
6
B-partitions, its Application to Determinant and Permanent

of Graphs

In the previous chapter, we have introduced the B-partitions. We have seen that
determinant (permanent) of any graph without loops can be written as the summation of
det-summands (per-summands) corresponding to the B-partitions. In this chapter will carry the
study forward, and find out determinant and permanent of various signed, directed graphs, in
particular, unicyclic graphs, block graph with negative cliques, mix complete graph.

6.1 BASIC TERMINOLOGY
A signed unicyclic graph is a connected signed graph in which number of edges equals

the number of vertices. Thus, a signed unicyclic graph is either a cycle or a cycle with trees
attached to the vertices of the cycle. If the cycle is balanced then the signed unicyclic graph is
balanced otherwise unbalanced. Let Tm denotes a signed tree graph having m vertices. Then,
U(Cn,{Tm1 ,Tm2 , . . . ,Tmk}) denotes a signed unicyclic graph having a signed cycle Cn and k signed
trees Tm1 ,Tm2 , . . . ,Tmk such that the root of each Tmi , i = 1,2, . . . ,k is linked to a fix vertex of Cn. An
example of a balanced U(Cn,{Tm1 ,Tm2 , . . . ,Tmk}) is given in Figure 6.1(b). By, U(Cn,Tm1 ,Tm2 , l) we
denote a unicyclic graph having a signed cycle Cn and roots of trees Tm1 ,Tm2 are attached to two
vertices v1 and v2 of Cn, respectively, at a distance l. An example of a balanced U(Cn,Tm1 ,Tm2 , l) is
given in Figure 6.1(c).

A directed cycle dCn is a graphwith vertex setV = {v1,v2, . . . ,vn} and edge set E = {(vi,vi+1)}
for i= 1,2, . . . ,n−1, and (vn,v1)∈E.Agraphwhose all the blocks are directed cycles is called cactoid
graph. Adding all the possible arcs (directed edges) between any non adjacent vertices of the cycle
dCn (n> 3) we get a mixed complete graph mKn, see Figure 6.1(d) [Zhou, 2017]. A mix star block
graph G is a graph in which complete mixed graph are connected by one cut vertex. An example
of mix star block graph is shown in Figure 6.1(e).

Determinant of Kn is equal to (−1)n−1(n−1) and permanent of Kn is given by

per(Kn) = n!
n

∑
i=0

(−1)i

i!
.

The rest of the chapter is organized as follows: in Section 6.2, we give some preliminary
results on permanent and determinant of weighted signed graph, and in particular, signed block
graph. In Section 6.3, we show that how the B-partitions are used to calculate determinant and
permanent of block graphs. In Subsection 6.3.1, we calculate the determinant of a block graph
having negative vertex disjoint cliques. In the Section 6.4, we find the determinant and permanent
of signed unicyclic graphs. In Section 6.5, first, we find eigenvalues of the mixed complete graph
and negative mixed complete graph. Thus, we give their determinant expressions. Then we
calculate the determinant of mixed star block graph as well as the determinant of negative mixed
star block graph.
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Figure 6.1 : Examples. (a) Block graph with negative cliques. (b)U(C5,{T3,T3}). (c)U(C5,T3,T3,2). (d)
Mix complete graph. (e) Mix star block graph.
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6.2 PRELIMINARY RESULTS
We give some preliminary results on determinant and permanent of signed graphs

depending upon whether they are balanced or not.

Theorem 6.1. In a weighted signed block graph G if all the triangles are balanced then, G and |G| have the
same determinant.

Proof: From the definition, each block of G is a complete graph. As all the triangles are balanced,
every block is a balanced graph [Harary et al., 1953]. Which implies all the cycles in all the blocks
of G are balanced. There can not be any common cycle between any two blocks thus, all the cycles
of G are balanced hence, G is balanced. As G and |G| have same eigenvalues, henceG and |G| have
the same determinant.

Theorem 6.2. If a weighted signed graph G is balanced then, G and |G| have same permanent.

Proof: From [Harary et al., 1953], a balanced graph can be partitioned into two vertex sets such
that all the edges between vertices of the same set are positive while all the edges between vertices
of different sets are negative. Let X ,Y are two such sets for balanced graph G. Let S be the
diagonal matrix, whose diagonal elements corresponding to the vertices in X are 1 while elements
corresponding to the vertices in Y are −1. Then, |A|= SAS. Hence, per(|A|)=per(A)(±1)2=per(A).

Theorem 6.3. Let G be a weighted signed block graph; if all the triangles in G are balanced then, G and |G|
have same permanent.

Proof: From the proof of Theorem 6.1, if all the triangles in signed block graphG are balanced then
G is balanced. Now, theorem directly follows from Theorem 6.2.

