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Preliminaries and literature survey

If people do not believe that mathematics is simple, it is only because they do not realize how
complicated life is.

-John von Neumann

1.1 INTRODUCTION
Quantum information and computation has emerged as an interdisciplinary research

area at the interface of diverse academic disciplines such as computer science and engineering,
mathematics and physics. It deals with the study of computational and information processing
tasks using the fundamental laws of quantum physics to discover many interesting and exciting
capabilities for communication,manipulation and transmissionof information. In general, the area
analyses preparation, distribution, and control of quantum systems for efficient communication
and computation.

With the failure of classical mechanics to explain phenomena such as black-body radiation,
photoelectric effect, emission spectra of atoms, and structure of atoms- the first three decades of
twentieth century witnessed a period of turmoil, excitement, and creative intellect to accept the
need to replace the existent theories and to introduce a new theory for a complete mathematical
description of the physical world. Subsequently, Erwin Schrödinger and Werner Heisenberg
proposed a mathematical framework of the new quantum theory independently using wave
mechanics and matrix mechanics, respectively. This novel theoretical paradigm is based on
an algebraic formulation consisting of postulates and principles for accurate but probabilistic
description of physical systems. The fact that classical mechanics had to be replaced by quantum
mechanics for describing the behaviour of elementary particles at the atomic level naturally took
many years to gain acceptance. Based on the assumptions of local realism, Einstein, Podolsky and
Rosen in 1935 (EPR), raised the question of completeness of quantum mechanics as a complete
physical theory- the EPR paradox paved the way for several open-ended discussions, studies and
debates to understand and analyse quantum correlations, described by quantum mechanics as
against the description provided by local hidden variable (LHV) theories. In the last three decades,
the progress in quantum information and computation clearly suggests that quantum computers
based on quantum mechanical laws may solve problems that cannot be solved efficiently on
classical computers. The basis for efficient performance of a quantum computer in comparison to
a classical computer is laid down in terms of the superposition of quantum states- the fundamental
concept in quantummechanics. Similar to bit which is a fundamental unit of classical computation,
qubit or a quantum bit is considered as a fundamental unit of quantum computation. The
state of a qubit is fundamentally different from the state of a bit in a sense that a qubit can
be represented in any arbitrary linear superposition of two orthonormal basis states. To be
precise, a quantum bit can be described using a mathematical framework, know as its state, in a
two-dimensional complex vector space- the number of complex numbers required to characterize
the state of a quantum system increases exponentially with the increase in the size of the system.
Consequently, a classical computer also requires an exponential number of bits of memory to
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store and manipulate a quantum state. On the other hand, due to the superposition principle and
linearity which is fundamental to the quantum mechanical framework, a quantum computer can
store andmanipulate all the complex numbers at once. This phenomenon, also known as quantum
parallelism, allows quantumcomputers to efficiently simulate general quantumsystems, which are
otherwise cannot be efficiently simulated on classical computers. In early 1980, Richard Feynman
observed that efficient simulation of certain quantum mechanical effects on classical computer
is too difficult; it prompted researchers and experimentalists to visualize computation based on
quantum mechanical laws, and hence quantum computers. For example, the advantages offered
by Shor’s and Grover’s algorithm over well known classical algorithms are already established.

From information theoretic perspective, in 1948, Shannon defined the mathematical
theory of information to lay the foundations of modern information theory and communication.
Shannon’s noiseless andnoisy channel coding theorems are the two fundamental results of classical
information theory. A quantum analogue of noiseless channel coding theorem was proposed
by Ben Schumacher which quantifies the resources required to do quantum data compression.
Although quantum analogue of Shannon’s noisy channel coding is not yet formulated, the concept
of quantum error correction is developed to protect information and computation in presence of
noise. Another important aspect of quantum information and communication is security, i.e., to
protect information frommalicious third party intervention. Quantummechanics offers a solution
to eavesdropping through quantum cryptography- the basic premise is to encode the information
in a superposition state so that any malicious attempt to intervene can be identified using the
very concept of collapse of a wave function. The security of most of the cryptographic protocols,
e.g., RSA cryptosystems andDiffie-Hellman are dependent on the computationally hard problems
of integer factorization and discrete logarithm. The security of classical cryptographic systems,
however, is challenged by the introduction of quantum algorithms such as Shor’s algorithmwhich
can be used to break classical cryptosystems, e.g., RSA. Such applications provide support to
the use the theoretical foundations of quantum information and computation in experimental
prototypes of quantum cryptographic algorithms to be used in real world applications.

In general, at the center of all communication protocols is quantum entanglement which
is believed to be responsible for the efficiency and speed-up of quantum computation and
information processing in comparison to classical computation and information processing. In
fact, there are separable systems exhibiting quantum correlations- as captured by ameasure known
as quantum discord- which can be used for efficient quantum information and computation.
Essentially, nonlocal or quantum correlations existing between the particles are giving an edge
to quantum computation over classical computation. Characterization and analysis of nonlocal
correlations in bipartite and multipartite systems, therefore, is extremely important to understand
the nature and efficiency of entangled systems for quantum information and computation. Since,
the complexity in quantum systems increases enormously with the size of the system, the analysis
of multiqubit nonlocality is much more intricate in comparison to the analysis of nonlocality in
two-qubit systems. The complexity of the problem increases even further once we consider the
distribution of entanglement under real conditions, i.e., by considering the effect of decoherence
onnonlocal correlations. In principle, the efficiency of a quantumsystem decreaseswhen subjected
to a noise due to the degradation of entanglement and nonlocal correlations. Therefore, it is
important to study models to protect nonlocal correlations for an improved efficiency under
different noisy channels. Such analysis is not only important to understand the fundamental
aspects of entanglement and nonlocality but also helps to design large-scale, efficient information
and communication protocols.

For bipartite and multiqubit systems, genuine nonlocality is characterized by the violation
of the Bell or Bell-type inequalities. There are instances where the Bell inequality in bipartite
mixed entangled systems or Bell-type inequalities even in multiqubit entangled pure systems fails
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to identify nonlocal correlations in underlying states. Hence, there is a need for a more generic
approach to identify nonlocality in bipartite and multiqubit entangled systems.

In following sections, we first describe basic terminologies and fundamental concepts in
quantum information and computation, followed by a brief description regarding scope of this
Thesis.

1.2 BASIC CONCEPTS AND TERMINOLOGY
In this section, we will review some basic concepts and terminology related to quantum

computing and quantum information processing such as qubits, quantum gates, entanglement,
nonlocality, quantum teleportation and quantum dense coding etc.

1.2.1 Qubits
The fundamental units for processing and recording the data or information in classical

computation are bits . A classical bit has two distinguishable states and , separated by a high
energy barrier to ensure that there is no spontaneous transition between these states. One can
easily perform a measurement on the state of a bit to deterministically find whether the system is
in the state or in the state .

