
4
The Eigenvalues of Some Signed Graphs With Negative

Cliques

In the Chapter 3, we have seen that the spectra of the signed graph play a key role in
developing a measure for the degree of unbalance. Also, a signed graph is strongly balanced if
and only if it is cospectral with its underlying unsigned graph. In this chapter, we calculate the
spectra of some strongly as well as weakly signed graphs. A weakly balanced graph consists of
k ≥ 2 clusters of vertices, where all the edges inside the clusters are positive whereas all the edges
between clusters are negative. If k = 2 then the graph is strongly balanced. Let G be a weakly
balanced signed graph having n vertices and k clusters,Cl1,Cl2, . . . ,Clk. Then the adjacency matrix
A(G) of G is of form

A(G) =





A(Cl1) N
A(Cl2)

. . .
N T A(Clk)





n×n

, (4.1)

where, A(Cli) is the adjacency matrix of the i-th cluster Cli . The entries of A(Cli) are
either 0 or 1, whereas the entries of N are either −1 or 0. Note that it is sufficient to find the
spectra of A(G)+ In in order to calculate the spectra of (G). Indeed, is an eigenvalue of A(G)+ In
corresponding to an eigenvector X ∈ Rn if and only if − 1 is an eigenvalue of G corresponding
to the eigenvector X . Also, if 1, 2, . . . , n are the eigenvalues of A(G) then the eigenvalues of
the matrix −A(G) are − 1,− 2, . . . ,− n, respectively . Observe that the matrix −A(G) represents
the adjacency matrix of graph having k clusters, Cl1,Cl2, . . . ,Clk, such that the edges inside any
cluster are negative whereas the edges between any two clusters are positive. We will use these
constructions frequently in this chapter.

4.0.1 Preliminaries
A signed cycle graph on n vertices is a signed graph having an equal number of vertices and

edges with each vertex has degree equals to two. We denote a signed cycle graph byCn or n-cycle.
The adjacency matrix A of Cn is given by Ai,i+1 = Ai+1,i ∈ {1,−1} i = 1,2, . . . ,n−1 and An,1 = A1,n ∈
{1,−1}, all other entries of A are zero. Moreover, the sign of Cn is defined as the product of signs
(for positive +1 and for negative −1) of its edges. If the sign ofCn is positive it is called balanced
cycle graph, otherwise, it is called an unbalanced cycle graph. A signed tree is a connected signed
graph which does not have any cycle graph as its subgraph. A signed tree is a strongly balanced
graph as it has no unbalanced cycle. We denote a signed tree on n vertices by Tn. The signed path
graph Pn on n vertices is a tree in which two vertices are having degree 1, and the remaining (n−2)
vertices are having degree 2.

A signed complete graph is a signed graphwhere each distinct pair of vertices is connected
by an edge, positive or negative. A signed clique in signed graphG is an induced subgraphwhich
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Figure 4.1 : Examples: (a) A complete signed graph with negative cliques, K2,3
8 (b) Weakly balanced

signed graph corresponding to K2,3
8 , (c) 3-regular star block graph.

(a) (b) (c)

Figure 4.2 : Example of weakly balanced graphs. (a) A complete weakly balanced graph. (b) A
complete-cycle weakly balanced graph. (c) A complete-path weakly balanced graph.

is a signed complete graph. In cycle graph Cn , tree Tn the only possible cliques are their edges.
When each edge of a clique is negativewe call it a negative clique. Similarly, if each edge of a clique
is positive then, we call it a positive clique. We denote a complete graph on n vertices, having
each edge positive, by Kn . By Km,r

n , we denote a signed complete graph on n vertices, having
a m number of vertex-disjoint negative cliques each of order r, and all the edges positive except
those are in negatives cliques. As an example the K2,3

8 graph is given in Figure 4.1(a), where two
vertex-disjoint negative cliques, each of order 3 are there on vertex-sets {v2,v3,v4}, and {v6,v7,v8}
respectively. Negating the edges of Km,r

n gives a corresponding weakly balanced graph whose
eigenvalues are equal to negative of eigenvalues of Km,r

n . Thus, it is sufficient to calculate the
eigenvalues of Km,r

n in order to know the eigenvalues of its corresponding weakly balanced graph.
The weakly balanced graph corresponding to K2,3

8 is given in Figure (4.1(b)) (in this case it is also
strongly balanced graph). We call a graph star block graphwhen several cliques meet at the single
cut-vertex of the graph. We consider a star block graph having a k number of blocks each having
a r number of vertices. We call it r-regular star block graph. An example of a 3-regular star block
graph is given in Figure 4.1(c).

The rest of the chapter is organized as follows: In the Section 4.1, we calculate the
characteristic polynomials, the eigenvalues of signed cycle and path graphs using the concept
of linear subdigraphs, and matching. In Section 4.2, we calculate the characteristic polynomial
and the eigenvalues of complete graphs having vertex disjoint negative cliques of the same order.
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In Section 4.3, we give the bounds on the eigenvalues of complete graphs having vertex disjoint
negative cliques of different orders. As an example, if we negate the edges of the graph in
Figure 4.2(a), we get a complete graph having negative cliques of a different order. In Section
4.4 we calculate the eigenvalues of regular star block graphs. We mentioned that the negative
of the eigenvalues of graphs in these section gives the spectra of corresponding weakly balanced
graphs. In later sections, we give the spectrum of some weakly balanced connected signed graphs
with some special structures. In particular, we focus on completely-cycle weakly balanced and
completely-path weakly balanced graphs, see Figure 4.2 (b), (c), respectively. Definitions of these
graphs are given in their respective sections.

4.1 THE CHARACTERISTIC POLYNOMIAL OF SIGNED CYCLE AND PATH GRAPH
Wedenote the weight of signed cycle graphCn by . WhenCn is balanced = 1, otherwise,

= −1. The Coates digraph corresponding to the adjacency matrix A(Cn)− In , is a directed
graph on n vertices with

1. Loop of weight − at each vertex.

2. For every adjacent vertices in cycle Cn, there are two opposite directed edges, connecting
these adjacent vertices in the Coates digraph.

Next, we require number of k-matchings inCn, which is used to find linear subdigraphs of
the Coates digraph of A(Cn)− In . We state the following standard result [Weisstein].

