
5
On Characteristic and Permanent Polynomials of a Matrix

In this chapter, we will see how blocks in the signed weighted graph corresponding to
the matrix, can be used to find its characteristic and permanent polynomials. Inspired by the
work on the determinant of simple block graphs [Bapat and Roy, 2014], we propose a new
technique for computing the characteristic and the permanent polynomials of a matrix. First
of all, we derive a recursive expression for these polynomials of a matrix with respect to a
pendant block in the corresponding digraph. On solving this recursive expression we find that
the characteristic (permanent) polynomial of a digraph can be written in terms of the characteristic
(permanent) polynomial of some specific induced subdigraphs of blocks. Interestingly, these
induced subdigraphs are vertex-disjoint and they partition the digraph. Hence, this leads us to
define a new partition called B-partition of a digraph. Corresponding to every B-partition we
define the -summand and the -summand. Similarly, the det-summand and the per-summand
corresponding to each B-partition is specified. Thus, we have found the characteristic and
the permanent polynomials of a matrix in terms of the -summands and the -summands,
respectively, of the corresponding B-partitions. Similarly, the determinant and the permanent
of the matrix can be found in terms of the det-summands and the per-summands, respectively.

This new method of calculation provides a combinatorial significance of the determinant,
the permanent, the characteristic and the permanent polynomials of a matrix. A singular graph
has a zero eigenvalue. Classifying singular graphs is a complicated problem in combinatorics
[Sciriha, 2007; Bapat, 2011; Bapat and Roy, 2014]. In this chapter, we illuminate this problem with a
number of exampleswith the new combinatorial implication. This procedure presents a simplified
proof for the determinant of simple block graphs earlier given in [Bapat and Roy, 2014]. These
graph-theoretic representations would be useful in future investigations in matrix theory.

First, we define the idea of a block of a digraph, which plays a fundamental role in this
chapter. It is already defined in literature for simple graphs [Bapat and Roy, 2014].

Definition 5.1. Block: A block is a maximally connected subdigraph of G that has no cut-vertex.

Note that, if G is a connected digraph having no cut-vertex, then G itself is a block. A
block is called a pendant block if it contains only one cut-vertex of G, or it is the only block in that
component. The blocks in a digraph can be found in linear time using John and Tarjan algorithm
[Hopcroft and Tarjan, 1971]. We define the cut-index of a cut-vertex v as the number of blocks
adjacent to v. We specifically denote a digraph having k blocks as Gk.

A square matrix A = (auv) ∈ Cn×n can be depicted by a weighted digraph G(A) with n

vertices. If auv = 0, then (u,v) ∈ E G(A) and f (u,v) = auv. The diagonal entry auu corresponds to a
loop at vertex u havingweight auu. If v is a cut-vertex in G(A), then we call avv as the corresponding
cut-entry in A. The following example will make this assertion transparent.
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Figure 5.1 : (a) Digraph of matrixM1 (b) Digraph of matrixM2

Example 5.1. The digraphs corresponding to the matrices M1 and M2 are presented in Figure 5.1.

M1 =





0 3 2 0 0 0 0
−7 5 −1 1 −8 0 0
2 −1 0 0 0 0 0
0 1 0 0 0 −3 0
0 12 0 0 0 1 0
0 0 0 1 1 −4 2
0 0 0 0 0 20 3





, M2 =





0 3 2 0 0 0 0 0
−7 5 −1 1 −8 0 0 0
2 −1 0 0 0 0 0 0
0 1 0 0 0 −3 0 0
0 12 0 0 0 1 0 0
0 0 0 1 1 −4 2 −2
0 0 0 0 0 20 3 0
0 0 0 0 0 −2 0 10





.

The cut-entries and the cut-vertices are shown in red in the matrices M1 and M2, as well as in
their corresponding digraphs G(M1) and G(M2). Note that, when auv = avu = 0, we simply denote edges
(u,v) and (v,u) with an undirected edge (u,v) with weight auv. As an example, in G(M1) the edge (v1,v3)
and (v3,v1) are undirected edges. The digraph G(M1), depicted in the Figure 5.1(a), has blocks B1,B2 and
B3 which are induced subdigraphs on vertex subsets {v1,v2,v3} ,{v2,v4,v5,v6} and {v6,v7}, respectively.
Here, cut-vertices are v2 and v6 with cut-indices 2. Similarly, the digraph G(M2) in the Figure 5.1(b), has
blocks B1,B2,B3 and B4 on vertex sets {v1,v2,v3} ,{v2,v4,v5,v6} ,{v6,v7} and {v6,v8}, respectively. Here,
cut-vertices are v2 and v6 with cut-indices 2 and 3, respectively.

