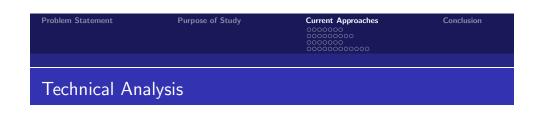
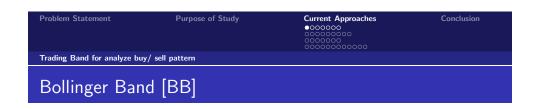
Problem Statement Purpose of Study Current Approaches Conclusion


Fundamental Analysis:

 Fundamental analysis is the analysis of a businesss financial information or statements like financial figures, balance sheet, businesss assets, and other information publicly available.

Technical Analysis:

 Technical analysis, employs models for predicting the direction of market prices through the study of market historic data, is mostly used by market analyst.


Safdar, (2016), "Industry competition and fundamental analysis. Journal of Accounting Literature, Vol.37, pp.3654. Nazrio et al. (2017), "A literature review of technical analysis on stock markets". The Quarterly Review of Economics and Finance. Parmod Paul Indian Institute of Technology Jodhpur Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Year Effect

Market indicators add significant depth to technical analysis, because they contain much more information than price and volume. There are large number of technical indicators which are divided into two major categories, Leading and Lagging indicator.

Shynkevich et al., 2017, "Forecasting price movements using technical indicators: Investigating the impact of varying input window length". Neurocomputing, Vol.264 pp.7188, 2017

It is based on the volatility of given stock price and consists

- An N-period moving average (MA)
- Standard Deviation of N-period = σ
- An upper band (MA + K σ)
- An lower band (MA K σ)
- The middle band lies between MA +K σ and MA -K σ .

Bollinger, J.(2002). "Bollinger on Bollinger Bands" Published by McGraw-Hill, ISBN 0-07-127368-3,2002

Problem Statement	Purpose of Study	Current Approaches ○●○○○○○ ○○○○○○○○ ○○○○○○○ ○○○○○○○○○○	Conclusion		
Trading Band for analyze buy/ sell pattern					

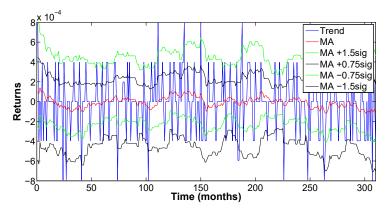


Figure: BB of Crude Oil minute data 22 Mar 2011

Construction of Optimal Band

- Consider the time series returns $X_1, X_2, ..., X_n$
- α (AbsoluteMax) = Max(X₁, X₂, ..., X_n)
- δ (AbsoluteMin) = Min(X₁, X₂, ..., X_n)
- $\beta_i = Max(X_i, X_{i+1}, ..., X_{i+4}), \ 1 \le i \le n-4$
- $\gamma_i = Min(X_i, X_{i+1}, ..., X_{i+4}), \ 1 \leq i \leq n-4$

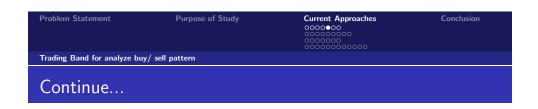
$$f(\alpha,\beta,\gamma,\delta) = a * \alpha + b * \overline{\beta} + c * \overline{\gamma} + d * \delta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $\overline{\beta}$ is mean of all β_i , $\overline{\gamma}$ is mean of all γ_i

Parmod Paul Indian Institute of Technology Jodhpur Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Year Effect

We now solve the following optimization problem to obtain the values of parameters (a,b,c,d)


$$\underbrace{Max}_{a, b, c, d} f(\alpha, \bar{\beta}, \bar{\gamma}, \delta) = a\alpha + b\bar{\beta} + c\bar{\gamma} + d\delta$$

s.t.

$$\begin{cases} f(\alpha, \bar{\beta}, \bar{\gamma}, \delta) \leq \mathsf{Min}((\beta_i - \gamma_i)/2, (\alpha - \beta_i)), \\ 1 \leq i \leq n - 4 \\ f(\alpha, \bar{\beta}, \bar{\gamma}, \delta) \geq 0 \end{cases}$$

We use Solver in MS excel to solve this optimization problem.