Analogues to the fundamental unit of classical computation, a quantum bit or a qubit is
a fundamental unit for quantum information and computation [Rieffel and Polak, 2000; Spiller
et al., 2005; Nielsen and Chuang, 2010]. The state of a qubit can be described as a mathematical
object to develop a general theory of quantum computation. Similar to a bit, a qubit can also be
found in two possible states, i.e., and . The difference between bits and qubits lies in the
fact that a qubit can also be represented as a linear superposition of and , resulting in a
superposition state represented by where ‘ ’ and ‘ ’ are two complex numbers.
There are infinitely many possible representations for , subject to the normalization condition

. Therefore, the state of a qubit can be represented as a vector in a two-dimensional
complex vector space where the states and are considered as the orthogonal basis states
for the two-dimensional complex vector space, also known as computational basis states. For

algebraic convenience, the state can be expressed as a column vector and the state

can be expressed as a column vector . Clearly, the states satisfy the orthonormality relations,

i.e., and . Hence, in terms of a column vector, an arbitrary state of a

qubit can be represented as . If one tries to measure the state of a qubit

in a computational basis, then the possible measurement outcomes are either with probability
or with probability . Therefore, a measurement to determine the state of a qubit leads to

the collapse of a wave function- values of ‘a’ and ‘b’ can be ascertained only if one performs infinite
number of measurements on infinite number of identically prepared systems.

The atomic model can be used to explain the physical realization of a qubit. For example,
one can represent a two-level system by labelling state as the ground state and labelling state
as the excited state. A transition of an electron will take place from state to if the ensemble
of atoms is irradiated with a light of appropriate energy for an appropriate length of time. The
electron can also exist between the state and the state by reducing the time of irradiating
the light. Figure 1.1 pictorially represents the existence of a qubit through ground and excited
states of an electron in an atom. Equivalently, for geometric representations, an arbitrary state

of a qubit can also be expresses as , where and

3



Electron

Light pulse of 
appropriate 

energy for an 
appropriate 

length of time

Excited State

Ground State
StateState 

Figure 1.1 : Representation of a qubit using an atomic model.

are points in a unit three-dimensional sphere known as Bloch sphere [Jakóbczyk and Siennicki,
2001; Nielsen and Chuang, 2010].

1.2.2 Multiqubit States
Similar to the measurement outcomes of two fair coins, two bits can also exist in four

different possible states, namely , , , and . Analogously, one of the possible set of
orthonormal basis states for a two-qubit system are characterized as , , , and . In
addition, a two-qubit state can also exist in an arbitrary linear superposition of these four states ,
i.e., , subject to the normalization
. A measurement on the state of two qubits in the computational basis will always result in

or with the respective probabilities as . Clearly, a two-bit classical register
can store only one out of the four numbers, , , , and at a given moment. Whereas, a
two-qubit quantum register can store all the four numbers , , , and in a quantum
superposition at any given point. Therefore, adding qubits to the register in a superposition state
increases its storage capacity exponentially. For example, if we are dealing with qubit systems,
then all possible basis states can be stored at once, which means that one can perform the same
measurement operation on all the basis states stored in a coherent superposition of qubits in only
one single computation. This is known as quantum parallelism, resulting in the essential time and
memory advantage in comparison to classical computing [Rieffel and Polak, 2000; Spiller et al.,
2005; Nielsen and Chuang, 2010].

1.2.3 Quantum Gates
A classical computer is built from electrical circuits consisting of wires and logical gates. In

classical computation bits represent information which is manipulated from one form to another
using logic gates while wires are used to carry data or information around the circuit. An example
of a single-bit logical gate is a NOT gate that turns to and to . In general, two-bit logical
gates such as OR, AND, NOR and NAND use two input bits for a computation and give only one
output bit as a result of that computation. Such gates are therefore termed as irreversible gates-the
irreversibility is interpreted in terms of dissipating energy as the computation is performed. This
should not be surprising as deleting information requires work to be performed and hence energy
is wasted in terms of heat. Alternately, a logical gate is called irreversible, if one cannot determine
the input from the given set of output for the gate.

Similar to a classical computer, quantum computer circuits are also built from wires and
elementary quantum gates- following the fundamental laws of quantum mechanics- for carrying
and manipulating the quantum information [Barenco et al., 1995a,b; Zhou et al., 2000; Hammerer
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et al., 2002; Brylinski and Brylinski, 2002]. Algebraically, quantum gates can be represented as
operators acting on a quantum state to transform it from one form to another. In fact, the matrix
form is found to be a very convenient way for representing quantum gates, e.g., all single-qubit
gates can be represented by matrices. However, quantum gates can be represented by an
operator if and only if it is a unitary operator. Clearly, the inverse of a unitary operator is also a
unitary operator, and hence quantum gates are reversible. In this sub-section, we describe some
important single and multiqubit gates and discuss their properties.

The quantum analogue of a classical NOT gate is known as X gate. The operation of an
X gate is to flip the computational basis state to , and to . Since these are quantum
gates, their action on quantum states is linear, thus, the X gate flips the basis states of a qubit,
i.e., it transforms the state to . Algebraically,

. Therefore, the matrix representation of an X gate is . Since, the X gate is

unitary, it is also reversible, i.e., . Interestingly, in classical computation, we have only
one reversible logic gate- the NOT gate- whereas there are several unitary operators that can
be defined as single-qubit quantum gates. For example, another important single-qubit quantum
gate used frequently in quantum information and computation is the Z gate. When it operates on
the state of a qubit, it leaves the spin up state unchanged and flips the sign of spin down state,
such that the state transforms into . This clearly suggests that

the matrix representation for the Z gate is . The third important single-qubit gate we

must consider to discuss here is the Hadamard gate. It acts on the state of a qubit in such a way
that the initial state transforms to the state , halfway between and , and the initial

state transforms to the state which is also half way between and . Therefore, the

matrix representation for a Hadamard gate is . Although there are infinitely many

single-qubit quantum gates due to the existence of the infinitely many unitary matrices, we
have only discussed three fundamental single-qubit gates frequently used in quantum information
and computation.

For multiple qubit gates, we consider two-qubit Controlled Not (CNOT) and three-qubit
Toffoli gates. The action of a standard two-qubit CNOT gate is described as where

is addition modulo two. In this case, the two qubits are known as control and target qubit,
respectively. If the state of control qubit is then it leaves the target qubit unchanged, but if the
state of control qubit is , it flips the state of target qubit. Considering this, an appropriate matrix

representation for the CNOT gate is , where suffix stands for a CNOT

gate such that . Similarly, a three-qubit quantum gate is a Controlled-Controlled-Not

Figure 1.2 : Circuit representation of a CNOT gate.
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or Toffoli gate whose action can be described as . In terms of an operator, it is
easy to visualize that the Toffoli gate can be represented by a unitary matrix. That Toffoli
gate is sufficient to simulate irreversible classical logic gates, is an important evidence to prove that
quantumcomputers are strictly capable of performing any computationwhich a classical computer
may do [Fredkin, 1982; Barenco et al., 1995a].

Figure 1.3 : Circuit representation of a Toffoli gate.