The characteristic polynomial of a digraphG(A) is the characteristic polynomial of a matrix
A. In other words, G(A) = (A) = det(A− I). Hence, the determinant of digraph G(A) is the
determinant of a matrix A. Similarly, the permanent polynomial of digraphG(A) is the permanent
polynomial of corresponding matrix A, or in other words G(A) = (A) =per(A− I). Hence,
the permanent of the digraph G(A) is the permanent of the matrix A.

The chapter is organized as follows. In Section 5.1, we derive a recursive form of the
characteristic and the permanent polynomials of the digraph. In Section 5.2, we defineB-partition
of digraph and its corresponding -summand, -summand, det-summand and the per-summand.
In Section 5.3, we solve recursive expression derived in Section 5.1 to get the characteristic
and the permanent polynomials of digraph in terms of the -summands and the -summands,
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respectively. In Section 5.4, we provide results on thedeterminant of some simple graphs including
block graphs.

5.1 RECURSIVE FORM OF THE CHARACTERISTIC AND THE PERMANENT POLYNOMIAL
In this section, we provide a recursive expression for the characteristic and the permanent

polynomial of a digraph G, with respect to its pendant block. If Q is a subdigraph of G, then
G\Q denotes the induced subdigraph of G on the vertex subset V (G)\V (Q). Here, V (G) \V (Q) is
the standard set-theoretic subtraction of vertex sets. Let v be a cut-vertex of G, then the recursive
expression for these polynomials can also be givenwith respect to subdigraphH containing v, such
that, H \v is a union of components. For convenience, we relabel the digraphG(A). In graph theory,
these relabeling are captured by permutation similarity of A. Thus, relabeling on vertex set keep
the determinant and the permanent unchanged. We frequently use this idea in this section.

Lemma 5.1. Let G be a digraph having at least one cut-vertex. Let B1 be a pendant block and v be the
cut-vertex of G in B1. Let the weight of the loop at vertex v be . The following recurrence relation holds for
the characteristic polynomial,

(G) = (B1)× (G\B1)+ (B1 \ v)× G\ (B1 \ v) +( − )× (B1 \ v)× (G\B1).

Proof: Let A(G) be the matrix corresponding to the digraph G having n vertices. Let the number
of vertices in block B1 be n1. With suitable reordering of vertices in G, let block B1 have vertices
with the labels {1,2,. . .,n1}. Here, n1-th vertex is the cut-vertex v of G in B1. Let x and z be column
vectors of order (n1−1) and (n−n1), respectively, such that (x, ,z) formulates n1-th column vector
of A(G). Similarly, w and y are row vectors of order (n1 − 1) and (n− n1), respectively, such that
(w, ,y) formulates n1-th row vector of A(G). Now,

A(G)− I =




A(B1 \ v)− I x O

w − y
O z A(G\B1)− I



 . (5.1)

Here, O is the zero matrix of appropriate size. Let xi,wi,zi and yi denote the i-th entry of
the vectors x,w,z and y, respectively. Using Theorem 2.4, let us fix set S = {1,2, . . . ,n1}, then T is
n1-subset of n columns in A(G)− I. Note that, T must have numbers 1,2,3 . . . ,(n1 −1) otherwise it
will give zero contribution to (G). This is because if any number 0 ≤ i≤ (n1 −1) is missing in T ,
then the column corresponding to iwill be in submatrix [A(G)− I]S,T . As this column in submatrix
[A(G)− I]S,T has all zero entries, hence its determinant is zero. Thus, only following sets of S,T
have possible non-zero contribution in (G).

1. S= {1,2, . . . ,n1}, T = {1,2, . . . ,n1}. It contributes the following to (G)

(B1)× (G\B1) (5.2)

2. S= {1,2, . . . ,n1}, T = {1,2, . . . ,n1−1, r}, where r is a value from set {n1+1,n1+2, . . . ,n}. Thus,
there will be n−n1 such possible set of T . Let Ti = {1,2, . . . ,n1 −1,n1 + i} for i= 1,2, . . . ,n−n1.