Proposition 4.1. The number of k-matching in cycle graphCn is equal to

n
n− k

n− k
k

. (4.2)

For cycle graphs m(G) = n/2 , so the number of all possible matching in G is given by

n/2

∑
k=0

n
n− k

n− k
k

, (4.3)

where, k = 0 corresponding to no matching. Each k-matching in cycle graph corresponds
to k vertex-disjoint directed 2-cycles in its Coates digraph covering 2k vertices. These k directed
2-cycles along with loops at remaining n− 2k vertices form linear subdigraphs in Coates digraph
of Cn.

Theorem 4.1. The characteristic polynomial (Cn) of signed cycle graph Cn, having weight ∈ {−1,1} is
given by

(Cn) =






(−1)n ∑
( n2−1)
k=1

n
n−k

n−k
k × (−1)n−k× (− )n−2k +2(−1)

n
2 −2 if n is even,

(−1)n ∑ n/2
k=1

n
n−k

n−k
k × (−1)n−k× (− )n−2k−2 if n is odd,

Proof: In the Coates digraph of matrix A(Cn)− In there will be following two type of linear
subdigraphs along with their contribution to (Cn)
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1. Two directed n-cycles; one clockwise and another anticlockwise respectively, each having
weight . Using Theorem 2.3 their contribution to (Cn) is

(−1)n 2(−1)1 = (−1)n(−2 ).

2. Linear subdigraph having k-matching covering 2k vertices, and loops at remaining n− 2k
vertices for k = 1,2, . . . n/2 . Weight of each k-matching is 1, and weight of n− 2k loops is
(− )n−2k. Total number of cycles are k+n−2k = n− k. If,

a) n is even: for k = n
2 , there will be two linear subdigraphs having n

2 directed 2-cycles.
Thus, no loop will be selected in these two linear subdigraphs. Their contribution is

(−1)n2(−1)
n
2 .

b) n is odd: there will be no linear subdigraphs having n
2 directed 2-cycles.

Thus, using Proposition 4.1 and combining 1. and 2. the result follows.

Corollary 4.1. The determinant of signed cycle Cn, having weight ∈ {−1,1} is given by

det(Cn) =






2−2 if n is even and even multiple of 2
−2−2 if n is even and odd multiple of 2
2 if n is odd

Proof: To calculate the determinant we need to set = 0 in the characteristic polynomial. Hence,
the result directly follows from Theorem 4.1.

4.1.1 The eigenvalues of signedCn
Let us consider a matrix Q of order n≥ 2 such that, theQi,i+1 ∈ {1,−1}, i= 1,2, ...,n−1, the

Qn,1 ∈ {1,−1} and the remaining entries of Q are zero. The Coates digraph D(Q− I) is a digraph
having directed n-cycle with a loop of weight − at each of its vertices. Thus, Coates diagraph
D(Q− I) has only two linear subdigraphs. One having the directed n-cycle without loops, and
another consisting of the n loops only. Weight of the directed n-cycle is either 1 or −1. It follows
that the characteristic equation of Q is given by:

(−1)n (−1)n(− )n+(−1)1 = 0 =⇒ n− = 0, (4.4)

which means the eigenvalues of Q are 1, , 2, ... n−1, where,

=
e

2
n if = 1.

e
+2 k
n if =−1.

For a signed a cycle Cn, the adjacency matrix A(Cn) = Q+Q = Q+Qn−1 is a polynomial
in Q [Bapat and Roy, 2014]. Thus, the eigenvalues of A(Cn) are obtained by evaluating the same
polynomial at each of the eigenvalues of Q, so the eigenvalues of A(Cn) are k+ n−k,k = 1, ...n.

Theorem 4.2. The eigenvalues of signedCn are

=
2 cos 2 k

n ifCn is balanced
2 cos( +2 k

n ) ifCn is unbalanced

k = 1,2...n.
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(a) (b)

Figure 4.3 : (a) Eigenvalues of balanced (Blue) and unbalanced (Green) cycle graph C20. (b)Difference
in eigenvalues of balanced and unbalanced cycle graphC100.

Proof: It is clear that the eigenvalues of A(Cn) are k+ n−k,k = 1, ...n. To derive adjacency matrix
of balanced Cn from Q, value of has to be 1. Similarly, to derive adjacency matrix of unbalanced
Cn from Q, value of has to be −1. Now, when = 1

k+ n−k = k+ −k = e
2 k
n + e−

2 k
n = 2 cos

2 k
n

.

And, when =−1

e
+2 k
n + e−

+2 k
n = 2 cos(

+2 k
n

)

For k = 1,2..n

Theorem 4.3. Let 1 ≥ 2 ≥ ...≥ n be the eigenvalues of balanced signed cycles and 1 ≥ 2 ≥ ...≥ n be
the eigenvalues of unbalanced signed cycles of length n> 2. Then,

| i− i|= | n−i+1 − n−i+1|.

Proof:

1. If n is even: cos function lies in the range [-1 1]. The eigenvalues of the balanced and
unbalanced Cn are 2 cos(2 k

n ), and 2cos( +2 k
n ), respectively for k = 1,2, . . . ,n. To get 1 ≥

2 ≥ ... ≥ n and 1 ≥ 2 ≥ ... ≥ n we need to sort the values of 2 cos(2 k
n ) and 2cos( +2 k

n )

in descending order. Also, 2 cos(2 k
n ) = 2cos( 2 (n−k)

n ), and 2 cos( +2 k
n ) = 2 cos(− −2 k

n ) =

2 cos( +2 (n−k−1)
n ). Sorted order of eigenvalues of balanced Cn is for sequence k = n,1,(n−

1),2,(n− 2), . . . , i,(n− i), . . . ,(n/2+ 1),n/2. For unbalanced Cn sorted order is for sequence
k= n,(n−1),1, (n−1−1),2,(n−2−1), . . . , i,(n− i−1), . . . ,(n/2−1),n/2. Now, consider i and
n−i+1. As, their corresponding k indices are at difference of n/2. We have, 2cos(2 (k±n/2)

n ) =

−2cos( 2 k
n ). Hence, n−i+1 = − i. Corresponding k indices of i and n−i+1 are also at

difference of n/2. Thus, 2cos( +2 (k±n/2)
n ) =−2 cos( +2 k

n ). Hence, n−i+1 =− i, and | i− i|=
| n−i+1 − n−i+1|.