6.3B-PARTITIONS, DETERMINANT AND PERMANENT OF BLOCK GRAPHS
We first state a theorem for determinant of simple block graphs [Bapat and Roy, 2014]. We

see that, in theorem, conditions on k-tuple ( 1, 2, . . . , k) can induce B-partitions and vice versa.
Then, we can write the determinant and the permanent of a matrix using these conditions. The
theorem is as follows

Theorem 6.4. [Bapat and Roy, 2014] Let G be a block graph with n vertices and having all the edges of
weight 1. Let B1,B2, . . . ,Bk be its blocks. Let A be the adjacency matrix of G. Then

det(A) = (−1)n−k∑
k

∏
i=1

( i−1), (6.1)

where, the summation is over all k-tuples ( 1, 2, . . . , k) of non negative integers satisfying the following
conditions:

1. ∑k
i=1 i = n;

2. for any nonempty set S⊆ {1,2, . . . ,k}

∑
i∈S

i ≤ |V (GS)|,

where GS denote the subgraph of G induced by the blocks Bi, i ∈ S.

61



Note that, with the same conditions on k-tuples ( 1, 2, . . . , k) the Equation 6.1 of Theorem
6.4 can be written as

det(A) =∑
k

∏
i=1

det(K i) (6.2)

assuming that det(K0) = 1.

Let wG be a weighted digraph having no loops on cut-vertices. In [Singh and Bapat,
2017b](corollary 5.1) a combinatorial expression for determinant and permanent of wG given
in terms of determinant and permanent of subdigraphs of blocks respectively. Statement for
determinant, permanent is as follows.

Lemma 6.1. Let wG be a weighted digraph having no loops on its cut-vertices. Let B1,B2, . . . ,Bk are blocks
in it. Then, the determinant, permanent of wG is given by

∑
k

∏
i=1

det(B̂i), ∑
k

∏
i=1

per (B̂i),

respectively, where, if B̂i is a null graph then det(B̂i) = 1, per (B̂i) = 1. And the summation is over all
possible k-combinations of induced subgraphs B̂1, B̂2, . . . , B̂k such that for i, j = 1,2, . . . ,k,

1. B̂i ⊆ Bi.

2. k
i=1V (B̂i) =V (wG).

3. V (B̂i) V (B̂ j) = , for i= j.

Thus, the summation is over all k-combinations B̂1, B̂2, . . . , B̂k of induced subgraphs which
partition wG. These partitions are called as B-partitions, and corresponding terms ∏k

i=1 det(B̂i),
∏k

i=1per(B̂i) are called det-summands, per-summands , respectively. We will now prove that each
k-tuple ( 1, 2, . . . , k) in Theorem 6.4 produces a unique B-partition of any weighted graph and
vice versa.

Lemma 6.2. LetG be a graph with n vertices and k blocks. Let B1,B2, . . . ,Bk be its blocks having b1,b2, . . . ,bk,
number of vertices, respectively. Then, each B-partition produce a unique k-tuples ( 1, 2, . . . , k) of non
negative integers satisfying the following conditions:

1. ∑k
i=1 i = n;

2. for any nonempty set S ⊆ {1,2, . . . ,k}

∑
i∈S

i ≤ |V (GS)|,

where GS denote the subgraph of G induced by the blocks Bi, i ∈ S.

Proof: From the Lemma 6.1 determinant and permanent of G is equal to

∑
k

∏
i=1

det(B̂i), ∑
k

∏
i=1

per(B̂i),

respectively, where, B̂i is subgraph of Bi and summation is over all B-partition of G.

{B̂1, B̂2, . . . , B̂k} are vertex disjoint induced subgraphs which create a B-partition ofG, thus,
∑k
i=1 |V (B̂i)|= n.
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Also, for any nonempty set S⊂ {1,2, . . . ,k},

∑
i∈S

|V (B̂i)| ≤ |V (GS)|,

where, GS denote the subgraph ofG induced by the blocksBi, i∈ S. Assume, the number of vertices
in a given B-partition B̂1, B̂2, . . . , B̂k be 1, 2, . . . , k. Thus, k-tuples ( 1, 2, . . . , k) resulted from
B-partitions of G satisfy both the conditions of theorem.

Conversely, consider a k-tuple ( 1, 2, . . . , k) satisfying both the condition of theorem. We
will prove by induction that each such k-tuple corresponds to a uniqueB-partition of G.

If G has only one block B1 of order b1, then the only possible choice for 1-tuple is 1 = b1.
Clearly, 1 corresponds to aB-partition which consists of B1 only. Let G has two blocks B1, and B2
of order b1, and b2, respectively, and a cut-vertex v. The possible 2-tuples are ( 1 = b1, 2 = b2−1),
and ( 1 = b1−1, 2 = b2). Both the 2-tuple induce possible twoB-partitions inG.OneB-partition
consists of induced subgraphs B1,B2 \ v. Another B-partition consists of induced subgraphs B1 \
v,B2.

