: number of vertices, m+: number of positive edges, m−: number of negative edges,
+: number of balanced triangles, −: number of unbalanced triangles, : edge density

= 2(m++m−)
n(n−1) , ||A||∞ is infinity norm of adjacency matrix ofG, RN: random network.

Networks n m+ m− + −
n(|G|) n(G)

Wikielection 7118 92238 7784 651560 72398 0.0039 142.7757 130.6673
Slashdot 9000 75462 25707 226044 31228 0.0025 104.53 95.9208
Epinions 8000 91498 14308 713563 147369 0.0033 164.0028 138.7156
RN− I 8000 319760 15979 171625 25528 0.0105 84.94 77.06
RN− II 8000 320426 31872 88072 25644 0.0110 89.0591 73.3225
RN− III 8000 319180 159953 148767 137909 0.0150 120.7704 42.8063
WWI n m+ m− + − ||A||∞ n(|G|) n(G)

ThreeEmperorsLeague 6 3 6 5 2 4 3.6458 3.1028
TripleAlliance 6 5 6 6 2 5 3.8590 3.4163

German−RussianLapse 6 3 7 3 2 5 3.5141 3.0144
French−RussianAlliance 6 4 7 6 2 5 3.8590 3.3743

EntenteCordiale 6 5 6 6 2 5 3.8590 3.4163
British−RussianAlliance 6 6 9 20 0 5 5 5

mention that all the large signed networks including the random networks that are considered in
this chapter and their underlying positive networks have spectral radii equal to the corresponding
largest eigenvalue. In general, for any signednetworkG forwhich the spectral radius (G)= n(G),
K ≈ 0 follows by the fact that (G) < (|G|) [page 619, [Meyer, 2000]] when (G) = (|G|).
In addition, if n(G) = (G) = (|G|) = n(|G|), the balance of G increases depending on the
distribution of eigenvalues of G and |G|, by equation (3.2).

Since, the connection between balance of a signed network and the spectral radius of the
network is not known, in fact it is difficult to find such a connection, we conclude that the 100%
unbalance of the real world networks Slashdot, Epinions, and WikiElection is due to the curse of
this measure not due to the structural properties of these networks. This calls for the development
of new potential measures for quantifying lack of balance in signed networks.

3.2 PARAMETERIZED WALK-BASEDMEASURE FOR LACK OF BALANCE
In this subsection, we propose a parameterized walk-based measure by exploiting the

concept of Katz index popularly used for finding the similarity of vertices in unsigned networks.
Katz measure is also valid for signed networks and gainfully used for edge prediction problem in
signed networks [Chiang et al., 2014]. Note that, this is a resolvent centrality measure defined as

∞

∑
l=0

lAl
i j = (I− A)−1

i j , (3.3)

where Al
i j is the number of closed walks of length l between the vertices i and j and ∈ [0, 1/ (A)],

where (A)denotes the spectral radius ofAwhich is the adjacencymatrix corresponding to a signed
network G. It is needless to mention that Al

ii provides the number of closed walks of length l
adjacent to the vertex i and (I− A)−1

ii provides theweighted sumof the number of closedwalks
at the vertex i, withwalks of length l scaled by l .Wemention that this centralitymeasure has been
considered as a measure of imbalance for signed networks in [Chiang et al., 2011].

Inspecting the definition given in (3.1) it will be tempting to define ameasure for the degree
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of balance of a signed network by using Katz measure as

Kz =
∑n
i=1 ∑∞

l=0
lAl

ii

∑n
i=1 ∑∞

l=0
l|A|lii

, ∈ [0, 1/ (|A|)]

which is a valid mathematical definition as (A) ≤ (|A|) and n is the number of vertices in the
network. However, observe that, whatever large the network is, the same edges will get counted
a large number of times for calculating closed walks described by Al

ii as the value of l increases.
On the other hand, since we are only interested in closed cycles in the network, it is of no use to
include the terms corresponding to l = 0,1,2 in the definition of Kz. Hence, we define a measure
for the degree of structural balance of a signed network as