2. If n is odd: following similar steps as the case for even n, in this case to get 1 ≥ 2 ≥ ...≥ n,
we need the sequence k = n,1,(n−1),2,(n−2), . . . , i, (n− i), . . . ,(n−1)/2, (n+1)/2, and to get
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1 ≥ 2 ≥ ... ≥ n we need the sequence k = n,(n−1),1,(n− 1− 1),2, (n− 2− 1), . . . , i,(n− i−
1), . . . ,(n+1)/2,(n− 1)/2. The difference between k indices for i and k indices for n−i+1 is
±n/2− 1/2. We have, 2 cos( +2 (k±n/2−1/2)

n ) = −2 cos(2 k
n ). Hence, i = − n−i+1. Similarly,

i =− n−i+1 thus, | i− i|= | n−i+1 − n−i+1|.

4.1.2 The characteristic polynomial of Pn
Coates digraph corresponding to adjacency matrix A(Pn) of signed path graph Pn , is a

directed graph having n vertices with

1. Loop of weight − at each vertex.

2. For every adjacent vertices in path Pn, there are two opposite directed edges, connecting these
adjacent vertices in Coates digraph.

We state the following standard result [Weisstein].

Proposition 4.2. The number of k-matching in signed path graph Pn is equal to

n− k
k

. (4.5)

Thus, for path graphs m(G) = n/2 number of all possible matching in G is given by:

n/2

∑
k=0

n− k
k

. (4.6)

Theorem 4.4. The characteristic polynomial (Pn) of signed Pn is given by

(Pn) =






(−1)n ∑
( n2−1)
k=1

n−k
k × (−1)n−k× (− )n−2k +(−1)

n
2 if n is even

(−1)n ∑ n/2
k=1

n−k
k × (−1)n−k× (− )n−2k if n is odd

Proof: In Coates digraph of matrix A(Pn)− I there will be following linear subdigraph along
with their contribution to (Pn)

1. Subdigraph having k-matching covering 2k vertices and loops at remaining n− 2k vertices
for k = 1,2, . . . n/2 . Weight of k-matching is 1, and weight of n−2k loops is (− )n−2k. Total
number of cycles are k+n−2k = n− k. If

a) n is even: for k = n
2 , there will be one linear subdigraphs having n

2 directed 2-cycles.
Thus, no loop will be selected in this linear subdigraph. Its contribution is

(−1)n(−1)
n
2 .

b) n is odd: There will be no linear subdigraphs having n
2 directed 2-cycles.

Thus, using Proposition 4.2, and combining 1.a) and 1.b) the result follows.

As the characteristic polynomial of all signed path graphs Pn for a given n is same, their eigenvalues
are same.
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Corollary 4.2. The determinant of signed path Pn is given by

det(Pn) =






1 if n is even and even multiple of 2
−1 if n is even and odd multiple of 2
0 if n is odd

Proof: Proof directly follows from Theorem 4.4, on setting = 0.

4.2 THE COMPLETE GRAPHWITH NEGATIVE CLIQUES OF SAME ORDER
In this section we derive the characteristic polynomial of Km,r

n . Here, the determinant,
and the eigenvalues are readily follows from characteristic polynomials hence, they are stated as
corollaries without proofs. We first derive the result for the case when, n= mr, that is, when all m
negative cliques each of order r cover all the n vertices of complete graph.

Theorem 4.5. The characteristic polynomial of A(Km,r
mr ) is given by

(Km,r
mr ) = (1− )m(r−1)(1−2r− )m−1 1+ r(m−2)− .

Proof: With suitable relabelling of vertices in Km,r
mr we have,

A Km,r
mr =





−A(Kr) J J · · · J
J −A(Kr) J · · · J
...

...
... . . . ...

J J J · · · −A(Kr)





mr×mr

,

where, A(Kr) denotes the adjacency matrix of a positive clique Kr. Also, J is all-one matrix
of order r. Then,

A Km,r
mr − Imr =





Y X X · · · X
X Y X · · · X
...

...
... . . . ...

X X X · · · Y





mr

,

where,
Y =−A(Kr)− Ir, X = Jr,

and Jr is all-one matrix of order r.

In the above matrix, A Km,r
mr − Imr, subtract the last row from all the other rows. This

produces




Y −X O O . . . O X −Y
O Y −X O . . . O X −Y
O O Y −X . . . O X −Y
...

...
... . . . ...

...
O O O . . . Y −X X−Y
X X X . . . X Y





,
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Now, add first r−1 columns to the last column. This produce the following block lower triangular
matrix, 



Y −X O O . . . O O
O Y −X O . . . O O
O O Y −X . . . O O
...

...
... . . . ...

...
O O O . . . Y −X O

X X X . . . X Y +(m−1)X





.

Hence,

det A Km,r
mr − Imr = det(Y −X)m−1 det Y +(m−1)X . (4.7)

Also,
Y −X =−2A(Kr)− ( +1)Ir.

The eigenvalues of A(Kr) are given by−1,(r−1)with themultiplicity (r−1) , 1, respectively [Bapat,
2010]. Hence, eigenvalues of the matrix, Y −X , are (1− ),(−2r+1− )with multiplicities (r−1)
, 1, respectively. As the determinant of a matrix is the product of its eigenvalues thus,

det(Y −X) = (1− )r−1(1−2r− ).

Next,
Y +(m−1)X = (m−2)A(Kr)+(m−1− )Ir.

The eigenvalues of Y + (m − 1)X are (1 − ), 1 + r(m − 2) − with multiplicity (r − 1),1,
respectively. Hence,

det Y +(m−1)X = (1− )r−1 1+ r(m−2)− .

Thus, from Equation (4.7)

(Km,r
mr ) = (1− )r−1(1−2r− )

m−1
(1− )r−1 1+ r(m−2)−

= (1− )m(r−1)(1−2r− )m−1 1+ r(m−2)− .

Corollary 4.3. The determinant of Km,r
mr is given by

(1−2r)(m−1) 1+ r(m−2) .

Corollary 4.4. The eigenvalues of Km,r
mr are 1,(1−2r), and 1+ r(m−2) with multiplicity m(r−1),m−

1,and 1 respectively.

Next we give the inverse of the matrix A(Km,r
mr )− Imr. It is used to get characteristic

polynomial of general case A(Km,r
n ).
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Lemma 4.1. The inverse of A(Km,r
mr )− Imr is given by

1
+2r−1

1
−1

Im⊗ 2A(Kr)− ( +2r−3)Ir − 1
+ r(2−m)−1

J ,

where, = 1, (1−2r), and 1+ r(m−2) . Also, J is all-one matrix of order mr, and ⊗ denotes the tensor
product of matrices.