These gates have been realized experimentally for optical implementations in quantum
information and computation [Milburn, 1989; Knill et al., 2001; Koashi et al., 2001; Ralph et al.,
2001]. Considering their importance for quantum computing, elementary quantum gates have
been studied and used extensively for manipulation and transfer of information. [Sleator and
Weinfurter, 1995; Gottesman and Chuang, 1999; Bartlett and Munro, 2003; Protopopescu et al.,
2003; Duan and Raussendorf, 2005; Grigorenko and Khveshchenko, 2005; Walther and Zeilinger,
2005; Isenhower et al., 2010; Ukai et al., 2011; Crespi et al., 2011; Mičuda et al., 2013, 2015; Babazadeh
et al., 2017; Russ et al., 2018]

1.2.4 Density Operators in quantum information processing
In classical mechanics, the dynamical state of a system can be completely described if one

has the knowledge of types of interactions, i.e., forces acting on the system responsible for the
dynamical evolution of the system in addition to the values of initial position and momentum of
all particles at a given instance. Therefore, using the complete set of initial conditions and classical
equations ofmotion, it is possible to predict the futuremotion of a system at a given time. However,
in quantummechanics, due to the restrictions imposed by Heisenberg Uncertainty Principle, such
a complete description of maximal information is not possible [Heisenberg, 1958]. Since not
all the conjugate variables of interest can be measured simultaneously with precision, quantum
mechanics offers only restricted information as against a classical systemwhere all the information
is accessible. Clearly, the accessible information in a quantum world is always less than the
maximum due to the lack of existence of a complete experiment with a unique predetermined
outcome [Fano, 1957]. A mathematical description of the state of a quantum system satisfying the
Schrödinger equation, and known as wave function, can be described for only those observables
whose operators have common set of eigen functions. Therefore, a wave function can be used to
obtain precise values for the properties whose associated operators commute with each other.

Quantum states which can be completely described by a single wave function, are called
pure states. In all the other cases, quantum states are known as mixed states. When the system is
described to be in amixed state , then themeasurement process introduces a statistical character to
the outcome. Thus, a system whose state is not completely known can conveniently be described
by a statistical operator known as density operator [Fano, 1957; McWeeny, 1960; Fano, 1983; Blum,
2013]. Density operator can thus be regarded as an alternative mathematical tool to describe
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quantummechanical systems in pure as well asmixed states. Mathematically, the density operator
for a quantum system is defined as where indicates the probability of finding
the system in the state, and represents an ensemble of pure states. When all the
’s are zero except for a state for which , then the system is said to be in a pure state, i.e.,

in a state with maximal information. Therefore, in case of pure states, the density operator can
be represented as . In all other cases, the system is said to be in a mixed state. Thus,
the density operator is a possible tool for determining whether an underlying quantum state can
be represented by a pure or a mixed state- algebraically this can be ascertained by analysing the
inequality where the equality confirms that the state is a pure state, else it is a mixed
state. The importance of density operator description lies in the fact that density operator is a
descriptive tool for a composite system in which correlations exist between different sub-systems.
The density operator contains all possible information about a system, and describes a statistical
ensemble. Density operator has the following properties,

(1) The trace of a density matrix is always equal to one, e.g., for ,
, which is also known as its normalization condition.

(2) It is a Hermitian positive semi-definite operator.
(3) The diagonal elements of a density operator are non-negative and they represent the

population of the system in different states.
(4) The density operator for a single-qubit mixed state may be represented as

where is a polarization vector and s are Pauli spin operators, and the state is said to be
pure if and only if

One of the important consequences of the density operator formalism is the description of reduced
density operators defined as density operators for the sub-systems of a composite system. For
example, if the state of a composite system is completely described by a density operator ,
then the reduced density operators for the subsystems A and B are defined by
and , respectively, where and are partial traces over subsystems and ,
respectively. Due to its properties and physical interpretations, the density operator formalism
plays a crucial role in analysing and understanding the nuances of quantum entanglement and
information processing [Hughston et al., 1993; Peres, 1996]

1.3 QUANTUM ENTANGLEMENT
In 1935, Einstein, Podolsky and Rosen (EPR) demonstrated a paradox raising the questions

regarding completeness of quantummechanics as a theory [Einstein et al., 1935]. The argument led
to the fundamental concept of existence of long-range quantum correlations between entangled
particles responsible for achieving efficient, secure and optimal communication in comparison to
their classical counterparts. Such correlations not onlymake the quantumworld distinct from their
classical analogues, but also provide physical insights into fundamentals of quantum computing
and information processing [Bohm and Aharonov, 1957; Bell, 1964; Clauser et al., 1969; Peres,
1990; Gisin, 1991; Home and Selleri, 1991; Khalfin and Tsirelson, 1992; Mermin, 1993; Kwiat et al.,
1995; Horodecki et al., 1996; Tittel et al., 1998; Kwiat et al., 2000; Mair et al., 2001; Batle et al., 2002;
Babichev et al., 2004; Thew et al., 2004; Genovese, 2005; Özdemir et al., 2007; Zeilinger, 1999; Batle
and Casas, 2011; Batle et al., 2016, 2017; Bartkiewicz et al., 2017]. Erwin Schrödinger [Schrödinger,
1926, 1935] first used the term entanglement to define the correlations between the particles, and
called it as the characteristic trait of quantum mechanics. David Bohm [Bohm, 1952a,b; Bohm and
Aharonov, 1957] defined entanglement in the context of a singlet state of a pair of spin system,
which, since then has been essential to investigation the foundations of quantum mechanics and
quantum information. Following EPR’s argument, John Bell [Bell, 1964] proposed an inequality
to understand the fundamental difference between nonlocality and local hidden variable theories.
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The Bell inequality based on locality and realism, therefore, distinguishes between the systems
which are correlated but whose interactions are local as against to the systems whose correlations
are spatially extended and cannot be explained by the assumption of locality.

Algebraically, entanglement can be defined as following: Let us assume a composite system
consisting of two subsystems A and B associated with Hilbert spaces and , respectively.
We further consider complete sets of orthonormal basis for as and for as (where

). The composite state associated with the Hilbert space for a system is

(1.1)

where are complex coefficients and . If the state cannot be factored
into a normalized state of the subsystem A in and into a normalized state

of the subsystem B in , then the state is an entangled state, otherwise it is
called a separable state. Therefore, the state of a composite quantum system is said to be entangled
if it cannot be factored into product states of its sub-systems.

