List of Figures

Figure	Title	page
1.1	Signed cycles.	2
1.2	Signed graphs. The dotted circles encompass the clusters of vertices. Each edge inside	
	a cluster is positive, while each edge between the clusters is negative. For strongly	
	balanced graph there are exactly two clusters, while for weakly balanced graph there	
	can be more than two clusters.	2
1.3	Signed graphs G_1 and G_2 both are strongly unbalanced. The only strongly unbalanced	
	cycle in G_1 is the cycle on vertices v_4, v_9, v_{10} , while G_2 has many strongly unbalanced cycles.	2
2.1	Coates digraph and linear subdigraphs of (a) $A_{2 imes 2}$, where L_1 and L_2 are linear subdigraphs	
	(b) Balanced C_4 where L_1, L_2, L_3 , and L_4 are linear subdigraphs.	10
3.1	(Left) Evolution of the balance among the six major players of the World War I at different	
	time periods. Solid lines account for alliances and broken lines represent enmities. GB:	
	Great Britain; Ru:Russia; Ge: Germany; Fr: France; AH: Austro-Hungarian Empire; It:	
	Italy. (Right) Balance among the subtribes in the highlands of New Guinea [Hage, 1979].	
	Solid dark blue lines are for alliance (Rova) relations and red dashed lines are for antagonistic	
	(Hina) relations.	17
3.2	Variation of degree of unbalance $U(eta,\infty)$ w.r.t eta (a) WK (b) SD (c) EPN	18
3.3	Variation of degree of unbalance $U(\beta,\infty)$ of random networks w.r.t β (a) RN-I (b) RN-II	
	(c) RN-III	18
3.4	Variation of degree of Unbalance w.r.t length of closed walks for a given β (a) WK (b)	
	SD (c) EPN (d) RN-I	19
3.5	Variation of degree of Unbalance as a function of β , k (a) WK (b) SD (c) EPN (d) RN-I	20
3.6	Accuracy of sign prediction as a function of β , k (a) WK (b) SD (c) EPN	23
4.1	Examples: (a) A complete signed graph with negative cliques, $K_8^{2,3}$ (b) Weakly balanced	
	signed graph corresponding to $K_8^{2,3}$, (c) 3-regular star block graph.	26
4.2	Example of weakly balanced graphs. (a) A complete weakly balanced graph. (b) A	
	complete-cycle weakly balanced graph. (c) A complete-path weakly balanced graph.	26
4.3	(a) Eigenvalues of balanced (Blue) and unbalanced (Green) cycle graph C_{20} . (b)Difference	
	in eigenvalues of balanced and unbalanced cycle graph C_{100} .	29
5.1	(a) Digraph of matrix M_1 (b) Digraph of matrix M_2	46
5.2	Example of a \mathscr{B} -partition of (a) Digraph of matrix M_1 (b) Digraph of matrix M_2	49
5.3	${\mathscr B}$ -partitions of the digraph of matrix M_1	50
5.4	\mathscr{B} -partitions of the digraph of matrix M_2	51
6.1	Examples. (a) Block graph with negative cliques. (b) $U(C_5, \{T_3, T_3\})$. (c) $U(C_5, T_3, T_3, 2)$.	
	(d) Mix complete graph. (e) Mix star block graph.	60
6.2	Digraph of matrix $A\Big(mK_n\setminus v_1\Big)$ after elementary operations.	71
8.1	A non separable graph on 6 vertices.	82