- Upper Band[UB_1] = $\beta_i + f(\alpha, \beta, \gamma, \delta)$
- Upper Band[UB_2] = $\beta_i f(\alpha, \beta, \gamma, \delta)$
- Middle Band[*MB*] = $f(\alpha, \beta, \gamma, \delta)$
- Lower Band[LB_1] = $\gamma_i + f(\alpha, \beta, \gamma, \delta)$
- Lower Band[LB_2] = $\gamma_i f(\alpha, \beta, \gamma, \delta)$

Vijay, V. and Paul, P. (2015). A New Trading Band for Prediction of Buy and Sell Signals and Forecasting of States. *International Journal of Applied Management Sciences and Engineering*, 2(2), 34-54.

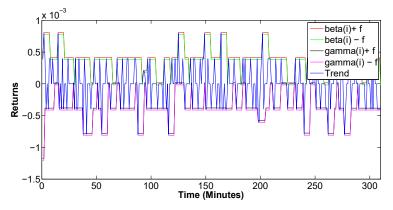


Figure: Optimal band of Crude Oil close price 22 Mar 2011

Advantage of OB Over the Other Technical Indicators

- Decision Time
 - Decision time for buy or sell in other model and Bollinger Band is small than that of Optimal Band.
 - In optimal band, decision time is slightly large due to its constant value for 2-3 time ticks.
- Under High Volatile Conditions
 - Other models follow same state for more time ticks.
 - The Bollinger bands are smooth, they do not completely follow the market.
 - The optimal band follows the market after 2-3 time ticks, if not immediately.

Hidden Markov Model for State Prediction

Markov Model: A sequence of discrete random variables S_t : t ϵ N is said to be a (discrete-time) Markov chain (MC) if for all t ϵ N it satisfies the Markov property and P known as transition probability.

$$P(S_{t+1} \mid S_t, ..., S_1) = P(S_{t+1} \mid S_t)$$

Hidden Markov Model: A hidden Markov model X_t : t ϵ N is a particular kind of dependent mixture. With X(t) and S(t) representing the histories from time 1 to time t, as follow:

$$P(S_t \mid S_{t-1}) = P(S_t \mid S_{t-1}), t = 2, 3, \dots$$
$$P(X_t \mid X_{t-1}, S(t)) = P(X_t \mid S_t), t \in N.$$

where $X = X_1, X_2, ..., X_t$ is data point at time $\underline{t}_{\cdot, \cdot, \cdot, \cdot} \in \mathbb{R}$, where $X = X_1, X_2, ..., X_t$ is data point at time $\underline{t}_{\cdot, \cdot, \cdot, \cdot} \in \mathbb{R}$

Parmod Paul	Indian Institute of Technology Jodhpur
Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Year	Effect

Three Basic Problems for HMM

- Evaluation: Given the model λ = (A, B, π), how do we compute the probability of occurrence of the observation sequence O = o₁, o₂,...,o_t are corresponding to data point.
- Decoding: Given an observation sequence and a model λ, how do we choose a state sequence S = {S₁, S₂, ..., S_N}, that best explains the observations.
- Training: Given the observation sequence and a space of models found by varying the model parameters λ = (A, B, π), how do we find the model that best explains the observed data.

Rabiner,L. R.(1989). A tutorial on hidden markov models and selected applications in speech recognition: In Proceedings of IEEE, Vol (77),257.

Problem Statement	Purpose of Study	Current Approaches 0000000 00€000000 000000 000000000000	Conclusion
Hidden Markov Model for S	tate Prediction		

TPM of Crude Oil Minute Data 22 Mar 2011

Та	able: Relative Strength Index					Table: B	ollinger Ba	and		
		S1	S2		S3		S1	S2	S 3	
S1 S2 S3	0	.9386 .0870 .0001	0.0604 0.9016 0.3332	0.0	001 0184 5667	S1 S2 S3	0.1256 0.2800 0.3333	0.7500 0.5200 0.6667	0.1250 0.200 0.0000	
		S1	S2		S 3					
0	51 52 53	0.258 0.450 0.350	0 0.24	44	0.276 0.305 0.450	6		Dptimal Ba		৩৫
Parmod Paul								Indian Institute	of Technology .	lodhpu
Technical Analy	Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Year Effect									

Problem Statement	Purpose of Study	Current Approaches	Conclusion		
Hidden Markov Model for State Prediction					

Table: Comparison Table

Model	Total States	Match States	Error
RSI	120	89	25.84
Bollinger Band	120	91	24.17
Optimal Band	120	93	22.36

Paul, P., Vijay, V. (2015). Comparison of Buying and Selling Pattern of the Stocks Using Different Technical

Indicators. September 2015, Conference: National Conference at Central University Rajasthan.