Nowwe discuss the proof for G consisting of three blocks, which will clarify the reasoning
for the general case. For the time being let us denote the graph having k blocks by Gk. Let the
blocks are B1,B2, . . . ,Bk of order b1,b2, . . . ,bk, respectively. Formation of a Gk can be seen as k-step
process. At any intermediate i-th step a block Bi is added to Gi−1 and then Bi becomes a pendant
block for Gi. In G3, block B3 can occur in two ways.

1. Let B3 be added to a non cut-vertex of G2. Without loss of generality, let B3 get attached to
a non-cut-vertex of B2 in G2. In resulting G3, let v1 be the cut-vertex in B1,B2, and v2 be the
cut-vertex in B2,B3. Choices for 3-tuple ( 1, 2, 3) are following:

a) 1 = b1, 2 = b2 −1, 3 = b3 −1;

b) 1 = b1, 2 = b2 −2, 3 = b3;

c) 1 = b1 −1, 2 = b2, 3 = b3 −1;

d) 1 = b1 −1, 2 = b2 −1, 3 = b3.

Note that, in this case, each 2-tuple ofG2 give rise to two 3-tuple inG3 where 1 is unchanged.
Clearly, all the tuples in G3 can induce the following all possible B-partitions.

a) B1, B2 \ v1, B3 \ v2;

b) B1, B2 \ (v1,v2), B3;

c) B1 \ v1, B2, B3 \ v2;

d) B1 \ v1, B2 \ v2, B3.

2. Let B3 be added to cut-vertex v of G2. Choices for 3-tuple ( 1, 2, 3) are following:

a) 1 = b1, 2 = b2 −1, 3 = b3 −1;

b) 1 = b1 −1, 2 = b2, 3 = b3 −1;

c) 1 = b1 −1, 2 = b2 −1, 3 = b3.
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Here, each 2-tuple ofG2 give rise to a 3-tuple ofG3 where 1, 2 are unchanged and 3 = b3−1.
Beside these there is one more 3-tuple where 1 = b1 −1, 2 = b2 −1, 3 = b3. Clearly, all the
tuples in G3 can induce the following all possibleB-partitions.

a) B1, B2 \ v, B3 \ v;

b) B1 \ v, B2, B3 \ v;

c) B1 \ v, B2 \ v, B3.

Now, let us assume that all possible k-tuples ( 1, 2, . . . , k) in Gk can induce all possible
B-partitions in it. We need to prove that all possible (k+1)-tuples ( 1, 2, . . . , k, k+1) in Gk+1 can
induce its all possible B-partitions in it. In Gk+1 block Bk+1 can occur in two ways.

1. Let Bk+1 be added to non cut-vertex of Gk. Each k-tuple ( 1, 2, . . . , k) of Gk give rise to
two (k+ 1)-tuple of Gk+1 where, 1, 2, . . . , k−1 are unchanged. In one such tuple k is also
unchanged and k+1 = bk+1 −1. In other tuple k is one less than the value it had earlier and
k+1 = bk+1. Thus, (k+1)-tuples in Gk+1 can induce all its B-partitions in Gk+1.

2. Let Bk+1 be added to a cut-vertex v of Gk. Each k-tuple of Gk give rise to one (k+1)-tuple of
Gk+1 where k+1 = bk+1−1. Beside these there are also (k+1)-tuples where k+1 = bk+1, along
with k-tuples of (Gk \ v). Clearly, all the tuples in Gk+1 can induce itsB-partitions.

Hence, there is one to one correspondence between B- partitions and the k-tuples ( 1, 2, . . . , 3).

Now we give a formula for the permanent of balanced signed block graphs.

Theorem 6.5. Let G be a balanced signed block graph with n vertices and having all the edges of weight 1.
Let B1,B2, . . . ,Bk be its blocks. Let A be the adjacency matrix of G. Then,

per(A) =∑
k

∏
i=1

i!
i

∑
j=0

(−1) j

j!
, (6.3)

where, the summation is over all k-tuples ( 1, 2, . . . , k) of non negative integers satisfying the following
conditions:

1. ∑k
i=1 i = n;

2. for any nonempty set S ⊆ {1,2, . . . ,k}

∑
i∈S

i ≤ |V (GS)|,

where GS denote the subgraph of G induced by the blocks Bi, i ∈ S.

Proof: The proof directly follows from Lemma 6.1, 6.2 and the fact that

per(K i) = i!
i

∑
j=0

(−1) j

j!
.

6.3.1 Block graph with negative cliques.
First, we give the determinant of a complete graph with negative cliques, Km,r

n .
Subsequently, the determinant of block graph with negative cliques is given.
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Lemma 6.3. [Singh and Bapat, 2017a](Corollary 3.6) Determinant of A(Km,r
n ) is given by

(1−2r)m−1(−1)n−mr−1 n(1−2r)+2r 1+m(r−1) −1 .