Let ci be the i-th column of the matrix A(G \B1)− I and A(G\B1)− I \ ci denote the

resulting submatrix after ci is removed from A(G \B1)− I . Then, contribution of these
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sets to (G) is

n−n1

∑
i=1

(−1)w(S,Ti) det[A(G)− I]S,T ×det[A(G)− I]S,T

=
n−n1

∑
i=1

(−1)w(S,Ti) det
A(B1 \ v)− I O

w yi
×det z A(G\B1)− I \ ci

=det (B1 \ v)− I ×
n−n1

∑
i=1

(−1)w(S,Ti)× yi×det z A(G\B1)− I \ ci

=det (B1 \ v)− I × det G\ (B1 \ v)− I +( − )×det A(G\B1)− I

= (B1 \ v)× G\ (B1 \ v) +( − ) (G\B1) .

(5.3)

Hence,

(G)= (B1)× (G\B1)+ (B1\v)× G\(B1\v) +( − )× (B1\v)× (G\B1) (5.4)

Corollary 5.1. Let G be a digraph having at least one cut-vertex. Let B1 is a pendant block and v be the
cut-vertex of G in B1. Let the weight of loop at vertex v be . The following recurrence relation holds for the
permanent polynomial,

(G) = (B1)× (G\B1)+ (B1 \ v)× G\ (B1 \ v) +( − )× (B1 \ v)× (G\B1)

Proof: The proof is similar to Lemma 5.1.

We generalize Lemma 5.1 with respect to some subdigraphs containing cut-vertex in the
next lemma.

Lemma 5.2. Let G be a digraph with at least one cut-vertex. Let H be a non empty subdigraph of G having
cut-vertex v with loop weight , such that H \v is union of components. The characteristic polynomial of G,

(G) = (H)× (G\H)+ (H \ v)× G\ (H \ v) +( − )× (H \ v)× (G\H).

Proof: Let the number of vertices in the subdigraph H be n1. With suitable reordering of vertices
in G, let n1-th vertex be the cut-vertex v of G in H. Remaining proof is similar to Lemma 5.1.

Corollary 5.2. LetG be a digraph with at least one cut-vertex. Let H be a nonempty subdigraph of G having
cut-vertex v with loop weight , such that H \v is a union of components. The permanent polynomial of G,

(G) = (H)× (G\H)+ (H \ v)× G\ (H \ v) +( − )× (H \ v)× (G\H).

Proof: The proof follows from Lemma 6.4.

5.2B-PARTITIONS OF A DIGRAPH
We define a new partition of digraph which helps in finding its characteristic (permanent)

polynomial.
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Figure 5.2 : Example of a B-partition of (a) Digraph of matrix M1 (b) Digraph of matrixM2

Definition 5.2. Let Gk be a digraph having k blocks B1,B2, . . . ,Bk. Then, a B-partition of Gk is a partition
in k vertex disjoint induced subdigraphs B̂1, B̂2, . . . , B̂k, such that, B̂i is a subdigraph of Bi. The -summand
and the det-summand of this B-partition is

k

∏
i

(B̂i), and
k

∏
i

det(B̂i),

respectively, where by convention (B̂i)= 1, and det(B̂i)= 1 if B̂i is a null graph. Similarly, its -summand
and the per-summand are given by

k

∏
i

(B̂i), and
k

∏
i
per(B̂i),

respectively, where by convention (B̂i) = 1, and per(B̂i) = 1 if B̂i is a null graph.

All possible B-partitions of M1, and M2 are given in Figures 5.3 and 5.4, respectively.

Corollary 5.3. Let G be a digraph having t cut-vertices with cut-indices d1,d2, . . . ,dt , respectively. The
number of B-partitions of G is

t

∏
i=1

di.

Proof: Each cut-vertex associates with an induced subdigraph of exactly one block in aB-partition.
For i-th cut-vertex there are di choices of blocks. Hence, the result follows.

Example 5.2. The number of B-partitions in digraphs corresponding to matrices M1 and M2 are 4 and 6,
respectively.