Quantum entanglement is used as a unique and efficient resource for many interesting
applications in quantum information and computation [Bennett and Wiesner, 1992; Bennett
et al., 1993; Zukowski et al., 1993; Boström and Felbinger, 2002; Gisin et al., 2002]. In
comparison to classical resources, entanglement is a purely quantum mechanical phenomenon,
with interesting properties such that the measurements performed on one of the sub-systems
affect the measurement outcomes of other sub-systems [Einstein et al., 1935]. In general, if
users in a protocol share an entangled state with each other, they can transmit the information
at remote locations efficiently and securely [Bennett and Wiesner, 1992; Bennett et al., 1993].
Therefore, one of the important aspects of quantum information and computation is to classify
and quantify entanglement in bipartite as well as multiqubit systems. In the last three decades,
a considerable amount of research has been devoted for the description of entanglement using
different entanglement measures. For example, the degree of entanglement in bipartite systems is
defined using a measure known as Entanglement of Formation (EoF) or through measures which
are physically equivalent to EoF [Schmidt, 1907; Ekert and Knight, 1995; Bennett et al., 1996c; Peres,
1996;Horodecki, 1997;Hill andWootters, 1997;Wootters, 1998; Vidal andWerner, 2002; Chen et al.,
2005b; Buscemi et al., 2007; Gühne et al., 2007; Marian and Marian, 2008; Park et al., 2010; Ganguly
et al., 2011; Lastra et al., 2012; Fanchini et al., 2013; Sperling and Vogel, 2013; Ganguly et al., 2014;
Streltsov et al., 2015]. In general, there is no unique generalization for a measure to be considered
for bipartite as well as multiqubit systems [Wong and Christensen, 2001; Collins et al., 2002a,b;
Cereceda, 2002; Wei and Goldbart, 2003; Pan et al., 2003b; Zhao et al., 2003; Eibl et al., 2003, 2004a;
Walther et al., 2005a; Eisert et al., 2007; Gühne and Tóth, 2009; Bai et al., 2009; Horodecki et al.,
2009; Lavoie et al., 2009; Oliveira and Ramos, 2010; Gühne and Seevinck, 2010; Hou and Qi, 2010;
Huber et al., 2010; Bancal et al., 2010; Ghose et al., 2010; Ma et al., 2011; Kay, 2011; Deb, 2011; Prabhu
et al., 2012; Spedalieri, 2012; Brandao and Christandl, 2012; Chen et al., 2012; Hyllus et al., 2012;
Zhao et al., 2012; Barrett et al., 2013a; Bai et al., 2014; Zhu and Fei, 2014, 2015; Islam et al., 2015;
Laflorencie, 2016; Hauke et al., 2016; Zhao et al., 2016; Cianciaruso et al., 2016; Hu et al., 2016; Chen
et al., 2016; Buchholz et al., 2016; Luo et al., 2017]. Apparently, the characterization of entanglement
in multiqubit systems is much more challenging due to the increased complexity of the system.
The different measures to quantify entanglement capture different aspects of the phenomenon and
hence do not often agree with one another. In reality, the properties of bipartite mixed entangled
systems itself needs a much better physical interpretation [Vedral and Plenio, 1998; Audenaert
et al., 2001, 2002; Vidal and Werner, 2002; Lee et al., 2003; Osborne, 2005; Mintert and Buchleitner,
2007; Zhang et al., 2008; Kim et al., 2010]. Further, another important aspect of entangled systems
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to be mentioned here is that the spatially separated users, sharing a composite entangled system,
can onlymodify the entanglement properties of the system by performing local operations on their
respective subsystems assistedwith classical communication, i.e., they may convert one entangled
state into another equivalent state with similar entanglement properties, but in no way distant
users can generate an entangled state from unentangled states or convert two inequivalent classes
of entangled stateswith certainty by performing sequence of local operations assistedwith classical
communication [Werner, 1989; Bennett et al., 1996c; Vedral et al., 1997a; Horodecki et al., 2000;
Vidal et al., 2002; Horodecki et al., 2003; Plenio and Virmani, 2005; Fan, 2004; de Vicente et al., 2013;
Chitambar et al., 2014]. Therefore, the mean entanglement of a system cannot be increased using
local operations and classical communication. In general, a measure needs to satisfy the following
criteria to be considered as an entanglement measure [Vedral et al., 1997b; Wootters, 1998; Vidal,
2000];

(1) The measure of entanglement for any product state should be zero, i.e., , and
must attain its maximum value for maximally entangled states.

(2) The amount of entanglement in any state should not increase under local operations and
classical communication (LOCC), i.e., .

(3) A certain number n of identical copies of the system must contain n times the entanglement
of one copy, i.e., .

(4) The entanglement measure E must be a convex function, i.e.,

(5) The degree of entanglement of product of two states should not be greater than the sum of
degree of entanglement of individual states, i.e.,

(6) The amount of entanglement in any state should not be affected by any local unitary
operation of the form , i.e., .

Entanglement measures satisfying the above criteria are called entanglement monotones.
For bipartite systems, there are several measures to describe entanglement properties- some of
which we will consider in following subsections [Ekert and Knight, 1995; Bennett et al., 1996c,d;
Peres, 1996; Horodecki, 1997; Vedral et al., 1997a; Horodecki et al., 1998;Wootters, 1998; Lewenstein
et al., 2000; Vidal and Werner, 2002].

1.3.1 Measures of entanglement in pure and mixed two-qubit states
A pure two-qubit state can be expressed as where is relative

phase between the qubits. For a maximally entangled two-qubit pure state, one can choose
, and . The state defined with these parametric values is known as one of the Bell states

[Nielsen and Chuang, 2010]. The set of all maximally entangled Bell states are defined as

(1.2)

Moreover, any arbitrary spin-1/2 state can also be represented using a density operator
[Horodecki, 1995] as

I I r I I s t (1.3)

where represent the qubit index, is a identity operator, r and s represent polarization
vectors of two spins, respectively, stands for standard Pauli matrices, and coefficients form a
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real matrix which we denote by such that . We now proceed to discuss some
important measures of entanglement for pure and mixed states.

(a) Schmidt Number
The possibility of interconversion of two pure bipartite states using local operations and

classical communications can be established using a mathematical framework from theory of
majorization- leading to an important tool to define separability and entanglement in two-qubit
systemsknown as Schmidt coefficients or Schmidt numbers [Schmidt, 1907; Ekert andKnight, 1995;
Bennett et al., 1996c; Sperling and Vogel, 2011a,b; Guo and Fan, 2015]. In order to define Schmidt
numbers, we first consider to be a pure state of a composite system AB in the Hilbert space

. If and represent orthonormal basis for subsystems A and B, respectively, then the
state can be written in form of Schmidt decomposition, such that

(1.4)

where are non-negative real numbers, i.e., satisfying , called as Schmidt coefficients
or Schmidt number. Schmidt number can be used to quantify the extent of entanglement between
the qubits, e.g., if for the state only one Schmidt coefficient is non-zero and all others are zero,
then is a separable state otherwise it is an entangled state. In other words, the necessary and
sufficient condition for the state to be a product state is that both the subsystems and

are in pure states. Further, since the eigenvalues of the subsystems are always equal, Schmidt
coefficients provide a way to study many interesting properties of the composite system .
Evidently, Schmidt coefficients remains invariant under local unitary transformations.