Proof: Using the same construction as in Theorem 4.5, we can write,

A Km,r
mr − Imr = Im⊗ (Y −X) +(1m×m⊗X) = Im⊗ (Y −X) +1mr1Tmr.

Let A1 = Im⊗ (Y −X) . Now, recall the Sherman–Morrison formula: If A is a nonsingular square
matrix and 1+ vTA−1u= 0 for some column vectors u,v then

(A+uvT )−1 = A−1 − A−1uvTA−1

1+ vTA−1u
.

In order to find A−1
1 we need to find (Y −X)−1. By symmetry let, , be the diagonal,

non-diagonal entries of (Y −X)−1, respectively. On solving following two equations we get the
values of , .

− ( +1)−2 (r−1) = 1,

− ( +1)−2 −2 (r−2) = 0,

we get,

=
−( +2r−3)

( −1)( +2r−1)
, =

2
( −1)( +2r−1)

Thus, A−1
1 can be written as,

A−1
1 =

1
( −1)( +2r−1)

Im⊗ 2A(Kr)− ( +2r−3)Ir .

Also,
A−1

1 1mr1TmrA
−1
1 =

1
( +2r−1)2 × J,

and
1+1TmrA

−1
1 1mr =

+ r(2−m)−1
+2r−1

,

where, J is all-one matrix of order mr.

Hence,

A Km,r
mr − Imr

−1

=
1

( −1)( +2r−1)
Im⊗ 2A(Kr)− ( +2r−3)Ir
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− 1
( +2r−1)( + r(2−m)−1)

J

=
1

+2r−1
1
−1

Im⊗ 2A(Kr)− ( +2r−3)Ir − 1
+ r(2−m)−1

J

Theorem 4.6. The characteristic polynomial of A(Km,r
n ) is given by

(1− )m(r−1)(1−2r− )m−1
− 2 − r 2+ (2−m)−m +1

+ r(2−m)−1

n−mr−1

× n(1−2r− )+2r 1+m(r−1)+ −1+ 2 .

Proof: With suitable relabelling of vertices in Km,r
n , matrix A(Km,r

n )− In can be written in the form

A(Km,r
n ) =

A1 − Imr J
JT A2 − In−mr

,

where, A1 = A(Km,r
mr ),A2 = A(Kn−mr). Also, J is all-one matrix of order (mr)× (n−mr), and JT is the

transpose of J. By Schur complement formula ([Bapat, 2010],p.4) we have,

det A(Km,r
n )− In = det(A1 − Imr)×det (A2 − In−mr)− JT (A1 − Imr)−1J

Using Lemma 4.1,

JT (A1 − Imr)−1J =
−mr

+ r(2−m)−1
J1,

and,

(A2 − In−mr)− JT (A1 − Imr)−1J =
+2r−1

+ r(2−m)−1
Kn−mr+ − +

mr
+ r(2−m)−1

In−mr.

The eigenvalues of above matrix are

− 2 − r 2+ (2−m)−m +1

+ r(2−m)−1
,
n( +2r−1)−2r(1+ −m+mr)− 2 +1

+ r(2−m)−1

with multiplicity n−mr−1, 1, respectively.

From Theorem 4.5,

det(A1 − Imr) = (1− )m(r−1)(1−2r− )m−1 1+ r(m−2)− .
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Hence,

A(Km,r
n ) = (1− )m(r−1)(1−2r− )m−1

− 2 − r 2+ (2−m)−m +1

+ r(2−m)−1

n−mr−1

× n(1−2r− )+2r 1+m(r−1)+ −1+ 2

Corollary 4.5. The determinant of A(Km,r
n ) is given by

(1−2r)m−1(−1)n−mr−1 n(1−2r)+2r 1+m(r−1) −1 .

Corollary 4.6. The eigenvalues of A(Km,r
n ) are

1, (1−2r),
(n−2r)± 8mr−8r−4n−8mr2 +4+(n+2r)2

2
and roots of the polynomial

− 2 − r 2+ (2−m)−m +1

+ r(2−m)−1

with multiplicity m(r−1), (m−1), 1, n−mr−1 respectively.

4.3 THE COMPLETE GRAPHWITH NEGATIVE CLIQUES OF DIFFERENT ORDER
In this section we consider the complete graph G having vertex-disjoint negative cliques of

different orders which cover the vertex-set of G. Let G have k> 2 number of negative cliques with
order n1,n2, . . . ,nk, respectively. Let n1 ≤ n2 ≤ . . .≤ nk. Thus, the adjacency matrix of such a graph
G can be written as

A(G) =





−A(Kn1) J12 . . . J1k
JT12 −A(Kn2) . . . J2k
...

... . . . ...
JT1k JT2k . . . −A(Knk)



 , (4.8)

where, A(Kni) denotes the adjacency matrix of Kni , i = 1, . . . ,k and Jpq denotes the all-one
matrix of order np × nq. To calculate the eigenvalues we use approach similar to in [Esser and
Harary, 1980] for complete multipartite graph. Observe that the diagonal blocks of A(G)− In are
−Jnini , i= 1, . . . ,k, and the off diagonal blocks are same as that of A(G).

We first prove the following lemma which is used in the sequel.

Lemma 4.2. Let

N =





−n1 n2 . . . nk
n1 −n2 . . . nk
...

... . . . ...
n1 n2 . . . −nk



 (4.9)

be a matrix of order k× k. Let N = N− Ik. Then

det(N ) =
k

∏
i=1

(−2ni− )+
k

∑
i=1

ni
k

∏
j=1, j=i

(−2n j− ) .
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Proof: Let n= [n1 n2 . . . nk]T ∈ Rk. Then,

det(N ) = det
1 −nT

0k N
= det

1 −nT

1k −2diag(n)− Ik
.

Expanding the right hand side, the desired result follows.

Now, we have the following theorem which completely characterizes the eigenvalues of
A(G)− In, and hence the eigenvalues of G.

Theorem 4.7. Let G be a complete graph on n vertices with k disjoint negative cliques of order n1,n2, . . . ,nk
such that n1+n2+ . . .+nk = n. Suppose ni, i= 1, . . . ,t, t ≤ k be the distinct numbers in the set {n1, . . . ,nk}.
Then,

(a) 0 is an eigenvalue of A(G)− In with algebraic multiplicity n− k corresponding to eigenvectors X =
[X1 X2 . . . Xk]

T ,Xi ∈ Rni such that ΣXi = 0 for all i.