Theorem 6.6. Let G be a signed block graph of order n having k blocks B1,B2, . . . ,Bk. Let all the edges
connecting cut-vertices are positive. For i = 1,2, . . . ,k, let Bi has mi number of vertex-disjoint negative
cliques each of size ri, such that 0 ≤ miri ≤ (ni−1). Then,

det(G) = (−1)n−k∑
k

∏
i=1

(1−2ri)mi−1(−1)−miri
i(1−2ri)+2ri 1+mi(ri−1) −1 . (6.4)

where, the summation is over all k-tuples ( 1, 2, . . . , k) of non negative integers satisfying the

following conditions:

1. ∑k
i=1 i = n;

2. for any nonempty set S⊆ {1,2, . . . ,k}

∑
i∈S

i ≤ |V (GS)|,

where GS denote the subgraph of G induced by the blocks Bi, i ∈ S.

Proof: The result directly follows from Lemma 6.2, 6.1, and 6.3.

6.4 DETERMINANT AND PERMANENT OF SIGNED UNICYCLIC GRAPHS
Let U be a unicyclic graph which contains a signed cycle Cn as a subgraph with vertices

v1,v2, . . . ,vn. Let the vertex vi is linked with mi number of signed trees say T i
1 ,T

i
2 , . . . ,T

i
mi
, such

that the root vertex of each T i
j , j = 1,2, . . . ,mi is linked with vi by an edge. Note that the vertex

vi then becomes a cut-vertex. As trees are acyclic graph, determinant and permanent of any
signed tree is equal to the determinant and the permanent of its underlying tree with positive
edges. Let T i

1 ,T
i

2 , . . . ,T
i
mi

denote the subgraph of U induced by the trees T i
j , j = 1, . . . ,mi. Let

U \ T i
1 ,T

i
2 , . . . ,T

i
mi

denotes the induced subgraph of U after T i
1 ,T

i
2 , . . . ,T

i
mi

is removed from U,
and T i

1 ,T
i

2 , . . . ,T
i
mi
,vi denotes the subgraph ofU induced by trees T i

1 ,T
i

2 , . . . ,T
i
mi
and vertex vi. From

[Singh and Bapat, 2017b], Lemma 2.3 and Corollary 2.4, can be re-written for determinant and
permanent, respectively for graphs with no loop on cut-vertices.

Lemma 6.4. Let G be a digraph with at least one cut-vertex. Let H be a non empty subdigraph of G having
cut-vertex v, such that H \ v is union of connected components. The determinant of G,

det(G) = det(H)×det(G\H)+det(H \ v)×det G\ (H \ v) . (6.5)

Corollary 6.1. LetG be a digraph with at least one cut-vertex. Let H be a non empty subdigraph ofG having
cut-vertex v, such that H \ v is union of connected components. The permanent of G,

per(G) = per(H)×per(G\H)+per(H \ v)×per G\ (H \ v) . (6.6)

Applying Lemma 6.4 onU at vi we get
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det(U) = det U \ T i
1 ,T

i
2 , . . . ,T

i
mi

det T i
1 ,T

i
2 , . . . ,T

i
mi

+det U \ T i
1 ,T

i
2 , . . . ,T

i
mi
,vi det T i

1 ,T
i

2 , . . . ,T
i
mi
,vi . (6.7)

Applying Corollary 6.1 onU at vi we get

per(U) = per U \ T i
1 ,T

i
2, . . . ,T

i
mi

per T i
1 ,T

i
2 , . . . ,T

i
mi

+per U \ T i
1 ,T

i
2 , . . . ,T

i
mi
,vi per T i

1 ,T
i

2 , . . . ,T
i
mi
,vi . (6.8)

Then we have the following theorems.

Theorem 6.7. Consider a unicyclic signed graphU(Cn,Tm) where a signed tree Tm is linked with the signed
cycle Cn by an edge between the root vertex of Tm and a vertex v ofCn. Then,

det U(Cn,Tm) =






0, if n is even and Tm has no perfect matching
(−1)

m
2 −2 +2(−1)

n
2 , if n is even and Tm has a perfect matching

(−1)
m+n

2 , if n is odd and {Tm,v} has a perfect matching
2 (−1)

m
2 , if n is odd and Tm has a perfect matching

where = 1 ifCn is balanced, otherwise =−1.

Proof: Let the tree Tm be attached to Cn via an edge between the vertices u1 of Tm and v of Cn.
Applying Lemma 6.4 the determinant of U(Cn,Tm) can be written as

det U(Cn,Tm) = det(Cn)×det(Tm)+det(Cn \ v)×det({Tm,v})

= det(Cn)×det(Tm)+det(Pn−1)×det({Tm,v}), (6.9)

where,Cn \v is the subgraph in which vertex v is removed fromCn and hence it becomes Pn−1. Also,
a signed tree without a perfect matching has determinant zero. From [Singh and Bapat, 2017a],
Corollary 2.3

Determinant of signed cycleCn, having weight ∈ {−1,1} is given by

det(Cn) =






2−2 if n is even and even multiple of 2
−2−2 if n is even and odd multiple of 2
2 if n is odd

Now we consider the following cases.