(b) Entanglement of Formation
Using the application of local operations and classical communication, if we generate m

copies of a pure state starting from copies of Bell states, then the limiting ratio m/n is
defined as Entanglement of Formation (EoF) [Bennett et al., 1996c]. Alternately, it can be defined
as the von-Neumann entropy of the reduced density operators associated with either of the two
subsystems of a pure two-qubit state [Petz, 2001;Nielsen andChuang, 2010]. For this, let us assume
thatAlice andBob share a two-qubit pure entangled state then the entanglement of formation
for is

(1.5)

where is the von-Neumann entropy, and and are reduced density
operators of the pure two-qubit state , i.e., , and .
The value of EoF monotonically increases from 0 to 1 for product to maximally entangled states,
respectively. For a mixed two-qubit state , EoF is defined as

(1.6)

where . Clearly, EoF for pure states is easily computable whereas for mixed
states, the computation is extremely difficult [Vedral and Plenio, 1998; Osborne, 2005; Chen et al.,
2005b; Gühne et al., 2007; Mintert and Buchleitner, 2007; Zhang et al., 2008; Marian and Marian,
2008; Horodecki et al., 2009; Lastra et al., 2012; Fanchini et al., 2013].
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(c) Peres-Horodecki Criterion (Positive Partial Transpose)
Peres-Horodecki criterion is a qualitative approach to analyse the separability in an

underlying mixed state. It is also shown to be a necessary and sufficient condition to test the
separability of mixed states in and dimensional systems [Peres, 1996; Horodecki, 1997;
Giedke et al., 2001]. The Peres-Horodecki criterion states that if is an arbitrary mixed two-qubit
state, then the positivity of the partial transpose operator with respect to the qubit B
ensures the separability of . In other words, we can say that if the state is separable then the
partial transpose operator will have all non-negative eigenvalues. The result of Peres-Horodecki
criterion is independent of the partial transposed subsystem, as .

(d) Concurrence
Concurrence is a celebratedmeasure to quantify degree of entanglement in pure andmixed

two-qubit systems [Hill and Wootters, 1997; Wootters, 1998, 2001; Chen et al., 2005a; Li et al., 2011;
Zhou and Sheng, 2015]. The concurrence for two-qubit states is defined as

(1.7)

where are the eigenvalues of an operator in decreasing order
with denoting the complex conjugation of the density operator representing a mixed state
and denotes the Pauli spin operator. The value of concurrence for pure states monotonically
increases between 0 and 1- it attains the maximum value 1 for maximally entangled states and
the minimum value 0 for product states. Alternately, for a general pure two-qubit state

, the concurrence is given by

(1.8)

If a pure two-qubit state is described by a density operator , i.e., , then the
concurrence is given by

(1.9)

Although EoF is an entanglement measure and concurrence is a physically equivalent definition
through the relation

(1.10)

where , one tends to use concurrence as an entanglementmeasure
for bipartite mixed states instead of Entanglement of Formation due to the ease of evaluating the
concurrence.

There are several other criteria to define bipartite entanglement such as entanglement
witness [Lewenstein et al., 2000; Terhal, 2002], von-Neumann relative entropy [Plenio and Vedral,
1998; Vedral et al., 1997a; Vedral, 2002], distillable entanglement [Bennett et al., 1996d; Rains, 1999;
Vidal et al., 2002] and bound entanglement [Horodecki et al., 1998; Bennett et al., 1999; Horodecki
et al., 1999b; Sanpera et al., 2001; Ishizaka, 2004; Yang et al., 2005; Horodecki et al., 2009; Kaneda
et al., 2012; Vértesi and Brunner, 2014].
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1.3.2 Measures of entanglement in three-qubit states
The classification and quantification of entanglement inmultiqubit systems is amuchmore

interesting and challenging problem due to the very nature of entanglement, i.e., complexity
[Cereceda, 2002; Collins et al., 2002b; Eibl et al., 2004a]. For example, for three-qubit pure states,
one has to think about establishing a relation between the degree of entanglement shared between
qubits AandB, and the degree of entanglement sharedbetween qubits AandC. If the entanglement
between A and B is defined to be maximum, i.e., if the joint system of qubits A and B is in one of
the Bell states, then AB as a joint entity cannot have any entanglement with the qubit C. However,
if the entanglement between A and B is not maximum, i.e., if the joint system of qubits A and
B is in a partially entangled state, then the joint system of qubits AB can still share a limited
entanglement with the qubit C. In order to facilitate the discussion regarding measures which
capture the entanglement between three qubits, we first briefly describe the different classes in
which three-qubit pure states can be defined [Dür et al., 1999, 2000], e.g.,

(1) Product States (Class A-B-C)- Product states do not possess any entanglement among any of
the qubits. Since it is a product state where every subsystem is in a pure state, i.e., in a state of
maximal information- the von-Neumann entropy of any of the reduced single-qubit density
operators will be 0. A general form of this class can be expressed as

(1.11)
(2) Bi-separable States (Classes A-BC, B-AC, and C-AB)- As is clear from the representation, these

class of states represent three-qubit bi-separable states where any two of the qubits are
entangled and the joint state of two entangled qubits forms a product state with the state
of third qubit, e.g., a bi-separable state of class can be written as

(1.12)

Similarly, bi-separable states can be defined for classes and . The
von-Neumann entropy in this case will be 0 for reduced density operator of qubit 1 as it
is in a pure state, but the von-Neumann entropy of the reduced density operators for qubits
2 and 3 will depend on the parameter , e.g., maximum uncertainty can be obtained if the
joint state of two qubits is a maximally entangled state.

(3) Genuine tripartite entanglement- Any three-qubit pure state possessing genuine tripartite
entanglement, can be characterized in this category Dur et al. [Dür et al., 2000], demonstrated
that three-qubit pure states can be classified into two inequivalent classes, namely GHZ
class and W class. The states belonging to the two classes cannot be interchanged into
one another even with the smallest probability by performing local operations and classical
communications. However, they established that any three-qubit pure state can either be
converted to GHZ class or W class by performing stochastic local operations and classical
communications (SLOCC). The classification and properties of two classes can be described
as per the following:
(A) Greenberg-Horne-Zeilinger (GHZ) States: In 1989, Daniel Greenberg, Michael Horne, and

Anton Zeilinger proposed a general state containing genuine tripartite entanglement
[Greenberger et al., 1989], represented as

(1.13)
where for and , one can define the maximally entangled GHZ state as

(1.14)

These states are not robust in terms of loss of any qubit. In other words, if we trace
the state over a subsystem, the remaining state no longer remains entangled, i.e., the
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reduced density operator representing the state of two-qubit system contains only
classical correlations. GHZ states are shown to be very useful resources for performing
many efficient and optimal quantum information processing protocols [Gottesman and
Chuang, 1999; Karlsson and Bourennane, 1998; Hillery et al., 1999; Raussendorf et al.,
2003; Browne and Rudolph, 2005; Lee et al., 2006].

(B) W States: The genuinely entangled three-qubit W class of states can be represented as
(1.15)

where , and in the standard case, we consider , hence,
the standard W state is given by

(1.16)

In this case, all the qubits are pairwise entangled, i.e., the von-Neumann entropy of
reduced density operators of any of the subsystems is always greater than 0. Unlike
GHZ class states, W states are robust against the loss of one qubit, i.e., if one of three
qubits is traced out, the remaining qubits will still represent a two-qubit entangled state.
ForW class states, one can use as ameasure of entanglement where

is the square of concurrence between qubits i and j [Dür et al., 2000; Linden et al., 2002].