Problem Statement Purpose of Study Current Approaches Conclusion 000000 0000 0000 0000 000000 0000 0000 0000 000000 0000 0000 0000 000000 0000 0000 0000 000000 0000 0000 0000 0000000000 0000 0000 0000 Hidden Markov Model for State Prediction Use of the second second

Hidden Markov Model

Parm Tech Now we extend Markov model to Hidden Markov Model by dividing each state into observation sequence is Sq_{i1} , Sq_{i2} , Sq_{i3} , Sq_{i4} and Sq_{i5} , $1 \le i \le 3$. But observation is probabilistic function of state, defined as

$$Sq_{i1} = (0 \ to \ 20\% \ of \ S_i)$$

$$Sq_{i2} = (20 \ to \ 40\% \ of \ S_i)$$

$$Sq_{i3} = (40 \ to \ 60\% \ of \ S_i)$$

$$Sq_{i4} = (60 \ to \ 80\% \ of \ S_i)$$

$$Sq_{i5} = (80 \ to \ 100\% \ of \ S_i)$$

$$p(Sq_{ij}) = \frac{\text{No of data in } Sq_{ij}}{\text{No of data in state } S_i}$$

$$P(Sq_{ij}) = \frac{\text{No of data in } Sq_{ij}}{\text{No of data in state } S_i}$$

$$P(Sq_{ij}) = \frac{\text{No of data in } Sq_{ij}}{\text{No of data in } Sq_{ij}}$$

Problem Statement	Purpose of Study	Current Approaches ○○○○○○ ○○○○○○○○○ ○○○○○○○ ○○○○○○○ ○○○○○○	Conclusion
Hidden Markov Model for S	tate Prediction		

Observation Probability Matrix of Crude Oil for RSI and $\ensuremath{\mathsf{BB}}$

Sq1 Sq2 Sq3 Sq4 Sq5 S1 0.4000 0.1000 0.2000 0.0000 0.3000 S2 0.2593 0.3533 0.2852 0.0211 0.0743 S3 0.1000 0.1000 0.4000 0.0000 0.4000 Sq1 Sq2 Sq3 Sq4 Sq5 S1 0.0000 0.1000 0.4000 0.0000 0.4000 Sq1 Sq2 Sq3 Sq4 Sq5 S1 0.0492 0.0044 0.3000 0.001 0.6442 S2 0.0281 0.2000 0.7607 0.0044 0.0056 S3 0.0285 0.0283 0.0000 0.1000 0.8430							
S2 0.2593 0.3533 0.2852 0.0211 0.0743 S3 0.1000 0.1000 0.4000 0.0000 0.4000 Sq1 Sq2 Sq3 Sq4 Sq5 S1 0.0492 0.0044 0.3000 0.001 0.6442 S2 0.0281 0.2000 0.7607 0.0044 0.0056 S3 0.0285 0.0283 0.0000 0.1000 0.8430			Sq1	Sq2	Sq3	Sq4	Sq5
S2 0.2593 0.3533 0.2852 0.0211 0.0743 S3 0.1000 0.1000 0.4000 0.0000 0.4000 Sq1 Sq2 Sq3 Sq4 Sq5 S1 0.0492 0.0044 0.3000 0.001 0.6442 S2 0.0281 0.2000 0.7607 0.0044 0.0056 S3 0.0285 0.0283 0.0000 0.1000 0.8430							
S3 0.1000 0.1000 0.4000 0.0000 0.4000 Sq1 Sq2 Sq3 Sq4 Sq5 S1 0.0492 0.0044 0.3000 0.001 0.6442 S2 0.0281 0.2000 0.7607 0.0044 0.0056 S3 0.0285 0.0283 0.0000 0.1000 0.8430		S1	0.4000	0.1000	0.2000	0.0000	0.3000
Sq1 Sq2 Sq3 Sq4 Sq5 S1 0.0492 0.0044 0.3000 0.001 0.6442 S2 0.0281 0.2000 0.7607 0.0044 0.0056 S3 0.0285 0.0283 0.0000 0.1000 0.8430		S2	0.2593	0.3533	0.2852	0.0211	0.0743
S1 0.0492 0.0044 0.3000 0.001 0.6442 S2 0.0281 0.2000 0.7607 0.0044 0.0056 S3 0.0285 0.0283 0.0000 0.1000 0.8430		S 3	0.1000	0.1000	0.4000	0.0000	0.4000
S1 0.0492 0.0044 0.3000 0.001 0.6442 S2 0.0281 0.2000 0.7607 0.0044 0.0056 S3 0.0285 0.0283 0.0000 0.1000 0.8430			Sa1	Sa2	543	Sal	Sab
S2 0.0281 0.2000 0.7607 0.0044 0.0056 S3 0.0285 0.0283 0.0000 0.1000 0.8430			JYI	JYZ	545	JYt	JyJ
S2 0.0281 0.2000 0.7607 0.0044 0.0056 S3 0.0285 0.0283 0.0000 0.1000 0.8430		C 1	0.0400	0.0044	0 2000	0.001	0 6 4 4 0
S3 0.0285 0.0283 0.0000 0.1000 0.8430		51	0.0492	0.0044	0.3000	0.001	0.0442
< ロ > < 合 > < き >		S2	0.0281	0.2000	0.7607	0.0044	0.0056
		S 3	0.0285	0.0283	0.0000	0.1000	0.8430
ul Indian Institute of							(日)、山下
	ul					Ind	ian Institute of