(b) −2ni, i= 1, . . . , t are nonzero eigenvalues of A(G)− In with multiplicitymi−1 wheremi is the number
of distinct clusters in G of order ni. The other nonzero eigenvalues are the roots of the polynomial
1+ p( ) where

p( ) =
t

∑
i=1

mini
−2ni−

.

Moreover, the eigenvectors corresponding to the nonzero eigenvalues of A(G)− In are of the form
X = [ 11Tn1 21Tn2

. . . k1Tnk ]
T where 0k = = [ 1 2 . . . k]

T satisfiesN = 0. Such an determines
an eigenvector corresponds to the eigenvalue for which ( i− j) = 2(n j j−ni i), i, j = 1, . . . ,k.

Proof:

(a) Let X = [X1 X2 . . . Xk]
T ,Xi ∈ Rni such that A(G)− In X = 0. Then for i, j ∈ {1, . . . ,k},

k

∑
r=i,r=1

ΣXr−ΣXi =
k

∑
r= j,r=1

ΣXr−ΣXj = 0.

This yields ΣXi = 0 for all i= 1, . . . ,k.

(b) Let = 0 and A(G)− In X = X where X = [X1 X2 . . . Xk]
T ,Xi ∈ Rni . For any i, consider the

vector Xi, any two entries of Xi, say x(i)p ,x(i)q , satisfy

x(i)p =
k

∑
r=i,r=1

ΣXr−ΣXi = x(i)q . (4.10)

Since, = 0,Xi = i1ni for some constant i for all i = 1, . . . ,k. Setting X =
[ 11Tn1 21Tn2

. . . k1Tnk ]
T , by Equation (4.10) we have

i =
k

∑
r=i,r=1

nr r−ni i. (4.11)

For any j = i, similarly, we have

j =
k

∑
r= j,r=1

nr r−n j j. (4.12)
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Adding these above two equations, we obtain ( i − j) = 2(n j j − ni i) for any i, j ∈
{1, . . . ,k}.

In order to find all i, i = 1, . . . ,k which satisfy Equation (4.11) for each i, it gives the linear
system N = 0. Note that both and are unknown in this linear system and for the
existence of a nonzero solution vector , we must have det(N ) = 0. Thus, the nonzero
eigenvalues of A(G)− In are the roots of the polynomial det(N ). Now from Lemma 4.2, we
have

det(T ) =
t

∏
i=1

(−2n̄i− )mi +
t

∑
i=1

min̄i
−2n̄i−

t

∏
j=1

(−2n̄ j− )mj

=
k

∏
i
(−2n̄i− )mi−1

t

∏
i=1

(−2n̄i− )+
t

∑
i=1

min̄i
t

∏
j=1, j=i

(−2n̄ j− ) .

Hence, the proof.

Lemma 4.3. Let 1 > 2 > .. . > t−1 > t be the roots of polynomial 1+ p( ). Then

1 >−2n̄1 > 2 >−2n̄2 . . . > t−1 >−2n̄t−1 > t >−2n̄t . (4.13)

In general, if 1 ≥ 2 ≥ . . .≥ k−1 ≥ k are the nonzero eigenvalues of A(G)− In, then

1 ≥−2n1 ≥ 2 ≥−2n2 . . .≥ k−1 ≥−2nk−1 ≥ k ≥−2nk. (4.14)

Proof: Polynomial p( ) is continuous and strictly increasing in interval (−2n̄i+1,−2n̄i). Also,
lim

→(−2n̄i)−
p( ) =+∞ and lim

→(−2n̄i+1)+
p( ) =−∞ for i= 1,2 . . . t−1. Hence, using intermediate value

theorem there exists a root ∗
i of equation 1+ p( ) = 0 in interval (−2n̄i+1,−2n̄i) for i= 1,2 . . . t−1,

satisfying −2n̄i > ∗
i+1 > −2n̄i+1. For i = 1 lim

→(−2n̄1)+
p( ) = −∞ and lim

→+∞
p( ) = 0. Again, using

intermediate value theorem 1 >−2n̄1 which proves (4.13). Similarly, (4.14) follows fromTheorem
4.7.

Corollary 4.7. Let 1 ≥ 2 ≥ . . . ≥ n be eigenvalues of A, and ∗
1 > ∗

2 > ... > ∗
t−1 >

∗
t be its non-zero

non-integer eigenvalues. Then,

1.

1 >−2n̄1 +1 > 2 >−2n̄2 +1 . . . > t−1 >−2n̄t−1 +1 > t >−2n̄t +1. (4.15)

2.

1 ≥−2n1 +1 ≥ 2 ≥−2n2 +1 . . .≥ k−1 ≥−2nk−1 +1 ≥ k ≥−2nk+1. (4.16)

Proof: It directly follows from the fact that i = i+1 ∀ i and Lemma 4.3.

4.4 THE CHARACTERISTIC POLYNOMIAL OF REGULAR STAR BLOCK GRAPH
In this section we calculate the eigenvalues of r-regular signed star block graph.

Theorem 4.8. LetG be a r-regular star block graph having k blocks. If l number of blocks are negative cliques
for l ≤ k, then

(G) = l (K̃r) (K̃r−1)
l−1 (Kr−1)

k−l +(k− l) (Kr) (K̃r−1)
l (Kr−1)

k−l−1 ,

where, (K̃r) denotes the characteristic polynomial of a negative clique of order r.
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Proof: In each linear subdigraphs correspondingCoates digraph ofG, the cut vertex vwill associate
with linear subdigraphs of exactly one clique. From Theorem 2.3

(G) = l (K̃r) (K̃r−1)
l−1 (Kr−1)

k−l +(k− l) (Kr) (K̃r−1)
l (Kr−1)

k−l−1

Eigenvalues ofKn are−1,(n−1)while eigenvalues of K̃n are 1n−1,1−n, withmultiplicities (n−1),1,
respectively. Hence,

(Kn) = (−1− )n−1(n−1− ), (K̃n) = (1− )n−1(1−n− )

(G) = l (K̃r) (K̃r−1)
l−1 (Kr−1)

k−l +(k− l) (Kr) (Kr−1)
k−l−1 (K̃r−1)

l

(G) = (1− )r−2(2− r− )
l−1

(−1− )r−2(r−2− )
k−l−1

l (1− )r−1(1− r− )(−1− )r−2(r−2− ) +(k− l) (−1− )r−1(r−1− )(1− )r−2(2− r− )

Thus, eigenvalues of G are 1,2− r,−1,r− 2 with multiplicities (r− 2)(l− 1), (l− 1), (r−
1)(k− l−1), (k− l− 1), respectively and rest of the eigenvalues are given by roots of polynomial
.