We now proceed to discuss entanglement measures capturing the tripartite entanglement in
three-qubit entangled classes.

(a) 3-tangle
A measure of genuine tripartite entanglement, known as three-tangle , is used to

characterize the nonlocal properties in three-qubit entangled systems [Coffman et al., 2000]. The
three-tangle is expressed as

(1.17)

where concurrence quantifies the bipartite entanglement between qubits i and j, and
concurrence measures the entanglement between qubit i and the joint state of qubits j
and k [Wootters, 1998]. The three-tangle varies from 0 for product states to 1 for maximally
entangled three-qubit states. For example, the three-tangle for generalized GHZ states

is given by

(1.18)

For , the GGHZ state is a product state of three qubits, and hence, . Similarly for ,
the GGHZ state is a maximally entangled standard GHZ state, and hence, .

(b) Sigma
The three-tangle is used to characterize the genuine tripartite entanglement in GHZ class

states, but it fails to detect the entanglement in all the W class states. Actually, in three-qubit
entangled systems, the distribution of the entanglement among qubits is constrained by the
monogamy inequality, such as

(1.19)

This equality can be achieved by W class states, therefore three-tangle for W class states is always
zero, i.e., . Alternately, degree of entanglement in three-qubit pure states can also be
quantified using a measure , [Emary and Beenakker, 2004] defined as

(1.20)
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where minimum is taken over permutations of three-qubits. The value of for the standard GHZ
state and the standard W state is and , respectively.

(c) Negativity
Another important computable measure for two-qubit and multiqubit entanglement is

negativitywhich can be conveniently used as an entanglementmonotone to quantify entanglement
in pure and mixed entangled states [Vidal and Werner, 2002; Audenaert et al., 2003; Sabín and
García-Alcaine, 2008a; Weinstein, 2010; Eltschka and Siewert, 2013]. For example, negativity for
a two-qubit system can be defined in terms of eigen values of the partial transpose of one of the
subsystems, i.e.,

(1.21)

where is the trace norm defined as and is the partial transpose of
the two-qubit system with respect to the subsystem B. Since negativity is not additive, a more
convenient way to define it, is in terms of logarithmic negativity, i.e.,

(1.22)

Although logarithmic negativity is neither asymptotically continuous nor convex, it is
advantageous in terms of its use for ease of calculation and for other operational interpretations.
For a three-qubit system, Negativity can be given by

(1.23)

where quantifies the amount of entanglement or nonlocal correlations between subsystem
A and the joint state of subsystems B and C. Similarly, one can define the negativities and

. The tripartite negativity is an exciting tool that confirms the distinction between
separable, bi-separable, and genuine tripartite entanglement in three-qubit pure states.

One can also use the sum of concurrences of three reduced states, i.e., as
an entanglement monotone for W-class states [Dür et al., 2000; Linden et al., 2002]. There are
several other criteria whichmeasure the entanglement in multiqubit systems as well [Rungta et al.,
2001; Verstraete et al., 2002; Meyer and Wallach, 2002; Verstraete et al., 2002; Wei and Goldbart,
2003; Barnum et al., 2004; Osterloh and Siewert, 2005; Gühne et al., 2005; Mandilara et al., 2006;
Rigolin et al., 2006; Facchi et al., 2008; Dan et al., 2008; Bai et al., 2009; Huber et al., 2010; Ma et al.,
2011; Brandao and Christandl, 2012; Islam et al., 2015; Hu et al., 2016; Chen et al., 2016; Luo et al.,
2017]. Therefore, considering the importance of entangled system for quantum information and
communication, theoretical as well as the mathematical measures for quantifying the degree of
entanglement have been studied in great detail.

Apart from the theoretically driven curiosity, it is imperative tomeet the challenges arising
during experimental preparation of entangled systems. On these lines, Kwiat [Kwiat, 1995]
proposed the first experimental realization to prepare Bell states using polarization-entangled
photon pairs and parametric-down conversion. Subsequently, the generation and analysis of Bell
states was further strengthened by several groups across the globe [Aspect et al., 1982; Zukowski
et al., 1993; Pavičić and Summhammer, 1994; Weinfurter, 1994; Rubin et al., 1994; Cirac and Zoller,
1994; Fry et al., 1995; Braunstein andMann, 1996; Michler et al., 1996; Hagley et al., 1997; Tittel et al.,
1998; Di Giuseppe et al., 2003; Marcikic et al., 2004; Peng et al., 2005; Walther and Zeilinger, 2005;
Bernien et al., 2013; Barbieri et al., 2017]. For multiqubit systems, due to the increased complexity,
the problem to prepare and characterize multiqubit states increase enormously. Zeilinger et al.
(1997) and Bouwmeester et al. (1999) have proposed a scheme for experimental preparation
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of three-qubit Greenberger-Horne-Zeilinger (GHZ) states [Zeilinger et al., 1997; Bouwmeester
et al., 1999]. Although dealing with quantum systems experimentally is very challenging, a lot
of progress has been made towards experimental realization of multiqubit entangled states for
quantum information and computation [Gerry, 1996; Sackett et al., 2000; Rauschenbeutel et al., 2000;
Pan et al., 2000; Weinfurter and Żukowski, 2001; Zhao et al., 2004; Kiesel et al., 2005; Bruß et al., 2005;
Leibfried et al., 2005; de Oliveira et al., 2006; Prevedel et al., 2007; Lu et al., 2007; Vallone et al., 2007;
Tokunaga et al., 2005, 2008; Lavoie et al., 2010; Gao et al., 2010, 2012; Pan et al., 2012; Riedel et al.,
2012].

1.4 NONLOCALITY
The potential offered by the efficient use of entangled systems as resources for quantum

information, communication, cryptography and quantum computing in comparison to their
classical counterparts is based on the existence of long-range correlations between entangled
qubits. Bell greatly advanced the investigation of quantum entanglement by deriving an
inequality, now known as the Bell inequality which must be obeyed by systems which are
correlated but whose interactions are local as against to the systems whose correlations are
spatially extended and cannot be explained by the assumption of locality [Bell, 1964]. The
Bell inequality, therefore, distinguishes between quantum systems as efficient resources for
information processing as against their classical analogues. A more generalized version of the Bell
inequality is given by Clauser, Horne, Shimony andHolt- known as the CHSH inequality [Clauser
et al., 1969], namely

(1.24)

where , , and are the measurement operators to measure the associated physical
properties , , and of a system, respectively. While deriving the inequality, it was
assumed that Alice and Bob are located sufficiently far apart from each other so that their
measurement outcomes are not affected by one another, and that both Alice and Bob choose
their measurements independently. In the ideal case, Alice and Bob choose their measurements
as or and or with an equal probability of . Since the measurement outcomes of
operators , , or are , the CHSH inequality is valid for all different measurement
outcomes. Clearly, following the EPR argument under the assumption of locality and realism, all
two-qubit states must satisfy the Bell inequality. However, for a two-qubit antisymmetric singlet
state shared between Alice and Bob, the Bell inequality is violated and
for a specific set of measurements, it attains a maximum value of which is clearly greater
than . Therefore, the Bell inequality definitely identifies states with correlations which cannot be
explained on the basis of locality and realism, hence, creating a boundary between quantum and
classical correlations. The singlet states, for violating the inequality to the maximum, are known
as maximally entangled two-qubit states. Using simple single-qubit unitary transformations, one
can identify a set of four maximally entangled two-qubit states, defined as ,
and , and known as Bell states. For a system with classical as well as
quantum correlations, it is only the quantum correlations that are considered for describing the
nonlocal properties of the system. For an entangled pair, measurement outcomes on the first
particle depends on the measurement outcomes of the second- this interdependence between the
measurement outcomes for two particles is known as nonlocality.

