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An Algorithm forB-partitions, and Parameterized

Complexity of Determinant and Permanent

In the Chapter 5, it was shown that the determinant (permanent) of a matrix can be
calculated in terms of the determinant (permanent) of some subdigraphs of blocks in its digraph.
The combination of these subdigraphs give the required B-partitions. In this chapter, first, we give
an algorithm for calculating the B-partitions, later we analyzed the parameterized complexity of
matrix determinant and permanent.

The chapter is organized as follows: In Section 7.1, an algorithm to find B-partition and
steps to find determinant and permanent of a matrix are given. In Section 7.2, we give the
parameterized complexity analysis of the determinant and permanent.

7.1 ALGORITHM FOR B-PARTITIONS
LetG be the digraph corresponding to any squarematrix A of order n. Let us assume that G

has k blocks B1,B2, . . . ,Bk. It is to note that, for G having k blocks with number of vertices in blocks
equal to n1,n2, . . . ,nk, respectively, following relation holds

n=
k

∑
i=1

(ni−1)+1.

Let G has t number of cut-vertices, assume them to be vc1,v
c
2, . . . ,v

c
t , where superscript c

denotes cut-vertex. For i = 1,2, . . . , t, assume that cut-vertex vci has cut-index equal to T (i). And,
let S(i) is the array which contains indices of the blocks to which cut-vertex vci belongs, and S(i, j)
denotes its j-th element.

Example 7.1. For the digraph of matrix M1, t = 2. Let vc1 = v2,vc2 = v6 then, S(1) = [1,2],S(2) =
[2,3],T (1) = 2,T (2) = 2. Similarly, for the digraph of matrix M2, t = 2 and assume vc1 = v2,vc2 = v6 then,
S(1) = [1,2],S(2) = [2,3,4],T (1) = 2,T (2) = 3.

The algorithm to find allB-partitions of a digraphG is given in Algorithm1. The algorithm
associates each cut-vertex to exactly one block and remove from rest of the blocks it belongs,
thus it recursively finds all the B-partitions. Interested readers can see the Matlab codes for the
determinant1 and the permanent 2 using Algorithm 1.

As an example following are the steps using Algorithm 1 to calculate the B-partitions of
the digraph corresponding to matrix M1.

Example 7.2. We use the information in Example 7.1 of the digraph corresponding to matrixM1 to calculate
its B-partitions. Algorithm 1 begins the execution by calling the function B-part(1,X ,2,S(1),T (1)) in line
1
2
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Algorithm 1: Algorithm for B-partitions.
Result: B-partition of G

1 it = 1, X is zero column vector of order t;
2 B-part(it,X , t,S(it),T (it))
3 if (it > t) then
4 for i= 1 : t do
5 for j = 1 : T (i) do
6 Remove cut-vertex vci from blocks BS(i, j) where X(i) = S(i, j).
7 end
8 end
9 The resulting subgraphs of blocks will give a B-partition. save it;

10 return
11 else
12 for i= 1 : T (it) do
13 X(it) = S(it, i);
14 it = it+1;
15 B-part(it,X , t,S(it),T (it))
16 end
17 end

2. As 1 ≯ t execution will proceed from line 12. Line 13 will make X(1) = 1, that is X = [1,0]. In the line
14 the value of it will increase by 1. At line 15 the function B-part (2,X ,2,S(2),T (2)) will be called, which
again starts from line 12, as still 2 ≯ t. Line 13 makes X(2) = 2, that is X = [1,2]. Line 15 then call the
function B-part (3,X ,2,S(3),T (3)). This time 3 > t thus, now the execution starts from line 4. We need to
remove vertex vc1, that is vertex v2 from block B2. Similarly, we need to remove vertex vc2, that is vertex v6
from block B3. The resulting subgraphs of blocks are B1,B2 \ v2,B3 \ v6, which gives a B-partition. In line
10, execution will return to line 12, where now i= 2, thus X(2) = 3, that is X = [1,3]. Line 15 then call the
function B-part (3,X ,2,S(3),T (3)). This time we need to remove vertex vc1, from block B2 and vertex vc2
from block B2. The resulting subgraphs of blocks are B1,B2 \(v2,v6),B3, which gives the second B-partition.
In line 10 execution will return to execution where it = 1, and i= 2. Proceeding as before we get two more
B-partitions namely B1 \ v2,B2,B3 \ v6 and B1 \ v2,B2 \ v6,B3.

In Chapter 5, the procedure to calculate the characteristic andpermanent polynomial, hence
the determinant and permanent is given in Procedure 5.1. It is to be noted that for the determinant
and permanent the cut-vertices without loops have no contribution in Procedure 5.1. Hence an
alternative procedure can be given in term of only those cut-vertices which are having loops on
them.

Procedure 7.1. Let G be a digraph having k blocks B1,B2, . . . ,Bk. Let tnz is a number of cut-vertices in
G which have non-zero weight on their loops. Let the weights of loops at these vertices are 1, 2, . . . , tnz,
respectively. Also, assume that these cut-vertices have cut-indices T (1),T (2), . . . ,T (tnz), respectively. Then,
the following are the steps to calculate the determinant (permanent) of G.