Parmod Paul Indian Institute of Tech Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Year Effect

Problem Statement	Purpose of Study	Current Approaches ○○○○○○ ○○○○○○○ ○○○○○○○ ○○○○○○○○○○	Conclusion		
Hidden Markov Model for State Prediction					

Table: Probability Distribution of observation sequence of OB

	Sq1	Sq2	Sq3	Sq4	Sq5
S1 S2	0.3966	0.0172	0.5172 0.8763 0.5214	0.0000	0.0690 0.0415 0.2726

- Use function "hmmgenerate" randomly generates series of sequence and states
- The most likely states sequence generate using inbuilt MATLAB function
- ► [likelystates] = hmmviterbi(sequence, prob SB, prob OS)

Problem Statement Purpose of Study Current Approaches Conclusion

```
State sequences and sub-sequences using MATLAB tools:
         RSI
        Seg Sq<sub>0</sub> \rightarrow 2 \rightarrow 1 \rightarrow 1 \rightarrow 4 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 1 \rightarrow 2
        States S_0 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 2 \rightarrow 2
        2
         BB
        Seq Sq<sub>0</sub> \rightarrow 5 \rightarrow 5 \rightarrow 5 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 3 \rightarrow 3
        States S_0 \rightarrow 1 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 2 \rightarrow 2
        Likely-states S_0 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 2 \rightarrow 2
         OB
        Seq Sq<sub>0</sub> \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow 3 \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow 3 \rightarrow 3 \rightarrow 3
        States S_0 \rightarrow 1 \rightarrow 1 \rightarrow 3 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 3
        Likely-States S_0 \rightarrow 1 \rightarrow 1 \rightarrow 3 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow
         2
                                                                                                Parmod Paul
                                                                                                       Indian Institute of Technology Jodhpur
Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Year Effect
```


- Log-linear analysis examine the relationship between more than two categorical variables
- Used for both hypothesis testing and model building
- Pearson's chi-square test only allows for two of the variables to be compared at a time
- But Log linear model is generalized model for more than two variables

- It is essentially a display format used to analyse and record the relationship between two or more categorical variables
- It is the categorical equivalent of the scatter plot used to analyse the relationship between two continuous variables
- The term contingency table was first used by the statistician Karl Pearson in 1904
- We have used 2-Dim and 3-Dim contingency table using Pattern, Returns and Volume of transaction as variable.

Karl Pearson, F.R.S. (1904). Mathematical contributions to the theory of evolution. Dulau and Co.