K( ,k) =
∑n
i=1 ∑k

l=3
lAl

ii

∑n
i=1 ∑k

l=3
l|A|lii

=
∑n
i=1 ∑k

l=3
l

i(G)l

∑n
i=1 ∑k

l=3
l

i(|G|)l

=
∑n
i=1 ∑k

l=3
l−3

i(G)l

∑n
i=1 ∑k

l=3
l−3

i(|G|)l
=

∑k
l=3

l−3Tr(Al)

∑k
l=3

l−3Tr(|A|l)
,

(3.4)

where > 0, Tr denotes trace, and k is the desired maximum length of closed walks that we are
interested in a signed network. Note that,

K( ,k)≈






∑n
i=1

i(G)3

1− i(G)

∑n
i=1

i(|G|)3

1− i(|G|)

, if 0 < < 1/ (|G|),k→ ∞

∑n
i=1 i(G)3

∑n
i=1 i(|G|)3 = K , if → 0.

Consequently, we define a measure of lack of balance of a signed network as

U( ,k) =
1−K( ,k)
1+K( ,k)

. (3.5)

In particular,

U =
1−K
1+K

. (3.6)

3.2.1 Values of parameters ,k
Since the proposedmeasure of lack of structural balanceU( ,k) depends on the parameters

and k, it is natural to ask which values of these parameters provide an optimal choice for
computing U( ,k). However, this a difficult question to answer as it depends on the structure
of the signed network. Indeed, it is plausible to investigate the behavior ofU( ,k) numerically for
a given network when one of the parameters varies and the other one is fixed.

We recall that the parameter is called the Katz parameter when the Katz index is used
to find similarity of a pair of vertices in unsigned networks [Katz, 1953]. However, there is no
agreed mechanism for selection of this parameter and the proposed value of = (1− e− 1)/ 1 as
it is investigated in [Aprahamian et al., 2015] in view of centrality vectors, where 1 is the largest
eigenvalue of the network. Indeed, when 1 is large it is computationally a challenging problem to
compute e− 1 efficiently. For our numerical simulation on real world signed networks we consider
k→ ∞ and plot the graph ofU( ,k)when the value of gradually increases from 0. It is interesting
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to notice thatU( ,k) increases exponentially as increaseswhichwe discuss in the next subsection.
A special attention is also given to

∈ 1 =
0.85
(|G|) , 2 =

1
2 (|G|) , 3 =

1
||A||∞ +1

,

where these values are considered in different contexts in studying centrality of vertices in
unsigned networks [Benzi and Klymko, 2013; Amancio et al., 2012; Foster et al., 2001]. Further,
by setting = 1, 2, 3 we plot U( ,k) and observe that when k gradually increases from 1 to 50,
the value ofU( ,k) increases in the beginning and after a certain critical value of k,U( ,k) stabilizes
for Epinions, Slashdot, and WikiElection which are real world large signed networks.

After the experiments on real world large networks that are discussed in the next
subsection, we observe that U( ,k) is a monotonically increasing function with respect to both
and k when one of them is fixed and the other one varies. Thus, finally we conclude that it

would be close to impossible to come up with an absolute measure which can provide a concrete
idea of structural balance of a signed network but any proposed measure can help to compare the
degree of balance or unbalance between two signed networks of approximately same size.

Figure 3.1 : (Left) Evolution of the balance among the six major players of the World War I at different
time periods. Solid lines account for alliances and broken lines represent enmities. GB:
Great Britain; Ru:Russia; Ge: Germany; Fr: France; AH: Austro-Hungarian Empire; It: Italy.
(Right) Balance among the subtribes in the highlands of New Guinea [Hage, 1979]. Solid
dark blue lines are for alliance (Rova) relations and red dashed lines are for antagonistic
(Hina) relations.

3.2.2 Lack of balance in random and real world signed networks
In order to analyze the performance of the proposed measure, we consider a few real

world networks which are also used to study the performance of U in [Estrada and Benzi, 2014].
The small scale networks which are used in our study include the networks which represent the
evolution of the relations between the major players in the World War I (WWI) (Figure 3.1) [Antal
et al., 2006] and the networks which provide the Gahuku-Gama subtribe system in the Eastern
Central Highlands of New Guinea figure (Figure 3.1) [Hage, 1979]. For large signed networks,
as mentioned earlier, we consider Epinions: a trust-distrust network among users of the product
review site Epinions[Guha et al., 2004], Slashdot: a friend-foe network in the technological news
site Slashdot[Lampe et al., 2007], and WikiElection: a network representing the votes for the
election of administrators in Wikipedia [Burke and Kraut, 2008].
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Table 3.2 : Degree of lack of balance of networks for different parameters.