In the next section, we make use of B-partitions to calculate the characteristic and the
permanent polynomials. In addition to this, we also use slightly modified B-partitions which
are explained as follows. Let Gk be a digraph having k blocks B1,B2, . . .Bk. Let the block Bi have
ti number of cut-vertices of Gk. Now consider that some or all of these cut-vertices are removed
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Figure 5.3 : B-partitions of the digraph of matrixM1

fromGk to form a desired subdigraph of it. In the process, let us call the resulting subdigraph from
block Bi as cut-subdigraph of Bi. Now, in order to calculate B-partitions of resulting subdigraph
of Gk, in the Definition 5.2, we take B̂i as a subdigraph of cut-subdigraph of Bi, instead of Bi. This
is a modified B-partition or B-partition using cut-subdigraph of blocks.

Example 5.3. Let us consider the digraph in Figure 5.1(a) corresponding to the matrixM1. Let us remove the
cut-vertex v2 from the digraph. Then for the block B1, the resulting cut-subdigraph is B1 \ v2. Similarly, for
the block B2, the resulting cut-subdigraph B2 \ v2. Then there are two B-partition of the resulting digraph
using cut-subdigraph; (1) B1 \ v2, B2 \ v2, B3 \ v6. (2) B1 \ v2, B2 \{v2,v6}, B3.

5.3 THE CHARACTERISTIC AND PERMANENT POLYNOMIAL OFMATRIX
In this section, we derive an expression for the characteristic polynomial of an arbitrary

square matrix using the -summands in B-partitions of the digraph corresponding to the matrix.
Similarly, we apply the -summands for the permanent polynomial.
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Figure 5.4 : B-partitions of the digraph of matrixM2

LetGk be a digraphhaving k blocksB1,B2, . . . ,Bk. LetGk havem cut-verticeswith cut-indices
d1,d2, . . . ,dm. Also, assume that theweights of loops at these vertices are 1, 2, . . . , m, respectively.
Then, following are the steps to calculate the characteristic (permanent) polynomials of Gk.

Procedure 5.1.

1. Add − with the loop-weight at each vertex. Whenever there is no loop at a vertex then, add a loop
with weight − .

2. For q= 0,1,2, . . . ,m,

a) Delete any q cut-vertices at a time from Gk to construct an induced subdigraph. In this way,
construct all m

q induced subdigraphs of Gk.

b) Find all possible B-partitions of each subdigraph constructed in (a) using cut-subdigraphs.

c) For eachB-partition in (b) multiply its -summand ( -summand) by∏i( − i)(di−1), where,
i= 1,2, . . . ,q. Also, i and di are weight and cut-index of removed i-th cut-vertex, respectively.

3. Sum all the terms in 2(c).

In the following theorem, we justify the above procedure to find the characteristic
polynomial of an arbitrary matrix.

Theorem 5.1. Let Gk be a digraph with m cut-vertices and k blocks B1,B2, . . . ,Bk. Let Gq
k =
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Gq
k1,G

q
k2, . . . ,G

q
k(mq)

be set of all induced subdigraphs of Gk after removing any q cut-vertices. Also, let

di1,di2, . . . ,diq be cut-indices and i1, i2, . . . , iq be the weights of the loops of these removed q cut-vertices
to form Gq

ki. Let S
q
ki denotes the summation of all the -summands of all possible B-partition of Gq

ki using
cut-subdigraphs. Then, the characteristic polynomial of Gk is given by,

(Gk) =
m

∑
q=0

(Gq
k), where (Gq

k) =

(mq)

∑
i=1

Lqi S
q
ki and Lqi =

q

∏
t=1

( − it)(dit −1), L0
1 = 1.

Proof: We use method of mathematical induction on Gk, with k ∈ N to prove the theorem.

1. Let k = 1. For any digraph G1 having only one block,

(G1) = (G0
1) = L0

1S
0
11 = S0

11.

There is only one B-partition, which is block itself, thus the -summand is (G1), that is,
S0

11 = (G1). Hence, the theorem is valid in this case.