In the next two sections, we calculate the eigenvalues of complete-path weakly balanced
and complete-cycle weakly balanced graphs. The procedure is similar to the Section 4.3, however,
the non zero eigenvalues for these graphs can be calculated using numerical methods. Also, we
use their weakly balanced structure as such rather than first negating their edges then using the
negative cliques.

4.5 THE SPECTRUMOF COMPLETELY-PATHWEAKLY BALANCED SIGNED GRAPHS
In this section we consider weakly balanced signed graphs whose positive clusters Cli =

Kni , i = 1, . . . ,k are completely connected graphs and clusters are positioned in a path such that
every vertex of a clusterCl j is linked to every vertex of its adjacent clusterCl j+1, j = 1, . . . ,k−1 by
negative edges. We call it completely-path weakly balanced signed graphs. The adjacency matrix
of such a graph G is a tridiagonal block matrix of the form

A(G) =





A(Kn1) −J12

−JT12 A(Kn2)
. . .

. . . . . . −Jk−1k
−JTkk−1 A(Knk)




. (4.17)

We mention that apparently a completely-path weakly balanced signed graph seems not
strongly balanced. However, by setting Clo as the union of all the clusters Cli where i is odd and
Cle as the union ofCli where i is even, it is evident that insideClo and Cle all the edges are positive
and edges between vertices inClo and Cle are negative. Thus a completely-path weakly balanced
signed graph is strongly balanced.

First, we recall the following result from [Smith, 1985].
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Theorem 4.9. Consider the tridiagonal Toeplitz matrix

T (a,b,c) =





a b
c a b

. . . . . . . . .
c a b

c a





of order k. Then the eigenvalues of T (a,b,c) are given by

i = a+2b
c
b

cos
i

k+1

corresponding to the eigenvector

vi = c
b

1
2 sin i

k+1
c
b sin 2i

k+1
c
b

3
2 sin 3i

k+1 . . . c
b

k
2 sin ki

k+1

T

for i= 1, . . . ,k.

Theorem 4.10. Let G be a completely-path weakly balanced signed graph on n vertices with k > 2 clusters
Kni , i= 1, . . . ,k such that ∑k

i=1 nk = n. Then

(a) 0 is an eigenvalue of In+A(G) corresponding to the eigenvectorX = [X1 X2 . . . Xk]
T ,Xi ∈Rni such that

ΣXi = 0, i= 1, . . . ,k when k= 3 j or 3 j+1 for some positive integer j. If k= 3 j−1, 0 is an eigenvalue
of In+A(G) associated with the eigenvector X = [X1 X2 . . . Xk]

T ,Xi ∈Rni such that ΣXi = sin i
3 .

(b) Let

N =





n1 −n2 0

−n1 n2
. . .

. . . . . . −nk
0 −nk−1 nk




. (4.18)

Then is an eigenvalue of In+A(G) if it is a nonzero eigenvalue of N. If = [ 1 2 . . . k]
T ∈Rk is an

eigenvector corresponding to the eigenvalue ofN then X = [ 11Tn1 21Tn2
. . . k1Tnk ]

T is an eigenvector
associated with the eigenvalue of In+A(G).

Proof:

(a) Note that 0 is an eigenvalue of In + A(G) corresponding to an eigenvector X =
[X1 X2 . . . Xk]

T ,Xi ∈ Rni if and only if X̃ = [ΣX1 ΣX2 . . . ΣXk]
T ∈ Rk belongs to the kernel of

the tridiagonal Toeplitz matrix T (1,−1,−1) of order k. Then from Theorem 4.9 it follows
that X̃ = 0 is an eigenvector corresponding to the eigenvalue 0 of T (1,−1,−1) if and only if
k = 3 j−1 for some positive integer j. Thus if k = 3 j or 3 j+1, X̃ = 0. If k = 3 j−1 then using
Theorem 4.9 we obtain the desired result.

(b) Let = 0 and (In+A(G))X = X where X = [X1 X2 . . . Xk]
T ,Xi ∈Rni . First consider X1. For any

two entries of X1, say x(1)p ,x(1)q , we have

x(1)p =−ΣX2 +ΣX1 = x(1)q . (4.19)

Similarly, for any two entries of Xk, say x(k)p ,x(k)q , we have

x(k)p =−ΣXk−1 +ΣXk = x(k)q . (4.20)
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Now consider the vector Xi for i = 2,3, . . . ,k− 1. Then for any two entries of Xi, say x(i)p ,x(i)q ,
we have

x(i)p =−ΣXi−1 −ΣXi+1 +ΣXi = x(i)q . (4.21)

Since = 0,Xi = i1ni for some constant i for all i = 1, . . . ,k. Setting X =
[ 11Tn1 21Tn2

. . . k1Tnk ]
T , by Equations (4.19), (4.20), (4.21) we have following k equations

1 = n1 1 −n2 2.

And,

k = nk k−nk−1 k−1.

i = ni i−ni−1 i−1 −ni+1 i+1.

for i= 2, . . . ,k−1.

This gives the linear system N = 0, where = [ 1 2 . . . k]
T . As is non zero vector,

det(N ) = 0. Solving det(N ) = 0 is equivalent to finding of eigenvalues of N.

4.5.1 Eigenvalues of N
As all ni are positive integers, N can be transformed in to a symmetric tridiagonal matrix

using similarity transformation with diagonal matrix Γ. Define Γ = diag{ 1, . . . , k} as follows.

i =
n1

ni

1/2

i= 1, . . . ,k.

Then

Γ−1NΓ = T =





n1 −√
n1n2

−√
n1n2 n2

. . .
. . . . . . −√

nk−1nk
−√

nk−1nk nk




. (4.22)

is a tridiagonal matrix, having Tii = ni ∀i and Ti,i+1 = Ti+1,i = −(nini+1)
1/2 for i = 1,2, . . . ,k−1. It is

evident that N and T have the same eigenvalues including their multiplicities. Indeed we have the
following theorem.