Case I n is even and Tm has no perfect matching: As in this case det(Tm) = 0, det(Pn−1) = 0. From
Equation 6.9 det(U(Cn,Tm)) = 0.
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Case II n is even and Tm has a perfect matching: Consider n= 2k,m= 2k , where k ≥ 2 and k ≥ 1 are
positive integers. As det(Pn−1) = 0 from Equation 6.9

det(U(Cn,Tm)) = det(Cn)×det(Tm) = (−2 +2(−1)k)(−1)k ,

where, for balanced Cn, = 1 and for unbalancedCn, =−1.

Case III n is odd and as m is odd, Tm has no perfect matching: In this case det(Tm) = 0. Thus, from
Equation 6.9

det(U(Cn,Tm)) = det(Pn−1)×det({Tm,v}).
If {Tm,v} has no perfect matching then det(U(Cn,Tm)) = 0. Otherwise

det(U(Cn,Tm)) = (−1)
n−1

2 (−1)
m+1

2 = (−1)
n+m

2 .

Case IV n is odd and Tm has a perfectmatching: In this casem+1 is an odd number so, det({Tm,v})= 0.
Thus, from Equation 6.9

det(U(Cn,Tm)) = det(Cn)×det(Tm) = 2 (−1)
m
2

where for balanced Cn, = 1 and for unbalanced Cn, =−1.

Corollary 6.2. Consider a unicyclic signed graphU(Cn,Tm) as in Theorem 6.7. Then,

per U(Cn,Tm) =






0, if n is even and Tm has no perfect matching
−2 +2, if n is even and Tm has a perfect matching
1, if n is odd and {Tm,v} has a perfect matching
2 , if n is odd and Tm has a perfect matching

where = 1 if Cn is balanced, otherwise =−1.

Proof: Using Equation 2.5

per(Cn) =
2−2 if n is even
2 if n is odd.

Rest of the steps are similar to Theorem 6.7.

Theorem 6.8. LetU(Cn,{Tm1 ,Tm2 , . . . ,Tmk}) denotes a unicyclic graph having a signed cycleCn and k signed
trees Tm1 ,Tm2 , . . . ,Tmk and root of each Tmi , i= 1, . . . ,k is linked with vertex v of Cn by an edge for all i. Then

det U(Cn,{Tm1 ,Tm2 , . . . ,Tmk}) = det(Cn)
k

∏
i=1

det(Tmi)

+det(Pn−1)
k

∑
i=1

det({Tmi ,v})
k

∏
j=1, j=i

det(Tmj) .

Proof: From Equation 6.7 observe that

det U(Cn,{Tm1 ,Tm2 , . . . ,Tmk}) = det U(Cn,{Tm1 ,Tm2 , . . . ,Tmk})\{Tm1 ,Tm2 , . . . ,Tmk} (6.10)

×det({Tm1 ,Tm2 , . . . ,Tmk})

+det U(Cn,{Tm1 ,Tm2 , . . . ,Tmk})\{Tm1 ,Tm2 , . . . ,Tmk ,v}

×det({Tm1 ,Tm2 , . . . ,Tmk ,v}).
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where,U(Cn,{Tm1 ,Tm2 , . . . ,Tmk})\{Tm1 ,Tm2 , . . . ,Tmk}=Cn. Also,

det {Tm1 ,Tm2 , . . . ,Tmk} =
k

∏
i=1

det(Tmi)

since {Tm1 ,Tm2 , . . . ,Tmk} is the induced subgraph of the unicyclic graph having k connected
components Tmi , i = 1, . . . ,k. Next, U(Cn,{Tm1 ,Tm2 , . . . ,Tmk}) \ {Tm1 ,Tm2 , . . . ,Tmk ,v} = Pn−1. The
only thing that is left to know is det({Tm1 ,Tm2 , . . . ,Tmk ,v}). Again applying Lemma 6.4 on
{Tm1 ,Tm2 , . . . ,Tmk ,v} at v

det {Tm1 ,Tm2 , . . . ,Tmk ,v} =
k

∑
i=1

det({Tmi,v})
k

∏
j=1, j=i

det(Tmj) .

Thus, the desired result follows.
Corollary 6.3. LetU(Cn,{Tm1 ,Tm2 , . . . ,Tmk}) denote a unicyclic graph as considered in Theorem 6.8. Then

per(U(Cn,{Tm1 ,Tm2 , . . . ,Tmk})) = per(Cn)
k

∏
i=1

per(Tmi)

+per(Pn−1)
k

∑
i=1

per({Tmi ,v})
k

∏
j=1, j=i

per(Tmj) .