2. For k = 2, digraph G2 has two blocks with one cut-vertex. Let them be B1 and B2. Also, let v
be the cut-vertex with cut-index 2 and the loop-weight at vertex v be 1. Thus,

G0
2 = G0

21 , G1
2 = G1

21 ,

where, G0
21 = G2, G1

21 = G2 \ v. Now we find (G0
2), (G1

2).

a) Note that, to compute (G0
2) there is no cut-vertex to remove. Thus, q = 0, m

q = 1 and
L0

1 = 1. There are two B-partition of G0
21. One of them consists of induced subdigraphs

B1 and B2 \ v. Another one contains the induced subdigraphs (B1 \ v) and B2. Hence,

S0
21 = (B1) (B2 \ v)+ (B2) (B1 \ v) = (G0

2).

b) Also, to compute (G1
2) we need to remove the cut-vertex v. Here, q = 1, m

q = 1 and
d11 = 2. Thus, L1

1 = ( − 1). The only possible B-partition of G1
21 contains the induced

subdigraphs B1 \ v and B2 \ v. Hence,

S1
21 = (B1 \ v) (B2 \ v),

therefore, (G1
2) = ( − 1) (B1 \ v) (B2 \ v).

(5.5)

On combining (a) and (b) we observe,

(G2) = (B1) (B2 \ v)+ (B2) (B1 \ v)+( − 1) (B1 \ v) (B2 \ v).

Using Lemma 5.1 on G2 we also obtain the above expression. It proves the theorem for k= 2.

Hence, the theorem is true for G2.

3. Now, we assume that the theorem is true for any Gn for 2 < n ≤ k. We need to prove the
theorem for Gn+1. We can always select a pendant block of Gn+1 and denote it as Bn+1. Let v
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be the cut-vertex ofGn+1 in Bn+1, having loop-weight ( − ). Note that, the digraphGn+1 has
an induced subdigraphGn = Gn+1 \(Bi+1\v) . The theorem is true forGn by the assumption
of induction. Then, from Lemma 5.1,

(Gn+1) = (Gn) (Bn+1 \ v)+ (Gn \ v) (Bn+1)+( − ) (Gn \ v) (Bn+1 \ v) . (5.6)

In this context, there are two cases depending on whether v is also a cut-vertex of induced
subdigraph Gn or not.

a) Let the vertex v is not a cut-vertex of Gn. In this case, the number of cut-vertices in Gn+1
is one more than that of Gn. In Gn+1 all the cut-vertices have the same cut-indices as is
in Gn, except v. The cut-index of v in Gn+1 is two.

b) Let the vertex v be a cut-vertex of Gn. In this case, the number of cut-vertices in Gn+1 is
the same as the number of cut-vertices in Gn. In Gn+1 all the cut-vertices have the same
cut-indices as is in Gn, except v. If the cut-vertex v has cut-index equal to dv in Gn, then
it has cut-index dv+1 in Gn+1.

Now, we check whether theorem for Gn+1 is equivalent to Equation (5.6) for both the
cases. For each set of q deleted cut-vertices from Gn+1 as required by the theorem, there
are two cases:

The cut-vertex v is not in deleted cut-vertices: Note that, in this case, cut-indices and
loop-weights of these removed q cut-vertices in Gn+1 are same as those were in Gn.
Thus, Lqi value corresponding to Gq

(n+1)i remain same as for Gq
ni. Also, in this case, in

all the -summands of Gn+1, either (Bn+1) or (Bn+1 \ v) has to be there. The first
term in right hand side of Equation (5.6), that is, (Gn) (Bn+1 \ v) gives all the required
-summands where (Bn+1 \ v) is there. The second term in right hand side, that is,
(Gn \ v) (Bn+1) gives all the required -summands where (Bn+1) is there. Thus, all

the required -summands of Gn+1 are generated when q cut-vertices are deleted from
Gn+1 and cut-vertex v is not included in these q cut-vertices.

The cut-vertex v is in deleted cut-vertices: As v get removed, in this case, in Gn+1 all
the -summands must have term, (Bn+1 \ v). The first term in right hand side of
Equation (5.6) that is, (Gn) (Bn+1 \v) gives the -summands where (Bn+1 \v) is there.
Note that, in Gn+1, in case of (a), cut-vertex v has cut-index equal to 2, in case of (b),
cut-vertex v has cut-index equal to dv + 1. Hence, in both the cases there must be a
extra -summand multiplied by ( − ) (Bn+1 \ v) corresponding to each -summand
in Gn when these q cut-vertices being removed. The third term in right hand side gives
these extra summands. Therefore, all the -partitions of Gn+1 can be obtained when q
cut-vertices are deleted from Gn+1 and v is included in these q cut-vertices.

Hence, the statement is true for Gn+1. This proves the theorem.