Theorem 4.11. The following are true.

(a) If all the clusters have equal number of vertices i.e n
k (whenever possible), then eigenvalue of T are

n
k (1−2 cos i

k+1) for i= 1,2...k.

(b) If ni = n1 for i= 2 j+1 and ni = n2 for i= 2 j for j = 1,2, . . . , k/2 . Then, eigenvalues of T are

=






n1+n2
2 ± (n1−n2)2

4 +2(n1n2)2 +2n1n2 cos( j
r+1) if k = 2r+1

n1+n2
2 ± (n1−n2)2

4 +2(n1n2)2 +2n1n2 cos r j if k = 2r

for j = 1, . . . ,r, where r is a positive integer and each r j is a nonzero solution of the trigonometric
equation n1n2(sin(r+1) + sin(r )) = 0, with 0 < < .

40



(c) All the eigenvalues of T are distinct.

(d) T have a zero eigenvalue if and only if k = 3 j+2 for some positive integer j.

Proof:

(a) As all cluster have equal size, T = n
k (I−A(Pk)), where A(Pk) is adjacency matrix of path graph

having k vertices. Eigenvalues of T are n
k (1−2 cos i

k+1) for i= 1,2...k.

(b) In this case T is tridiagonal 2-Toeplitz matrix. Proof follows from [Smith, 1985].

(c) For any eigenvalue of T consider thematrix T− I. Let us remove first row and last column
of T− I. The resultingmatrix of order k−1 is an upper triangular matrix having all non zero
elements on diagonal. Hence it is nonsingular, and its rank is k−1. As this resulting matrix
is a submatrix of T − I, hence T − I will have rank at least k− 1. But T − I can have at
most k−1 rank as is eigenvalue of T . As rank of the symmetric matrix equals its number of
nonzero eigenvalues matrix, T − I have only one zero eigenvalues. In other words, have
algebraic multiplicity 1, hence all eigenvalues are distinct.

(d) N and its transpose matrix NT have same rank. Consider an eigenvector X = [x1,x2, . . . ,xk]T

of NT corresponding to a possible zero eigenvalue. As X is in null space of NT , from NTX = 0
we have

xi = xi−1 + xi+1 for i= 2,3, . . . ,k−1.

x1 = x2, xk = xk−1

So, we can arrange xis on a number line such that each xi is sum of its adjacent entries. We
need to find basis of null space of NT . As X is non zero vector, at least one entry is non zero.
Without loss of generality, let us assume x1 = 1 and set its adjacent entry as x2 = 1 and fill
the remaining entries of X considering above equations. Let us denote 1,1 in pair by 12 and
−1,−1 in pair by −12. When k = 3+2r we can not fill remaining entries considering above
equation. For k= 3+2r wewill get a possible X as [12,0,−12,0,12, . . . ,−12]. Which forms the
basis for null space. Hence there is a zero eigenvalue for k = 3r+2.

Let i are eigenvalues of T and pr( ) denote the leading principal minor of order r of (T −
I). Assume p0( ) = 1, we have

p1( ) =−n1 − .

pi( ) = (−ni− )pi−1( )−nini−1pi−1( ).

for i= 2,3 . . .k

As none of ni is zero, then eigenvalues is are strictly separated (Chapter 300,[Wilkinson
andWilkinson, 1965]). Eigenvalues of N can be computed from following theorem.

Theorem 4.12. [Wilkinson and Wilkinson, 1965] Let the quantities p0( ), p1( ), . . . , pn( ) be evaluated
for some value of . Then s( ), the number of agreements in sign of consecutive members of this sequence,
is the number of eigenvalues of T which are strictly greater than .

The above property of sequence p0( ), p1( ), . . . , pn( ) is called Sturm sequence property,
which may be used to to locate any individual eigenvalue. For instance we have two values a0 and
b0 such that

b0 > a0, s(a0)≥ k, s(b0)< k
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This implies that b0 > k > a0 from Theorem 4.12. We can locate k iteratively using method of
bijection (Chapter 301,[Wilkinson and Wilkinson, 1965])

4.5.2 The spectrum of completely-cycle weakly balanced signed graph
In this section we consider weakly balanced signed graphs in which each cluster Cli is the

complete graph Kni and each cluster are placed in cycle such that every vertex of a cluster is linked
with every vertex of its adjacent cluster by negative edges. We call it completely-cycle weakly
balanced signed graph. The adjacency matrix of such a graph G is given by

A(G) =





A(Kn1) −J12 0 −J1k

−JT12
. . . . . .
. . . A(Knk−1) −Jk−1k

−JT1k −JTk−1k A(Knk)




(4.23)

where Ji j is the all-one matrix of order ni×nj. Similar to previous sections we will investigate the
spectra of In+A(G) in order to investigate the spectra ofG. First we recall the following result from
[Yueh and Cheng, 2008].

Theorem 4.13. Consider the perturbed tridiagonal Toeplitz matrix

T (a,b,c, , , , ) =





a+ b
c a b

. . . . . . . . .
c a b

c a+





of order k. If
− =−c2, + = 2c, + = 0

Then the eigenvalues of T (a,b,c, , , , ) are given by

i = a+2ccos i

Where,

i =
2i
k

i= 1,2, . . . ,k.

Theorem 4.14. Let G be a completely-cycle weakly balanced signed graph on n vertices with k > 2 clusters
Kni , i= 1, . . . ,k such that ∑k

i=1 nk = n. Then

(a) Let X = [X1 X2 . . . Xk]
T ,Xi ∈ Rni is an eigenvector of In+A(G) corresponding to eigenvalue 0. Then,

if k = 6r for some positive integer r, ΣXi = 0, ∀ i.