To summarize, there were two assumptions made to derive the Bell inequality:

(1) Assumption of realism: measurements and exist independent of observations
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and are definite values of physical properties and , respectively.
(2) Assumption of locality: Alice’s measurement cannot have any effect on the result of Bob’s

measurement.

The violation of Bell inequality evidently suggests that either or both the assumptions of
locality and realism are not correct in the quantum regime. Hence, the violations of Bell or Bell-type
inequalities reveal the presence of nonlocal correlations between qubits, and shed light on the deep
structure of nonlocality in quantum systems [Leggett and Garg, 1985; Toner and Bacon, 2003; Acín
et al., 2005; Gröblacher et al., 2007; Souza et al., 2008; Barbieri, 2009; Goggin et al., 2011; Xu et al., 2011;
Knee et al., 2012; Castillo et al., 2013; Epping et al., 2013; Zhou et al., 2015; Chaves et al., 2015;Montina
and Wolf, 2016; Chaves and Budroni, 2016; Ringbauer et al., 2016; Brito et al., 2018]. A quantum
resource exhibiting nonlocal correlation has been shown to perform information processing tasks
which are otherwise found to bedifficult or impossible to achieve using classical resources [Bennett
and Wiesner, 1992; Bennett et al., 1993; Zukowski et al., 1993; Boström and Felbinger, 2002; Gisin
et al., 2002].

1.4.1 Bell-type inequalities for three-qubit states
Similar to two-qubit systems, N. D. Mermin proposed a Bell-type inequality to confirm the

nonlocal correlation in tripartite systems [Mermin, 1990], given as

(1.25)

Here the additional measurements C and C’ correspond to themeasurements performed by a third
user, say Charlie, in addition to the measurements performed by Alice and Bob as in the case
of Bell-CHSH inequality. The Mermin inequality is violated by genuinely entangled three-qubit
states, confirming the presence of nonlocal correlations between three qubits. The inequality is
maximally violated by a set of maximally entangled three-qubit Greenberger-Horne-Zeilinger
states, with the maximum value as 4. This violation, however, is marred by the violation of
inequality by bi-separable states as well. Thismakes it difficult to distinguish between bi-separable
vs genuine tripartite nonlocality. On the other hand, Svetlichny derived an inequality which is
satisfied by separable aswell as bi-separable states and violated bygenuinely entangled three-qubit
states only [Svetlichny, 1987]. Hence, the violation of Svetlichny inequality is a necessary and
sufficient condition to ensure the presence of genuine tripartite nonlocality. The Svetlichny
inequality can be expressed as

(1.26)

where, and , and operators have the usual representation as defined
above. Similar to the Mermin inequality, the Sveltichny inequality is maximally violated by GHZ
states with the maximum violation as . The inequality, however, is violated by set of GHZ
states with only, i.e., the inequality fails to identify nonlocal correlations in GHZ states
with as show in Figure 1.4. Interestingly, the Svetlichny inequality is violated by a set of
all states, known as Slice states [Carteret and Sudbery, 2000]. Svetlichny inequality can also be
generalized to multiqubit GHZ and W class of states to distinguish between local and nonlocal
correlations [Seevinck and Svetlichny, 2002]. Since, multiqubit correlations are important not only
for understanding the foundations of quantum information, but they also for providing a way
to multi-scale quantum information and computation, therefore, in the last two decades, a lot of
research has been devoted to detect nonlocal correlations in multiqubit systems using Bell-type
inequalities [Svetlichny, 1987; Seevinck and Svetlichny, 2002; Collins et al., 2002a,b; Cereceda, 2002;
Pan et al., 2003b; Zhao et al., 2003; Eibl et al., 2003, 2004a; Walther et al., 2005a; Lavoie et al., 2009;
Ghose et al., 2009, 2010; Bancal et al., 2010; Ajoy and Rungta, 2010; Liu et al., 2010; Pál and Vértesi,
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Figure 1.4 : A plot of maximum expectation value of the three-qubit Svetlichny operator versus
three-tangle for GHZ and Slice states.

2011; Lu et al., 2011a; Bancal et al., 2011; Chen et al., 2011; Lu et al., 2011b; Chen et al., 2011; Zhao et al.,
2012; Chaves et al., 2012; Vértesi and Brunner, 2012; Reid et al., 2012; Chaves et al., 2012; Pramanik
and Majumdar, 2012; Tian et al., 2012; Bancal et al., 2013; He and Reid, 2013; Barrett et al., 2013a;
Brunner et al., 2014; Lanyon et al., 2014; Chaves et al., 2014; Sohbi et al., 2015; Caban et al., 2015;
Fonseca and Parisio, 2015; Alsina and Latorre, 2016; Jebaratnam, 2016; Tavakoli, 2016; Paul et al.,
2016; Sharma et al., 2016; Vallins et al., 2017; de Rosier et al., 2017].

1.4.2 Quantum Discord
Due to the general belief that entanglement is the key ingredient for speed-up and efficiency

of quantum computation in comparison to classical computation, entanglement and nonlocality
have been the subjects of intensive studies since 1935. Although entangled systems are established
as efficient resources for several quantum information processing tasks, separable systems (non
entangled systems) were thought to be classical systems not useful for quantum information, i.e.,
the description of quantum correlations wasmainly associatedwith entanglement and nonlocality.
This perception has been questioned with the identification of few separable systems exhibiting
quantum correlations and for showing potential to be used as resources for quantum information
processing. Quantum discord, for example, is a measure of nonlocal correlations and captures the
nonlocality in entangled as well as separable bipartite systems [Luo, 2008a; Ollivier and Zurek,
2001; Henderson and Vedral, 2001; Zhang et al., 2012].

Therefore, the theoretical and experimental investigations suggesting the importance of
nonlocal correlations in separable systems derive the need to classify correlations beyond the
boundaries of Bell-type inequalities [Dakić et al., 2010; Xi et al., 2012; Shi et al., 2012; Gheorghiu
et al., 2015; Liu et al., 2015a; Namkung et al., 2015; Chuan-Mei et al., 2015; Mahdian and Arjmandi,
2016; Gerasev and Kuznetsova, 2016; Moreva et al., 2017; Vedral, 2017; De Chiara and Sanpera,
2017; Bera et al., 2017; Christ and Hinrichsen, 2017; Braun et al., 2017; Domínguez-Serna et al., 2017;
Zhang et al., 2017; Zalys-Geller et al., 2018]. In this sub-section, we briefly discuss the definition
and importance of discord to identify quantum correlations in an underlying quantum state. The
total correlation in a bipartite system consists of both classical and quantum correlation, and can
be measured by quantummutual information. For example, if is a composite bipartite system,
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then the quantum mutual information is defined as

(1.27)

where is the von-Neumann entropy, and and are reduced density
operators for two subsystems A and B, respectively. Using the definition of quantum mutual
information, one can define discord as a measure of nonlocal correlations as

(1.28)

where is measurement based mutual information representing classical correlations
between two subsystems, given by

(1.29)

Here is the conditional quantum entropy. Some salient features of quantum discord can
be summarized as below

Since the conditional entropy is not symmetric, quantum discord is also not symmetric, i.e.,
.