Corollary 5.4. Let Gk be a digraph with m cut-vertices and k blocks B1,B2, . . . ,Bk. Let Gq
k =

Gq
k1,G

q
k2, . . . ,G

q
k(mq)

be set of all induced subdigraphs of Gk after removing any q cut-vertices. Also, let

di1,di2, . . . ,diq be cut-indices and i1, i2, . . . , iq be the weights of the loops of these removed q cut-vertices
to form Gq

ki. Let Sqki denote the summation of all the -summands of all possible B-partition of Gq
ki using
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cut-subdigraphs. Then, the permanent polynomial of Gk is given by,

(Gk) =
m

∑
q=0

(Gq
k), where (Gq

k) =

(mq)

∑
i=1

Lqi S
q
ki and Lqi =

q

∏
t=1

( − it)(dit −1), L0
1 = 1.

Proof: Proof is similar to Theorem 5.1.

Corollary 5.5. Let Gk be a digraph having only one cut-vertex v and k blocks B1,B2, . . . ,Bk. Let v has a loop
of weight . Then,

(Gk) =
k

∑
i=1

(Bi)
k

∏
j=1, j=i

(Bj \ v) +(k−1)( − )
k

∏
i=1

(Bi \ v).

Proof: The proof follows from Theorem 5.1. On the right hand side, the first term corresponds to
the -summands of B-partition when cut-vertex v is not removed. The second term corresponds
to the -summands of B-partition when cut-vertex v is removed. The cut-index of v is k. Hence,
k−1 is multiplied to the weight ( − ).

Example 5.4. We have constructed the digraphs of matrices M1 and M2 in Figure 5.1. Now, we calculate
the characteristic polynomial of these matrices in terms of the characteristic polynomial of the induced
subdigraphs in the blocks in it, applying Theorem 5.1. We express the characteristic polynomial in terms of
the -summands. Let X be a set of indices. The principal submatrix whose rows and column are indexed
with elements in X is denoted by [X ].

1. First we calculate the characteristic polynomial of M1. Parts of the characteristic polynomial are listed
below in terms of the -summands of the digraph G(M1).

a) Without removing any cut-vertex we get the following part of (M1).

[1,2,3] [4,5,6] [7]+ [1,2,3] [4,5] [6,7]+ [1,3] [2,4,5,6] [7]

+ [1,3] [2,4,5] [6,7].

b) Recall that, the loop-weight of v2 is (5− ) and its cut-index is 2. Removing the cut-vertex v2

we get the following part,

( −5) [1,3] [4,5,6] [7]+ [1,3] [4,5] [6,7] . (5.7)

c) The loop-weight of v6 is (−4− ) and its cut-index is 2. Removing the cut-vertex v6 we get the
following part,

( +4) [1,2,3] [4,5] [7]+ [1,3] [2,4,5] [7] . (5.8)

d) Removing the cut-vertices v2 and v6 we get the following part,

( −5)( +4) [1,3] [4,5] [7]. (5.9)

Adding (a),(b),(c) and (d) give (M1).

Now, we calculate the characteristic polynomial ofM2. Parts of the characteristic polynomial are listed
below in terms of the -summands of the digraph G(M2).
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a) Without removing any cut-vertex we get the following part of (M2).

[1,2,3] [4,5,6] [7] [8]+ [1,2,3] [4,5] [6,7] [8]+ [1,3] [2,4,5,6] [7] [8]+ [1,3] [2,4,5] [6,7] [

+ [1,2,3] [4,5] [7] [6,8]+ [1,3] [2,4,5] [7] [4,8

b) The loop-weight of v2 is (5− ) and its cut-index is 2. Removing the cut-vertex v2 we get the
following part,

( −5) [1,3] [4,5,6] [7] [8]+( −5) [1,3] [4,5] [6,7] [8]

+( −5) [1,3] [4,5] [7] [6,8].

c) The loop-weight of v6 is (−4− ) and its cut-index is 3. Removing the cut-vertex v6 we get the
following part,

2( +4) [1,2,3] [4,5] [7] [8]+2( +4) [1,3] [2,4,5] [7] [8]. (5.10)

d) Removing the cut-vertices v2 and v6 we get the following part,

2( −5)( +4) [1,3] [4,5] [7] [8]. (5.11)

Adding (a),(b),(c) and (d) give (M2).