Networks U U( 1,∞) U( 2,∞) U( 3,∞) U
Three Emperor’s League 0.2043 0.5183 0.3573 0.4192 0.4000

Triple Alliance 0.1771 0.4269 0.2855 0.3070 0.3333
German-Russian Lapse 0.1798 0.5148 0.3910 0.3919 0.6667
French-Russian Alliance 0.1850 0.4507 0.2937 0.3202 0.3333

Entente Cordiale 0.1771 0.4269 0.2855 0.3070 0.3333
British-Russian Alliance 0 0 0 0 0

Subtribes in the
highlands of New Guinea 0.4674 0.4841 0.2498 0.3496 0.1935

Wikielection 1 0.2859 0.1446 0.1147 0.1126
Slashdot 1 0.2902 0.1618 0.1410 0.1382
Epinions 1 0.4782 0.2691 0.2118 0.2051
RN-I 1 0.2501 0.1148 0.1531 0.1487
RN-II 1 0.4044 0.2141 0.2817 0.2912
RN-III 1 0.7686 0.6192 0.6884 0.9270
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Figure 3.2 : Variation of degree of unbalanceU( ,∞)w.r.t (a) WK (b) SD (c) EPN
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We also consider the performance of the proposed measure for random signed networks.
Wegenerate an ensemble of 10 random signednetworks inwhich an edge between a pair of vertices
exists with a positive sign with probability p, the negative sign with probability q and no edge
between themwith probability 1− p−q as described in [ElMaftouhi et al., 2012]. Wegenerate three
random signed networks RN-I (p = 0.01,q = 0.0005), RN-II (p = 0.01,q = 0.001), and RN-III (p =
0.01,q = 0.005). Obviously, it produces random signed networks having more positive triangles
than negative triangles, a phenomenon that occurs in real signed networks. The statistical details
of such a network are provided in Table 3.1 by considering the average values of the parameters
for each of the ensembles.

(a) Small networks: The networks associated with World War I (WWI), as observed in [Estrada
and Benzi, 2014], the relations between the countries depicted in the corresponding signed
graphs evolve and the structural balance increases gradually starting from 1872-81 to 1907.
The same results are achieved by using the proposed measure. However, the degree of lack
of balance is more in all the networks in the proposed measure compared to their lack of
balance provided in [Estrada and Benzi, 2014] as follows from Table 3.2. In the network of
the subtribes in the highlands of New Guinea, U ≈U( 1,∞) and the value indicates that the
network is almost far from structural balance, however, for = 2, 3 the value of U( ,∞)
show that the network is fairly balanced like the value ofU , see Table 3.2.

(b) Large networks: In contrast to the observation in [Estrada and Benzi, 2014] that Epinions,
Slashdot, and WikiElection are totally unbalanced networks, using the proposed measure
we find out that it is not a rational observation. In fact, as it is shown in Table 3.2, these
networks are quite structurally balanced as also concluded in [Facchetti et al., 2011] where in
their proposed method they give significantly more weight to the contributions of triads to
the degree of balance in these networks.

(c) Random networks: Thedegree of unbalance for different values of of three random networks
RN-I, RN-II, RN-III having an approximately same number of vertices and edges are given in
Table 3.2. We consider an ensemble of 10 random networks for each pair of parameter values
p,q. From equation (3.1), the method proposed in [Estrada and Benzi, 2014] determines that
these random networks are 100% unbalance, hence we can not distinguish these random
networks based on their lack of balance. Thus, similar to real world networks, it gives a
flawed degree of unbalance of random networks. Whereas, our proposed method gives
different values of their degree of unbalance depending on the values of the parameters in the
metric. It is to note that, like real networks, now random networks can also be distinguished
based on their degree of unbalance for some given value of parameter . This makes our
proposed measure a better quantification of the degree of unbalance in signed networks.