A three way contingency table is defined as

$$I^{(3)}(i_{1}i_{2}i_{3}) = \tau^{(3)}_{123}(i_{1}i_{2}i_{3}) + \tau^{(3)}_{12}(i_{1}i_{2}) + \tau^{(3)}_{13}(i_{1}i_{3}) + \tau^{(3)}_{23}(i_{2}i_{3}) + \tau^{(3)}_{1}(i_{1}) + \tau^{(3)}_{2}(i_{2}) + \tau^{(3)}_{3}(i_{3}) + \tau^{(3)}_{\phi} = \sum_{A} \tau^{(3)}_{A}(i_{A})$$

A two way contingency table is defined as

$$l^{(2)}(i_1i_2) = \tau_{12}^{(2)}(i_1i_2) + \tau_1^{(2)}(i_1) + \tau_2^{(2)}(i_2) + \tau_{\phi}^{(2)} = \sum_{Z \subseteq 1,2} \tau_Z^{(2)}(i_Z).$$

Vellaisamy, P., Vijay, V., 2007. Some collapsibility results for n-dimensional contingency tables. Ann. Inst. Statist.

Parmod Paul Indian Institute of Technology Jodhpur Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Year Effect

Problem Statement **Current Approaches** 0000000 Log Linear Model Log Linear Hypothesis

Within the log-linear parametrization a number of important hypothesis can be formulated by setting larger or smaller sets

hypothesis can be formulated by setting large of τ to 0. The following are the main type. $H_1: \quad \tau^{ABC}_{ijk} = \tau^{AC}_{ij} = 0$ $H_2: \quad \tau^{ABC}_{ijk} = \tau^{AB}_{jk} = 0$ $H_3: \quad \tau^{ABC}_{ijk} = \tau^{BC}_{ik} = 0$ $H_4: \quad \tau^{ABC}_{ijk} = \tau^{AC}_{ij} = \tau^{BC}_{ik} = 0$ $H_5: \quad \tau^{ABC}_{ijk} = \tau^{AB}_{jk} = \tau^{BC}_{ijk} = 0$ $H_6: \quad \tau^{ABC}_{ijk} = \tau^{AB}_{ik} = \tau^{AC}_{jk} = 0$ $H_7: \quad \tau^{ABC}_{ijk} = \tau^{AB}_{ik} = \tau^{BC}_{jk} = \tau^{AC}_{jk} = 0$

Anderson E.B. (1996). Introduction to the statistical analysis of categorical data. Springer.

Problem Statement	Purpose of Study	Current Approaches	Conclusion
Log Linear Model			
Log Linear Model			

Experiment and Result of 2-Dim Table

▶ Maruti Suzuki Co. 23 Nov 07 to 23 Nov 09 daily frequency

	Н	М	L	Total
S	09	66	61	136
Ν	37	159	15	211
В	54	71	06	131
Total	90	296	82	478

▶ Hypothesis define in term of Z(H) value. Z(H) = 182.634 $\chi^2_{0.95} = 9.488$ at degree 4, Z(H) ≥ $\chi^2_{0.95}$ Z(H) value so that hypothesis is rejected.

	・ロ・・四・・ヨ・・ヨ・ ・日・
Parmod Paul	Indian Institute of Technology Jodhpur
Technical Analysis for Short-Term Forecasting of Financial Data and Turn of t	the Year Effect

Problem Statement	Purpose of Study	Current Approaches ○○○○○○ ○○○○○○●○ ○○○○○○●○	Conclusion
Log Linear Model			

Table: 3-dim Frequency table of 23 Nov 07 to 23 Nov 09

		C: V	/olume
A: Pattern	B: Returns	Up	Down
Sell	High	02	07
	Moderate	42	24
	Low	33	28
Neutral	High	17	20
	Moderate 7	78	81
	Low	05	10
Buy	High	28	26
	Moderate	44	27
	Low	04	02

• • •	∢ 🗗 ト	- < ≣ ▶	< ≣ ►	- 2	SAC

Parmod Paul	Indian Institute of Technology Jodhpur
Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Ye	ar Effect

Problem Statement	Purpose of Study	Current Approaches	Conclusion
Log Linear Model			

Expriment and Result of 3-Dim Table

Table: Hypothesis and Z(H) value table of Maruti Suzuki 23 Nov 07 to 23 Nov 09

hypo	Z(H) Value	Df	p-value
H_1	11.312	6	0.07919
H_2	132.384	8	0.00001
H_3	8.843	6	0.33713
H_4	13.546	8	0.19472
H_5	134.618	10	0.00001
H ₆	137.087	10	0.00001
H_7	139.321	12	0.000001

Vijay, V. and Paul, P. (2016). Analyzing Returns and Pattern of Financial Data Using Log- Linear Modeling.