(b) The eigenvectors corresponding to the nonzero eigenvalues of In + A(G) are of the form X =
[ 11Tn1 21Tn2

. . . k1Tnk ]
T where 0k = = [ 1 2 . . . k]

T satisfies N = 0.Where N = N− In and

N =





n1 −n2 0 −nk

−n1 n2
. . . 0

0
. . . . . . −nk

−n1 0 −nk−1 nk




(4.24)

Proof:
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(a) Note that 0 is an eigenvalue of In + A(G) corresponding to an eigenvector X =
[X1 X2 . . . Xk]

T ,Xi ∈ Rni if and only if X̃ = [ΣX1 ΣX2 . . . ΣXk]
T ∈ Rk belongs to the kernel of

the tridiagonal Toeplitz matrix T (1,−1,−1,0,−1,0,−1) of order k. Then from Theorem
4.13 it follows that X̃ = 0 is an eigenvector corresponding to the eigenvalue 0 of
T (1,−1,−1,0,−1,0,−1) if and only if k = 6r for some positive integer r. Setting i = r in
Theorem 4.13 we obtain the desired result. Let X = [X1 X2 . . . Xk]

T ,Xi ∈ Rni such that (In +
A(G))X = 0. Then

ΣXi = ΣXi−1 +ΣXi+1

for i = 1, . . . ,k(mod k). Obviously, ΣXi = 0 for all i would satisfy such condition and hence
could be an eigenvector. Otherwise, if ΣXi = 0 for some i, at least one of ΣXi+1 and ΣXi−1 is
nonzero. This implies

Let us arrange ΣX1,ΣX2, . . . ,ΣXk on circle. Arrangement requires that each ΣXi is sum of its
adjacent numbers. A trivial solution is ΣXi = 0, ∀ i. For non-trivial solution without loss of
generality let us consider ΣX1 = ,ΣX2 = for some non zero real number . Arrangement
will be [ , , − ,− ,− , . . . ,− , − ]which is only possible when k= 6r for any positive
integer r.

(b) Let = 0 and (In+A(G))X = X where X = [X1 X2 . . . Xk]
T ,Xi ∈Rni . First consider X1. For any

two entries of X1, say x(1)p ,x(1)q , we have

x(1)p =−ΣXk−ΣX2 +ΣX1 = x(1)q . (4.25)

Similarly, for any two entries of Xk, say x(k)p ,x(k)q , we have

x(k)p =−ΣX1 −ΣXk−1 +ΣXk = x(k)q . (4.26)

Now consider the vector Xi for i = 2,3, . . . ,k− 1. Then for any two entries of Xi, say x(i)p ,x(i)q ,
we have

x(i)p =−ΣXi−1 −ΣXi+1 +ΣXi = x(i)q . (4.27)

Since = 0,Xi = i1ni for some constant i for all i = 1, . . . ,k. Setting X =
[ 11Tn1 21Tn2

. . . k1Tnk ]
T , by Equations (4.25), (4.26), (4.27) we have following k equations

1 = n1 1 −n2 2 −nk k.

And,

k = nk k−nk−1 k−1 −n1 1.

i = ni i−ni−1 i−1 −ni+1 i+1.

for i= 2, . . . ,k−1.

This gives the linear system N = 0, where = [ 1 2 . . . k]
T . As is non zero vector,

det(N ) = 0. Solving det(N ) = 0 is equivalent to finding eigenvalues of N.
Corollary 4.8. If all the clusters have equal number of vertices i.e n

k (whenever possible), then eigenvalue of
A are −1n−k, nk (1−2cos 2 i

k −1))−1 for i= 1,2...k.

Proof: As all cluster have equal size, N = n
k (I−A(Ck)), where A(Ck) is adjacency matrix of cyclic

graph having k vertices. Eigenvalues of N are n
k (1−2 cos 2 i

k )−1) for i= 1,2...k. These are non zero
eigenvalues of In+A(G). Hence eigenvalues of A are −1n−k, nk (1−2cos 2 i

k )−1.

In the next subsection, wewill discuss amethod to find the spectrum of A(G) for the general
case.
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4.5.3 Eigenvalues of N
Proceeding as previous section, we can transform N in to a symmetric form T̂ using

similarity transformation with diagonal matrix Γ. We define Γ as follows

Γii = (
n1

ni
)1/2

Then Γ−1NΓ = T̂ , is a symmetric tri-diagonal matrix with perturbed corners, having T̂ii = ni
∀i , T̂i,i+1 = T̂i+1,i =−(nini+1)

1/2 where i= 1,2, . . . ,k−1 and T̂1,nk = T̂nk,1 =−(n1nk)1/2.

Theorem 4.15. N can have either full rank or k−2 and rank is k−2 if and only if k = 6r for some positive
integer r.

Proof: N and its transpose matrix NT have same rank. Consider an eigenvector X = [x1,x2, . . . ,xk]T

of N corresponding to a possible zero eigenvalue. As X is in null space of NT , from NTX = 0 we
have

xi = xi−1 + xi+1 for i= 2,3, . . . ,k−1.

x1 = x2 + xk

xk = x1 + xk−1

So, we can arrange xis on a cycle such that each xi is sum of its adjacent entries. We need to find
basis of null space of NT . As X is non zero vector, at least one entry is non zero. Without loss of
generality, let us assume x1 = 1 and set its adjacent entries as xk = 0,x2 = 1 and fill the remaining
entries of X considering above equations. Let us denote 1,1 in pair by 12 and −1,−1 in pair by
−12. When k = 6r we can not fill remaining entries considering above equation, because for that
be need repetition of unit [0,12,0,−12] or [12,0,−12,0] . For k = 6r we will get one possible X as
[12,0,−12,0,12, . . . ,−12,0]. Similarly other possible value of X can be [0,12,0,−12,0,12, . . . ,−12].
These two vector forms basis for null space of NT and other vectors in null space can written as
linear combination of these two. We can infer from that geometric multiplicity of zero eigenvalue
is 2. Now since N is similar to a symmetric matrix T̂ , so algebraic multiplicity of each eigenvalue
is equal to its geometric multiplicity. So for k = 6r there are two zero eigenvalues of N and hence
it has rank k−2 else rank is k. Moreover ∑k

i xk = 0.

Using Householder symmetric transformations T̂ can be converted to symmetric
tri-diagonal T which can be solved using Sturm sequences as in the previous section.

Corollary 4.9. The spectrum of a weakly balanced complete cycled graph is equal to that of its underlying
unsigned graph if and only of the number of cliques are even.

Proof: For an even number of cliques, all cycles are balanced, so the spectrum of the graph is equal
to the spectrum of its underlying unsigned graph. For an odd number of cliques there always exists
a cycle having an odd number of negative edges, hence the spectrum can not be equal to that of its
underlying unsigned graph.

4.6 CONCLUSION
In this chapter, we found the characteristic polynomial of signed cycle and signed path

graph. Laterwe calculated the spectra of different weakly balanced graphs induced from complete
graphs.
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