We emphasize that, as argued in Subsection 3.1.1, the claim in [Estrada and Benzi, 2014]
regarding the degree of lack of balance is biased towards unbalance for both real empirical
networks and the random networks considered in the chapter. Whereas, the proposed measure
not only provides a reasonable way to quantify the degree of lack of balance it also enables to
distinguish signed networks based on their degree of unbalance. It is to be noted that for small
networks like networks associated with WW1, a minor change of a number of signs of edges may
have a significant impact on the degree of unbalance due to the formulation of measure using
eigenvalues and other algebraic properties, and hence degree of unbalance by counting weighted
cycles should be recommended. For the case of large networks where counting weighted cycles is
a hard problem [West et al., 2001], measures using eigenvalues and other algebraic properties are
useful.
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3.2.3 Variation with parameters
1. Varying when k → ∞ : In Figure 3.2 we show the values of U( ,k) as grows from 0 to

1/ (|G|) keeping k → ∞ fixed. The results establish that the degree of unbalance grows
exponentially up to almost 1 as increases in this case and this happens in all the three large
empirical networks. Thus when k → ∞ it would not be rational to declare that a network
is a balance/unbalance for any value of . Indeed for a fixed value of we can use this
metric to compare the degree of balance for a given collection of networks. Here, setting
= 1, Epinions is the most unbalance while Wikipedia is least. In Figure 3.3 we show the

corresponding results for the random signed networks whose details are mentioned above.
Observe that RN-I, RN-II show the same trend alike real empirical networks except the fact
thatU( 3,k)>U( 2,k). In RN-III, the numbers of balance and unbalance triangles are almost
equal and hence it makes RN-III more unbalance compare to RN-I and RN-II.

2. Varying kwhen is fixed: In Figure 3.4we show theperformance of themetricU( ,k)when the
length of closedwalks (k) varies and ∈{ 1, 2, 3} is fixed. It is interesting to observe that the
growth ofU( ,k) becomes close to zero, that is, U( ,k) becomes almost constant after some
threshold value of k in all the networks. We remark that this is indeed not surprising since
is the attenuation factor in Katz measures, and l weighted the contribution of the cycle of

different length l in the measure, such that a small wouldmake the contribution from long
cycle vanishing. Hence the smaller the , the smaller the value of k that the measureU( ,k)
saturates. For example, in Wikipedia, the threshold values of k are 30,10 and 3 for = 1, 2
and 3 respectively. Thus we can conclude from these numerical results that we need not
consider all values of k up to ∞ in the formula of U( ,k) but a suitable finite value of k can
decide the degree of unbalance/balance of a network if this measure is used. Also observe
that for the random signed networks U( ,k) become almost constant after some threshold
value of k.

3. Varying both and k : In Figure 4.2weplot the surfaceU( ,k)when varies from 0 to 1/ (|G|)
and k is from 3 to 50. Observe thatU( ,k) increases as both k and increase and for the lower
value of both k and , the degree of lack of balance is very low. Of course, any fixed value
of the pair ( ,k) can be used to compare the lack of balance using the metricU( ,k). Indeed,
it would be an interesting problem to find an optimal choice of values for both and k to
compare the lack of balance for two given networks.

3.3 SIGN PREDICTION IN SIGNED NETWORKS
From Section 2.3 the predicted sign of an edge between u and v is defined by

sign (G−(uv))− (G+(uv)) = sign
k

∑
t=3

tAt−1
uv . (3.7)

In particular, by considering the weight factor t as t−1, the Equation (3.7) becomes the
Katz prediction rule given by sign (I− A)−1 − I− A uv := (P( ,∞))uv, 0 ≤ < 1/ (G) which
essentially is the instrument for the parametrized measure for the lack of balance proposed in
Section 3.1.

On the other hand the use of exponential of the adjacency matrix for the definition of
walk based measure for lack of balance in [Estrada and Benzi, 2014] provides the sign prediction
rule as {eA−A− I}uv := (P)uv for a pair of vertices u,v. We compare the performances of both the
prediction rules P and P( ,∞), ∈ { 1, 2, 3} to predict sign of an edge with unknown sign in the
real world signed networks Epinions, Wikielection and Slashdot. We proceed as follows. First, we
remove 10% of edges randomly from these networks and denote it by Etest. Consider the resultant

22



2
4

6
8

0
2

4
6

8

x 10−3

0

50

100

k
Ac

cu
ra

cy

(a)

2
4

6
8

0

0.005

0.01
0

50

100

k

Ac
cu

ra
cy

(b)

2
4

6
8

0
2

4
6

8

x 10−3

0

50

100

k

Ac
cu

ra
cy

(c)

Figure 3.6 : Accuracy of sign prediction as a function of ,k (a) WK (b) SD (c) EPN

network and predict the signs of deleted edges which are in Etest by using these prediction rules.
The accuracy of the prediction rule is considered to be the % of successful sign predictions of
edges. Here we do the experiment of sign predictions by using 10-fold cross validation due to
the randomness in selecting the edges to be deleted.