Computational Research, 4(1), 1-7.	・ロト ・母ト ・言ト ・言・ ・ つんの	2
Parmod Paul	Indian Institute of Technology Jodhpur	
Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the	he Year Effect	

Turn of the year effect

Definition: The Turn-of-the-Year effect refers to the phenomenon that small stocks have unusually high returns during the period beginning on the last trading day of december and continuing through january [Ritter (1988)].

- The average return for the month of January was 3.48 % percent compared to only 0.42 % per month for the other eleven months. The turns-of-the-Year effect occurs regularly in various stock markets
- Give new evidence with the help of logistic regression and buy/ sell ratio.

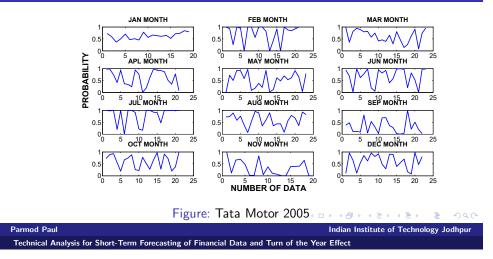
Logistic Regression: In form of linear regression equation generates the predict probability coefficients b_0 , $b_1,...,b_l$ with different measurements X_1 , $X_2,...,X_n$, it could be closed price, open price or difference of closed and open price etc.

$$Reg(month) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_l$$
$$Reg(month) = ln(\frac{p}{1-p})$$
$$p(y = 1|x_1, \dots x_n) = \frac{1}{1 + exp - (b_0 + \sum_k b_k x_k)}.$$

where p is the probability of presence of the characteristic of interest.

Pampel, F. (2000). "Logistic Regression: A primer." Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-132. Thousand Oaks, CA: Sage Publications.

Problem Statement	Purpose of Study	Current Approaches	Conclusion
Turn of the Year Effect			


Table: Regression line of Tata Motor 2004-2007

			05)06]
		S=a+b*B		S=a+b*B	S=c+d*N	
	J	0.28219	0.56069	-0.081772	-0.66873	
		214.86	38.552	200.78	155.13	
	F	2.8282	3.3017	-0.313	2.4854	
		1711.6	1274.3	1576.5	501.1	
	M	1.0154	0.76169	-3.6383	0.77058	
		390.32	141.59	880.53	373.76	
	A	2.0321	1.0901	0.59805	1.2132	
		410.11	175.11	333.97	133.97	1
	M	-5.3796	-1.0464	0.029227	-0.0055596	
		820.09	306.18	152.52	70.442	
	J	-2.2403	-0.017829	1.9097	1.3738	
		791.42	378.99	150.41	73.994	
	J	2.2425	2.5059	-0.33509	0.83319	
		720.36	495.66	158.17	45.496	
	A	-0.6923	0.33061	-4.2042	-1.1456	
		453.39	154.55	1029.7	391.02	
	S	-1.5979	-3.2231	-2.8569	1.8696	
		440.42	345.48	880.99	406.35	1
	0	0.99681	1.2202	0.051135	-0.64262	1
		354.33	118.8	256.11	12.455	
	N	-2.249	-3.8557	-2.9913	-0.76799	1
		324	279.63	1143.6	200.39	1
	D	-0.82806	0.32374	0.21309	-1.6977	1
		397.43	154.71	108.68	174.14	
	-		•		· · · · ·	▶ < @ ▶ < 글 ▶ < 글 ▶ 글 · つへ()
Paul						Indian Institute of Technology Jodhpur
				. –		

Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Year Effect

Problem Statement Purpose of Study Current Approaches Conclusion 0000000 0000000 0000000 00000000 00000000 00000000 Turn of the Year Effect

The Probability of Significant Coefficient of Linear Regression Equation for Sell and Buy

Problem Statement	Purpose of Study	Current Approaches	Conclusion
Turn of the Year Effect			

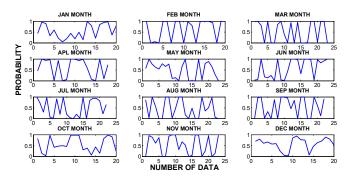


Figure: Tata Motor 2006

< 1		< ₫	₽ ►	< ≣	Þ.	<≣>	臣	うく	. C
Parmod Paul	h	ndian	Ins	titute	of	Techno	logy .	Jodhpu	r
Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Ye	ear E	ffect							

Buy/ Sell Ratio: Buy sell ratio mean ratio of number of buying stocks to number of selling stocks. The buy and sell pattern of a stock are obtained from optimal band [Vijay and Paul (2015)]. Analysis of turn of the year effect or January effect based on buy/ sell ratio. It defined as large capital stocks has small return in January month.