Theorem 6.9. LetU(Cn,Tm1 ,Tm2 , l) denote a signed unicyclic graph having a signed cycleCn and two trees
Tm1 ,Tm2 are attached by additional edges to two vertices v1 and v2 of Cn respectively at a distance l. Then,

det U(Cn,Tm1 ,Tm2 , l) = det U(Cn,Tm2) det(Tm1)

+det({Tm1 ,v1})det({Tm2 ,vl+1})det(Pl−1)det(Pn−l−1)

+det({Tm1 ,v1})det({Tm2})det(Pn−1).

Proof: By Equation 6.7 it follows that

det U(Cn,Tm1 ,Tm2 , l) = det U(Cn,Tm1 ,Tm2 , l)\{Tm1} det(Tm1)+ (6.11)

det U(Cn,Tm1 ,Tm2 , l)\{Tm1 ,v1} det({Tm1 ,v1}).

Note that, det U(Cn,Tm1 ,Tm2 , l)\{Tm1} = det U(Cn,Tm2) and {Tm1 ,v1} is a tree with m1 +1

vertices. The only thing remains to figure out is det U(Cn,Tm1 ,Tm2 , l) \ {Tm1 ,v1} . Let for the time
being denoteU(Cn,Tm1 ,Tm2 , l) byU . Applying Lemma 6.4 onU \{Tm1 ,v1} at v2

det U \{Tm1 ,v1} = det({Tm2 ,v2})det U \{Tm1 ,v1} \{Tm2 ,v2}

+det({Tm2})det U \{Tm1 ,v1} \{Tm2} .

Further observe that U \ {Tm1 ,v1} \ {Tm2 ,v2} is a disconnected subgraph with two
connected components Pl−1 and Pn−(l+1), and hence

det U \{Tm1 ,v1} \{Tm2 ,v2} = det(Pl−1)det(Pn−l−1),
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and U \{Tm1 ,v1} \{Tm2}= Pn−1. Thus the desired result follows.

Corollary 6.4. LetU(Cn,Tm1 ,Tm2 , l) be a signed unicyclic as considered in Theorem 6.9. Then

per(U(Cn,Tm1 ,Tm2 , l)) = per U(Cn,Tm2) per(Tm1)

+per({Tm1 ,v1})per({Tm2 ,v2})per(Pl−1)per(Pn−l−1)

+per({Tm1 ,v1})per({Tm2})per(Pn−1).

6.5 MIXED COMPLETE GRAPH, MIXED STAR BLOCK GRAPH.
The adjacency matrix A(mKn), of mix complete graph mKn can be written as:

A(mKn) = JnIn−Qn,

where, Jn is all one matrix , In is an identity matrix, and Qn is the full-cycle permutation matrix of
order n. Thus, the (i, i+1)-element of Qn is 1, i= 1,2, . . . ,n−1, the (n,1)-element of Qn is 1, and the
remaining elements of Qn are zero [Bapat, 2010].

The eigenvalues of Qn are wi(0 ≤ i≤ n−1), and the corresponding eigenvectors are

vi = [1,wi,w2i, . . . ,w(n−1)i]T

for 0 ≤ i ≤ n− 1, where, w is an n-th primitive root of 1. The eigenvectors are orthogonal to each
other, i.e. vTi v j = 0 for 0 ≤ i, j ≤ n−1. Note that v0 is all one column vector. Then the eigenvalues
of A(mKn) are 0 = n−2 and i =−1−wi(1 ≤ i≤ n−1).

Lemma 6.5.
n−1

∏
i=1

(−1−wi) =
0 if n is even
1 if n is odd

Proof: As

xn−1 = (x−1)
n−1

∏
i=1

(x−wi),

=⇒
n

∑
i=1

xn−i =
n−1

∏
i=1

(x−wi).

Hence, the result follows.

Theorem 6.10. Determinant of A(mKn) is given by

det A(mKn) =
0 if n is even
(n−2) if n is odd

(6.12)

Proof: As the eigenvalues of A(mKn) are 0 = n−2 and i =−1−wi for (1 ≤ i≤ n−1).

det A(mKn) = (n−2)
n−1

∏
i=1

(−1−wi).

Now, proof directly follows from Lemma 6.5.
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6.5.1 Mixed star block graph
A mixed block graph is a strongly connected directed graph whose blocks are mixed

complete graphs. A mixed block graph having maximum one cut vertex is called mixed star block
graph, see Figure 6.1(e). In other words, a mixed star block graph is obtained from a star cactoid
graph after adding all possible directed edges between any two non adjacent vertices in each block.
As a star cactoid graph cannot have cycle cover it is evident that it is singular. Let mKn \vi denotes
a induced subgraph resulting after vertex vi is removed from mKn.

Lemma 6.6. The determinant of mKn \ vi(i= 1,2, . . .n) is given by

(−1)n
n−2

2
.