5.4 THE DETERMINANT OF DIGRAPHS
Note that, the determinant of a matrix can be calculated from its characteristic polynomial

by setting = 0. Thus, Theorem 5.1 is applicable for calculating determinant of a matrix
corresponding to the digraph Gk by setting = 0 and all the -summands replaced by the
det-summands [see Definition 5.2].

Corollary 5.6. Let Gk be a digraph having no loops on its cut-vertices, then the determinant of Gk is given
by sum of the det-summands of all possible B-partition of Gk.

Proof: As all the cut-vertices has no loops, all the det-summands of resulting induced diagraph
after removing any cut-vertices get multiplied by zero. Thus, only those det-summands contribute
which are corresponding to q= 0. Hence, the result follows from Theorem 5.1.

A digraph G whose determinant is zero is called a singular digraph. The next corollary
provides a number of singular simple graphs. For thedefinition of the complete graph, cycle graph,
tree and forest we refer [West et al., 2001; Harary et al., 1969].

Corollary 5.7. A simple graph G is singular, if any of these conditions holds:

1. There is a pendant blockCn with cut-vertex v ofG. Here,Cn is a cyclic graph with n= 4r, r is a positive
integer.

2. There are two pendant blocksCn andCm sharing a cut-vertex v ofG. Here,Cn andCm are cycle graphs,
where n and m are even positive integers.

3. There is a singular tree with even number of vertices, containing a cut-vertex v of G.

4. There are two trees with n1 and n2 vertices which share a common cut-vertex v of G. Here, both n1,and
n2 are either even or both of them odd positive integers.
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Proof: Below, we prove all these conditions separately.

1. There are two types of det-summands of G: one consists of determinant of Cn and another
consists of determinant of Cn \ v, that is a path of odd length. Now, determinants of Cn and
Cn \ v are zero [Germina and Shahul Hameed, 2010]. Hence, the first condition follows.

2. In the det-summands of G, each term will either have determinants of Cn and Cm \ v or
determinants of Cn \ v and Cm. Note that, Cm \ v and Cn \ v are paths of odd length which
are singular [Germina and Shahul Hameed, 2010]. Hence, result follows.

3. Applying the Lemma 6.4, we expand the determinant of G, with respect to the cut-vertex v.
In this expression, every term has either determinant of tree or determinant of a forest with
an odd number of vertices. A forest with an odd number of vertices is singular [Bapat, 2010].
Hence, the result follows.

4. In the determinant expansion of G with respect to cut-vertex v, each term will have at least
one term having the determinant of forest having an odd number of vertices. Hence, the
result follows.

5.4.1 The determinant of the Block Graph
Complete graph on n vertices is denoted by Kn and its determinant is (−1)n−1(n−1). For a

simple graphG, when each of its blocks is a complete graph thenG is called block graph [Bapat and
Roy, 2014]. The determinant of a block graph can be calculated from the theorem below, quoted
from [Bapat and Roy, 2014]. Here, we present a simplified form of this theorem using Corollary
5.6.

Theorem 5.2. Let Gk be a simple block graph with n vertices. Let B1,B2, . . . ,Bk be its blocks of size
b1,b2, . . . ,bk, respectively. Let A be the adjacency matrix of G. Then

det(A) = (−1)n−k∑
k

∏
i=1

( i−1),

where the summation is over all k-tuples ( 1, 2, . . . , k) of nonnegative integers satisfying the following
conditions:

1. ∑k
i=1 i = n;

2. for any nonempty set S ⊆ {1,2, . . . ,k}

∑
i∈S

i ≤ |V (GS)|,

where GS denote the subgraph of G induced by the blocks Bi, i ∈ S.

Proof: From Corollary 5.6 determinant of a block graph is equal to

∑
k

∏
i=1

det(B̂i),

where, B̂i is subgraph of Bi and summation is over all B-partition of Gk.

Contribution of the det-summand of a B-partition with induced subgraphs B̂1, B̂2, . . . , B̂k of
sizes 1, 2, . . . , k, respectively, is the following,

k

∏
i=1

(−1) i−1( i−1).
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As (B̂1, B̂2, . . . , B̂k) are vertex disjoint induced subgraphs which partition Gk, ∑k
i=1 i = n. Thus,

contribution of the above tuple can be written as,

(−1)n−k
k

∏
i=1

( i−1).