Lakonishokand Josef Smidt Seymour (1984). "Volume and Turn of the Year Behaviour." Journal of Financial Economics 13, 435-56.

Problem Statement Purpose of Study Current Approaches Conclusion 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 Turn of the Year Effect

Formula to Find Buy/ Sell Ratio

Suppose total time ticks data of January month = N Window size m = 6

Number of buy, sell and neutral pattern in single window

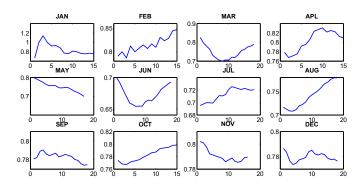


Figure: Tata Motor 2005

Parmod Paul	Indian Institute of Technology Jodhpur
Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Year	r Effect

P

Problem Statement	Purpose of Study	Current Approaches ○○○○○○○ ○○○○○○○○ ○○○○○○○ ○○○○○○○●○○○	Conclusion
Turn of the Year Effect			

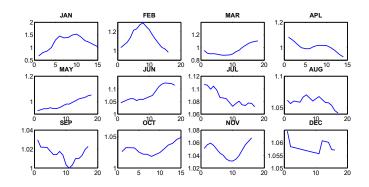


Figure: Tata Motor 2006

	▲□▶ ▲圖▶ ▲圖▶ ▲圖▶	E nac
Parmod Paul	Indian Institute of Technolog	gy Jodhpur
Technical Analysis for Short-Term Forecasting of Financial Data and	Turn of the Year Effect	

Problem Statement	Purpose of Study	Current Approaches ○○○○○○○ ○○○○○○○○ ○○○○○○○ ○○○○○○○○ ○○○○○○	Conclusion
Turn of the Year Effect			

Table: Mean Buy/Sell Ratio of Tata Motor from 2004 to 2011

Veer	IAN		Maan	
Year	JAN		Mean of FEB to DEC	
	Mean	Std	Mean	Std
2004		—	0.7592	0.0063
2005	0.8781	0.2377	0.6224	0.0111
2006	0.7182	0.2840	0.7653	0.0082
2007	0.8854	0.1508	0.7044	0.0071
2008	0.5535	0.1496	0.6212	0.0103
2009	0.9088	0.1182	0.6904	0.0111
2010	0.7403	0.1511	0.7701	0.0077
2011	1.1964	0.2722	1.0440	0.0146

• • • •	< 4 →	- ₹ ⊇ ►	- < ≣ > -	 -

Parmod Paul	Indian Institute of Technology Jodhpur
Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Yea	r Effect

Tests of difference between the January and Mean of February and December month using t-statistic with n = 18.

$$t = \frac{\bar{X_d}}{S_d/\sqrt{n}}$$

where

$$S_d = \sqrt{\frac{(n-1)*S_1^2 + (n-1)*S_2^2}{2n-2}}$$

 H_0 : The difference between January month returns of y^{th} year and Mean of February and December returns of $(y - 1)^{th}$ year of Tata Motor Ltd =0

Parmod Paul
 Indian Institute of Technology Jodhpur
 Technical Analysis for Short-Term Forecasting of Financial Data and Turn of the Year Effect

Problem Statement	Purpose of Study	Current Approaches	Conclusion
Turn of the Year Effect			

Table: t-Statistic from 2004 to 2011 for Tata Motor

Value of Y	Value of t-statistic
2004	2.778
2005	-12.831
2006	4.669
2007	-58.612
2008	-5.642
2009	-50.823
2010	54.759

Technical

	・ロ・・国・・国・・国・・国・・ のへの
Parmod Paul	Indian Institute of Technology Jodhpur
Technical Analysis for Short Term Ecrosofting of Einancial Data and Tyrn	of the Vear Effect