1. For q= 0,1,2, . . . , tnz,

a) Select any q cut-vertices at a time which have non-zero loop weights. In eachB-partition, remove
these q cut-vertices from subdigraph to which they belong.

i. For all the resulting partitions, sum their det-summands (per-summands). Multiply the

76



sum by ∏i

(− i)

�
T (i)−1

�

T (i) where, i, and T (i) are the weight and the cut-index of the removed
i-th cut-vertex, respectively, for i= 1,2, . . . ,q.

ii. For all possible
�tnz
q

�
combinations of removed cut-vertices, sum all the terms in i.

2. Sum all the terms in 1.

7.2 PARAMETRIZED COMPLEXITY OF DETERMINANT AND PERMANENT
From the last section, we see that how the subdigraphs of blocks are used to calculate the

determinant and permanent of a matrix.

Before we proceed to find parametrized complexity of matrix determinant, let us observe
the following. Let A be a square matrix of order r, as follows

A=

	
A1 b
c d



.

where, A1 as the principle submatrix of order r− 1, b is the column vector of order r− 1, c is the
row vector of order r−1, and A(r,r) = d.

If A1 is invertible then from Schur’ complement for determinant [Bapat and Roy, 2014],

det(A) = det(A1)det(d− cA−1
1 b).

If A1 is not invertible, and d is non-zero then,

det(A) = d×det(A1 −b
1
d

c).

If A1 is not invertible, and d is zero then,

det(A) = det
	
A1 b
c 0



= det

	
A1 b
c 1



−1×det(A1) = det(A1 −bc).

Fortunately, complexity of inverse of a matrix of order r is also O(r )[Aho and Hopcroft,
1974]. In all the above cases, we observe that det(A) can be calculated in terms of the determinant
of lower order matrices. For example in Section 5.3, in Example 5.4, det[4,5,6] can be calculated
using det[4,5]. Now, in G consider a block Bi which has ti number of cut-vertices. We can first
calculate the determinant of resulting subgraph after the removal of all the ti cut-vertices from Bi.
Then this determinant can be used to calculate the determinant of resulting after removal of any
ti − 1 cut-vertices. In this way, in general determinant of resulting subgraph after removal of i
cut-vertices can be used to calculate the determinant of resulting subgraph after removal of i− 1
cut-vertices.

Let digraphG have k blocksB1,B2, . . . ,Bk with sizes, and number of cut-vertices n1,n2, . . . ,nk,
and t1, t2, . . . ,tk, respectively. Then, during the calculation of determinant ofG, for a particular block
Bk, determinant of subdigraph of size ni− j is being calculted

�ti
j

�
times. Also, in the view of above

observation, in order to calculate determinant of subdigraph of order ni− jwe can use determinant
of subdigraph of order ni− j−1. Hence, the complexity of calculating the determinant is

O
� k

∑
i=1

ti

∑
j=0

�
ti
j

�
(ni− j−1)

�
.
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One upper bound of the above complexity is

O
� k

∑
i=1

2tini
�

(7.1)

The obvious pertinent question that follows is, for which combinations of ni, ti the above
parameterized complexity beats O(n ). Thus, we need to solve the following inequality

k

∑
i=1

2tini < n (7.2)

provided,

n=
k

∑
i=1

(ni−1)+1.

Similarly, for the permanent the parameterized complexity is

O
� k

∑
i=1

ti

∑
j=0

�
ti
j

�
2(ni− j)(ni− j)2

�
.

One upper bound of the above complexity is

O
� k

∑
i=1

2ti2nin2
i

�
(7.3)

Another pertinent question that follows is, for which combinations of ni, ti the above parametrized
complexity beats O(2nn2). Thus is, we need to solve the following inequality

k

∑
i=1

2ti2nin2
i < 2nn2 (7.4)

provided,

n=
k

∑
i=1

(ni−1)+1.

7.2.1 Parametric complexities
Let Γ be the largest of numbers of cut-vertices in any block that is Γ = max{t1, t2, . . .tk}. Let

Δ be the size of the largest block that is Δ = max{n1,n2, . . . ,nk}. From expression 7.1

k

∑
i=1

2tini ≤ 2Γ
k

∑
i=1

ni ≤ k2ΓΔ (7.5)

In order to beat n we have

k2ΓΔ ≤ n (7.6)

Taking logarithm on both the sides, we have

Γ ln2 ≤ ln
�

1
k

� n
Δ

� �
, (7.7)
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that is

Γ = O


ln
�

1
k

� n
Δ

� ��
. (7.8)

Similarly for the permanent from the expression 7.3

k

∑
i=1

2ti2nin2
i ≤ k2Γ2ΔΔ2 (7.9)

in order to beat 2nn2 we have

k2Γ2ΔΔ2 ≤ 2nn2. (7.10)

Taking logarithm on both the sides

Γ ln2 ≤ ln
� 2nn2

k2ΔΔ2

�
, (7.11)

that is

Γ = O


ln
� 2nn2

k2ΔΔ2

��
. (7.12)

7.3 CONCLUSION
In this chapter, we first give an algorithm to find the B-partitions in any digraph. Then

we find the parameterized complexity of matrix determinant and permanent in terms of the size
of blocks and number of cut-vertices in its digraph. For a class of matrices, the parametrized
complexities beat the state of art complexities.
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