Also, for any nonempty set S⊂ {1,2, . . . ,k},

∑
i∈S

|V (B̂i)|= ∑
i∈S

i ≤ |V (GS)|,

where GS denotes the subgraph of G induced by the blocks Bi, i ∈ S. Thus, k-tuples ( 1, 2, . . . , k)
resulted from B-partitions of Gk satisfy both the conditions of the theorem.

Conversely, consider a k-tuple ( 1, 2, . . . , k) satisfying both the condition of theorem. We
will prove by induction that each such k-tuple corresponds to a unique B-partition of Gk.

If G1 has only one block B1 of size b1, then G1 is a complete graph, Kb1 . The only possible
choice for 1-tuple is 1 = b1. Clearly, 1 corresponds to aB-partitionwhich consists ofKb1 only. Let
G2 have block B1 and B2 of sizes b1 and b2, respectively. The possible 2-tuples are ( 1 = b1, 2 =
b2 − 1) and ( 1 = b1 − 1, 2 = b2). Therefore, both the 2-tuple induce possible two B-partitions
in G2. One B-partition consists of induced subgraphs Kb1 ,Kb2−1. Another B-partition consists of
induced subgraphs Kb1−1,Kb2 .

Now we discuss the proof for G3, which will clarify the reasoning for the general case. In
G3 block B3 can occur in two ways.

1. Let B3 be added to a non cut-vertex of G2. Without loss of generality, let B3 is attached to a
non-cut-vertex of B2. Choices for 3-tuple ( 1, 2, 3) are the following:

a) 1 = b1, 2 = b2 −1, 3 = b3 −1;

b) 1 = b1, 2 = b2 −2, 3 = b3;

c) 1 = b1 −1, 2 = b2, 3 = b3 −1;

d) 1 = b1 −1, 2 = b2 −1, 3 = b3.

Note that, in this case, each 2-tuple ofG2 give rise to two 3-tuple inG3 where 1 is unchanged.
Clearly, all the tuples in G3 can induce its all the possible B-partitions.

2. Let B3 be added to cut-vertex v of G2. Choices for 3-tuple ( 1, 2, 3) are the following:

a) 1 = b1, 2 = b2 −1, 3 = b3 −1;

b) 1 = b1 −1, 2 = b2, 3 = b3 −1;

c) 1 = b1 −1, 2 = b2 −1, 3 = b3.

Here, each 2-tuple ofG2 give rise to a 3-tuple ofG3 where 1, 2 are unchanged and 3 = b3−1.
Other than these there is one more 3-tuple where 1 = b1 −1, 2 = b2−1, 3 = b3. Clearly, all
the tuples in G3 can induce its all the possible B-partitions.

Now let us assume that all possible m-tuples ( 1, 2, . . . , m) in Gm can induce all possible
B-partitions in it. We need to prove that all possible (m+ 1)-tuples ( 1, 2, . . . , m, m+1) in Gm+1
can induce its all possible B-partitions in it. In Gm+1 block Bm+1 can occur in two ways.
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1. Let Bm+1 be added to non cut-vertex of Gm. Each m-tuple ( 1, 2, . . . , m) of Gk give rise to
two (m+1)-tuple of Gm+1 where, 1, 2, . . . , m−1 are unchanged. In one such tuple m is also
unchanged and m+1 = bm+1 − 1. In other tuple, m is one less than the value it had earlier
and m+1 = bm+1. Thus, (m+1)-tuples in Gm+1 can induce its all the B-partitions in Gk+1.

2. Let Bk+1 be added to a cut-vertex v of Gk. Each k-tuple of Gk give rise to one (k+1)-tuple of
Gk+1 where k+1 = bk+1−1. Beside these there are also (k+1)-tuples where k+1 = bk+1, along
with k-tuples of (Gk \ v). Clearly, all the tuples in Gk+1 can induce its all the B-partitions.

Hence, there is one to one correspondence between partitions and k-tuples.

5.5 CONCLUSION
In this chapter we exploited blocks in digraph corresponding a square matrix to find

characteristic and permanent polynomials. First we derived an recursive expression for these
polynomials with respect to a pendant block. On solving the recursive expression we find
the emergence of B-partitions in digraphs. The B-partitions are handy tool to calculate the
determinant and permanent of matrices.
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