Note that a large majority of edges are positive in the three empirical networks and it
implies that one can achieve the accuracy equal to the fraction of positive edges, on average, even
if guessing the sign of focal edge as positive. Thus we consider the ratio of a number of positive
edges to the total number of edges as the baseline to compare accuracy. Then the computed average
baselines for 10-fold cross validation after removal of 10 % edges are 91.8%, 73.8%, and 84.9% for
Wikielection, Slashdot, and Epinions, respectively. The % of successfully predicted signs using
different values are given in Table 3.3.

Further note that using the known signs of 90% edges in order to predict signs of 10%
of edges may not be very realistic since in many cases, for instance, signs of the known 90% of
edges need not be exact due to an unreliable source. Thus we examine the performance of the
proposed sign prediction rule after sparsifying the existing networks after the removal of 50% of its
edges randomly. Then the average baselines for these sparsified networks after further removing
10% edges are 88.67%, 71.89%, and 83.17% for Wikielection, Slashdot, and Epinions, respectively
in 10-fold cross validation. In Table 3.4 we present the accuracy of sign prediction for both the
measures P( ,∞) and P.

As it follows from Table 3.3 and Table 3.4 that the prediction results using the proposed
method are better than the baselines as well as that for P. Results on Slashdot are better than rest
of the networks. Among values, P( 1,k) has highest prediction accuracy.

Table 3.3 : % of successfully predicted sign using different values and P

Networks P( 1,∞) P( 2,∞) P( 3,∞) P
Wikielection 92.34 92.16 92.10 91.60
Slashdot 82.30 81.62 81.24 73.60
Epinions 87.62 87.12 87.34 85.2

A pertinent question about the Katz prediction rule defined in Equation (3.7) is whether
the role of longer cycles in the prediction of signs of edges is important or not. Intuitively, when
cycles are counted of all lengths up to infinity many edges get repeated for larger cycles. Hence
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Table 3.4 : % of successfully predicted sign using different values and P for Sparse dataset

Networks P( 1,∞) P( 2,∞) P( 3,∞) P
Wikielection 90.26 89.88 89.60 90.10
Slashdot 78.58 78.02 77.46 74.20
Epinions 85.86 85.54 84.86 84.20

we pose the following question. What is the optimal value of the parameter k in (3.7) in order to
successfully predict the sign of an unknown edge for a given signed network?

Note that the Figure 3.6 demonstrates the prediction accuracy as a function of and k for
the empirical networks. Observe that, in general, for all values of prediction accuracy is best in
the range k = 4 to k = 6 and it is worst for k = 3. For the walks of length greater than 6, accuracy
first slightly decreases and then becomes almost constant. Thus the prediction accuracy surface
recommends that we need not use the longer walks for prediction since shorter walks give better
results. Also, observe that in general for the larger value of accuracy is slightly better than that
for a small value of . Finally, it becomes an interesting fact that the effects of these two parameters
are opposite; increasing value puts more weight on longer walks whereas decreasing k value cut
the contribution of longer walks. Finally we conclude that the longer closed walks are not much
important for sign prediction neither are the triads; in other words, shorter closed walks of lengths
4,5,6 are important factors in sign predictions in signed social networks.

3.4 CONCLUSION
In this chapter, we have proposed a method based on weighted closed walks to measure

the degree of unbalance in signed networks. The spectra of the signed network have a key role
in developing the measure of the degree of unbalance. The proposed measure can be used to
distinguish two sign networks based upon their degree of unbalance. Later we use this measure
for prediction of signs of edges in the real world signed networks and we observe that the closed
walk of shorter length is efficient in sign prediction.
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