Proof: Without loss of generality let us remove the first vertex v1 of mKn. Adjacency matrix of
mKn \ v1 can be written as

A mKn \ v1 =





0 1 1 . . . 1

0 0 1
. . . 1

1 0 0
. . . 1

... . . . . . . . . . 1
1 1 1 . . . 0





.

In other words, A mKn \ v1 is a square matrix of size n− 1 whose diagonal and sub-diagonal

elements are zero and rest of the elements are 1. Let Ri denotes the i-th row of A mKn \ v1 . In
order to calculate its determinant let us first make following elementary row operations.

1. Ri = Ri−Ri+1 for i= 1,2, . . .(n−2).

2. Add all the resulting n−2 rows in 1. to (n−1)-th row.

These elementary row operations produce following matrix





0 1 0 . . . 0

−1 0 1
. . . 0

0 −1 0
. . . 0

... . . . . . . . . . . . .
0 1 1 . . . 1





.

Digraph corresponding to above matrix is shown in Figure 6.2. Using cycle covers of
digraph we calculate the determinant as follows.

1. n is odd: In this case cycle covers are following. For i= 1,2, . . . , n−3
2 , in a cycle cover there are

directed 2-cycles, each having weight -1, on vertices {v2 j−1,v2 j} ( j = 1,2 . . . , i), and a directed
(n−1−2i)-cycle of weight 1 on vertices {vn−1,v2i+1,v2i+2, . . . ,vn−1}. Hence,

det A mKn \ v1 = (−1)n−1
n−3

2

∑
i=1

(−1)i+1 × (−1)i×1

=
3−n

2
.

(6.13)
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v1 v2 v3 vn−3 vn−2 vn−1

1 1 1 11 1

-1 -1-1 -1 -1 1

1

1

1
1

1

………

Figure 6.2 : Digraph of matrix A mKn \ v1 after elementary operations.

2. n is even: In this case cycle covers are following. For i= 1,2, . . . , n−4
2 , in a cycle cover there are

directed 2-cycles, each having weight -1, on vertices {v2 j−1,v2 j} ( j= 1,2 . . . , i), and a directed
(n−1−2i)-cycle of weight 1 on vertices {vn−1,v2i+1,v2i+2, . . . ,vn−1}. Other than these there is
one more cycle cover having loop at vertex vn−1, and n−2

2 directed 2-cycles on {v2i−1,v2i}(i=
1,2, . . . , n−2

2 ) each of weight -1. Hence,

det A mKn \ v1 = (−1)n−1
n−4

2

∑
i=1

(−1)i+1 × (−1)i×1+(−1)1+ n−2
2 × (−1)

n−2
2 ×1

=
n−2

2
.

(6.14)

Combining the Equations (6.13) and (6.14) the result follows.

Theorem 6.11. Let mG be mixed star block graph having k blocks B1,B2, . . . ,Bk of order n1,n2, . . . ,nk,
respectively, then

det(mG) =∑det(mKni)
k

∏
j=1, j=i

(−1)nj
n j−2

2
,

where summation is over all i such that ni is odd.

Proof: Let v be the cut-vertex of mG. From Lemma 6.6 and 6.1

det(mG) =
k

∑
i=1

det(mKni)
k

∏
j=1, j=i

det mKni \ v

=
k

∑
i=1

det(mKni)
k

∏
j=1, j=i

(−1)n j
n j−2

2
.

(6.15)

from Lemma 6.5, for even ni, det(mKni) = 0. Hence,

det(mG) =∑det(mKni)
k

∏
j=1, j=i

(−1)nj
n j−2

2
,
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where, summation is over all i such that ni is odd.

6.5.2 Negative mix complete graph
A negative directed cycle dCn is cycle graph whose each directed edge is negative that is

each of its edges haveweight−1. A negativemixed complete graphmKn is obtained fromanegative
directed cycle dCn of length n> 3 by adding all the possible positive arcs between any non-adjacent
vertices of the underlying cycleCn. Adjacency matrix A(mKn) can be written as:

A(mKn) = JnIn−2Qn−Qn−1,

where, Jn is all one matrix , In is an identity matrix, and Qn is the full-cycle permutation matrix of
order n. Then the eigenvalues of A(mKn) are 0 = n− 4 and i = −1− 2wi−wi(n−1)(1 ≤ i ≤ n− 1),
where w= e

2
n .

Lemma 6.7. The determinant of A(mKn) is given by

det A(mKn) =






2(n−4)∏
(n−2)

2
i=1 2+8cos2 2 i

n +6cos 2 i
n , if n is even

(n−4)∏
(n−1)

2
i=1 2+8 cos2 2 i

n +6 cos 2 i
n , if n is odd.

(6.16)

Proof: For i= 1,2, . . . , (n−1),wi = cos 2 i
n + sin 2 i

n , and

i =−1−2wi−wi(n−1)

=−1−2wi−w−i

=−1−3 cos
2 i
n

− sin
2 i
n

.

Now, 3cos 2 (n−i)
n − sin 2 (n−i)

n = 3 cos 2 i
n + sin 2 i

n , if n is even then, n/2 = 2. Following
are the determinant expressions for A(mKn) .

1. n is odd:

det A(mKn) = (n−4)

(n−1)
2

∏
i=1

−1−3cos
2 i
n

2
+ sin2 2 i

n

= (n−4)

(n−1)
2

∏
i=1

2+8cos2 2 i
n

+6 cos
2 i
n

.

2. n is even:

det A(mKn) = 2(n−4)

(n−2)
2

∏
i=1

2+8 cos2 2 i
n

+6cos
2 i
n

.

6.5.3 The determinant of negative mixed star block graph
A negative mixed block graph is a strongly connected directed graph whose blocks are

negative mixed complete graphs. A negative mixed block graph having maximum one cut vertex
is called negative mixed star block graph. Let mKn \ vi denotes a induced subgraph resulting after
vertex vi is removed from mKn.
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Lemma 6.8. The determinant of mKn \ vi(i= 1,2, . . .n) is given by

1+
1

gn−1
∑
i≤ j

2 j−igi−1hj+1 +∑
j<i

g j−1hi+1 gn−1,

where,
gi = r1si1 + r2si2, for i= 2,3 . . . ,n−1,

hi = rh1sn−1−i
1 + rh2sn−1−i

2 , for i= n−2, . . . ,1,

r1 =
1
2
+

2
√

7
, r2 =

1
2
−

2
√

7
, rh1 =

−1
2

+
3

2 (7)
, rh2 =

−1
2

− 3
2 (7)

, and

s1 =
−1
2

+

√
7

2
, s2 =

−1
2

−
√

7
2

.

Proof: Without loss of generality let us remove the first vertex v1 of mKn. Adjacency matrix of
mKn \ v1 can be written as

A mKn \ v1 =





0 −1 1 . . . 1

0 0 −1
. . . 1

1 0 0
. . . 1

... . . . . . . . . . −1
1 1 1 . . . 0





.

Letm= n−1.We canwrite, A mKn \v1 = uuT +T,where, u is am×1 columnvector having
all entries equal to 1. And, T is the tridiagonal matrix of order m, having diagonal, subdiagonal
entries equal to−1 and superdiagonal entries equal to −2. Frommatrix determinant lemma [Ding
and Zhou, 2007]

det(T +uuT ) = (1+uTT−1u)det(T ).

From [Zhou, 2017], we need to solve some recursive expressions, in order to calculate
the determinant and inverse of T . We solve these recursive expressions using roots of their
characteristic equations. For the determinant of A, recursive expression is

fm =− fm−1 −2 fm−2, f0 = 1, f−1 = 0.

Roots of the resulting characteristic equation x2 + x+2 = 0, are

s1 =
−1
2

+

√
7

2
, s2 =

−1
2

−
√

7
2

.

Hence,
det(T ) = fm = r1sm1 + r2sm2 ,

where, using initial conditions

r1 =
1
2
+

2
√

7
, r2 =

1
2
−

2
√

7
.
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Now, to calculate T−1 we need to solve following recursive expressions

gi =−gi−1 −2gi−1, for i= 2,3 . . . ,m, g0 = 1, g1 =−1

hi =−hi+1 −2hi+2, for i= m−1, . . . ,1, hm+1 = 1, hm =−1.

Similar to fn, solving these recursive expressions we get

gi = r1si1 + r2si2, for i= 2,3 . . . ,n,

and,
hi = rh1sm−i

1 + rh2sm−i
2 , for i= m−1, . . . ,1,

where,
rh1 =

−1
2

+
3

2 (7)
, rh2 =

−1
2

− 3
2 (7)

.

Entries of T−1 are clearly given by gi,hi [Ding and Zhou, 2007].

T−1
i j =

2 j−igi−1hj+1
gm

if i≤ j
g j−1hi+1

gm
if j < i

.

As, uTT−1u equals to sum of all the entries of T−1. Thus,

uTT−1u=
1
gm

∑
i≤ j

2 j−igi−1hj+1 +∑
j<i

g j−1hi+1 (6.17)

Hence, the determinant of mKn \ vi(i= 1,2, . . . ,n) is given by

1+
1
gm

∑
i≤ j

2 j−igi−1h j+1 +∑
j<i

g j−1hi+1 gn−1.

Theorem 6.12. Let mG be mixed star negative block graph having k blocks B1,B2, . . . ,Bk of order
n1,n2, . . . ,nk, respectively, then

det(mG) =
k

∑
i=1

det(mKni)
k

∏
j=1, j=i

Dn.

Proof: Proceeding as the proof of Theorem 6.11 the result directly follows from Lemma 6.6 and
6.1.

6.6 CONCLUSION
In this chapter, we find uses of B-partitions to permanent and determinant of various

graphs including some directed graphs, unicyclic graphs, block graph with negative cliques, mix
complete graph.
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