Quantum discord is always non-negative, i.e .
Quantum discord of any state is invariant under any local unitary operations of the form

, i.e., .
If a state has only classical correlations then quantum discord is zero, i.e., .

Recently, both theoretical and experimental aspects of quantum discord have been studied.
However, due to the optimization procedure, it is difficult to obtain an analytical expression for
arbitrary two-qubit states- discord was analytically computed only for a few families of two-qubit
states [Girolami and Adesso, 2011; Luo, 2008a]. In order to overcome this difficulty, a measure to
quantify the amount of nonclassical correlations in an arbitrary two-qubit system is introduced in
terms of its minimal distance from the set of classical states- geometric discord [Dakić et al., 2010;
Luo and Fu, 2010; Qiang et al., 2015; Wu and Zhou, 2015; Qiang et al., 2016; Roga et al., 2016], which
can be defined as

T T (1.30)

where represents a Bloch vector, represents a matrix such that the elements of are
and T, T are transpose of and , respectively. Moreover, and

are square norms in Hilbert-Schmidt space and T T is the maximum eigenvalue
of matrix T T . The formulation of geometric discord was further generalized to the
case of d d dimensional systems [Luo and Fu, 2010]. Quantum discord has also received much
attention in studies involving fuzzy measurement [Vedral, 2003], broadcasting [Piani et al., 2008;
Luo and Sun, 2010], complementarity andmonogamy relationship between classical and quantum
correlations [Oppenheim et al., 2003; Badziag et al., 2003; Koashi and Winter, 2004], dynamics of
discord [Maziero et al., 2009;Mazzola et al., 2010], operational interpretations of quantumdiscord in
terms of state merging [Madhok and Datta, 2011; Cavalcanti et al., 2011] and teleportation fidelity
[Adhikari and Banerjee, 2012], and the relation between discord and entanglement [Yang et al.,
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2005; Streltsov et al., 2011; Cornelio et al., 2011; Piani et al., 2011; Seshadreesan et al., 2015; Zou
and Fang, 2016; Lee and Li, 2017; Yuan et al., 2018]. The concept of discord is also extended
for multi-dimensional, tripartite or multipartite systems for studying the nature of nonlocal
correlations in different multi-dimentional and multiqubit entangled classes [Liu et al., 2015b;
Chanda et al., 2015; Beggi et al., 2015; Jakóbczyk et al., 2016; Cheng and Hall, 2017; Jebaratnam
et al., 2017].

1.5 QUANTUM INFORMATION PROCESSING: APPLICATIONS
A lot of protocols and techniques are developed using the laws of quantum mechanics

that can be used to solve a variety of interesting problems in the area of computer science and
information technology. Using these protocols assisted by entangled resources, one can achieve
efficient, secure and optimal communication in comparison to the use of classical resources. Some
of interesting problems of computer science and engineering are order-finding problem, factoring
problem, optimum searching, and information security etc. which can be efficiently solved using
quantum algorithms. Similarly, there are efficient protocols to transmit classical and quantum
information from one remote location to another, or to exchange cryptographic keys- some of
which we will discuss in the following sub-sections.

1.5.1 Quantum Teleportation
Quantum teleportation is a quantum mechanical phenomenon to transport an unknown

quantum state from one remote location to another using a previously shared entanglement
assisted with classical communication between a sender and a receiver. It can be considered as a
very efficient and secure process to transfer quantum information between the users in a protocol
as the possibility of intercepting the information by an eavesdropper after a secure distribution
of entanglement is negligible. The security, therefore, is very fundamental to the basic concept of
teleportation as the quantum information is sent without physically transporting the information
through a medium or without measuring the information content on either side of the transport.

The teleportation protocol was proposed by Bennett et al. to teleport the state of a
single-qubit using a shared two-qubit antisymmetric singlet state. In the original protocol [Bennett
et al., 1993], Alice wants to communicate an unknown information encoded in a single-qubit
state , to Bob. The laws of quantum mechanics prevent Alice to perform
any measurement on the unknown state to determine the information as the measurements will
lead to collapse of wave function and the information will be lost. Therefore, in order to teleport
an unknown state, Alice shares a two-qubit Bell state with Bob such
that qubit is with Alice and qubit is with Bob. Now, Alice performs a two-qubit Bell state
measurement on the joint state of her qubits, i.e., qubit containing the unknown information and
her share of the qubit forming the singlet state. The joint state of three-qubit system in terms of
Alice’s measurement basis can be written as

(1.31)

Clearly, if Alice’s measurement outcome is then Bob’s qubit will be projected onto
the state , which is exactly the same state that Alice wanted to communicate. In
all other cases, Bob requires to perform a standard single qubit unitary operation to retrieve the
teleported state. For example, if Alice’s measurement outcome is then Bob will have to
perform a operation on his qubit to recover the original state. In this way, Alice can transmit an
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unknown single-qubit state to Bob.

There are two important aspects, that one needs to consider for the teleportation protocol:

(1) Teleportation does not allow faster than light communication as the sender requires classical
communication regarding her measurements to be transmitted to the receiver; and

(2) Teleportation does not violate the No-Cloning theorem as the teleported state is not a copy
of the original state since the original state is destroyed at the sender’s end.

Bennett et al. have further generalized the teleportation protocol to teleport an unknown
qudit state using a maximally entangled state in dimensional Hilbert space assisted with
2log bits of classical communication. In addition, teleportation protocol under real experimental
set-ups was also described, where the sender and receiver do not share a perfect Bell pair as the
entangled pair is distributed through a noisy channel [Bennett et al., 1996b]. Furthermore, the
protocol was also demonstrated to be successful for continuous variables [Furusawa et al., 1998].

The efficiency of an entangled resource to teleport an unknown state can be ascertained
by using a measure that accounts for the extent of similarity between the unknown state to be
teleported and the teleported state. Therefore, a measure of successful teleportation is formulated
in terms of fidelity of teleportation which is an indicator of the overlap between input and output
states, namely [Horodecki et al., 1996, 1999a; Yeo, 2006a; Kay et al., 2009]. For
example, only if the fidelity of teleportation , a two-qubit state is considered as a useful
resource for quantum teleportation [Horodecki et al., 1996; Bouwmeester et al., 2000; Badzia g
et al., 2000; Verstraete and Verschelde, 2002; Bandyopadhyay, 2002; Oh et al., 2002; Adesso and
Illuminati, 2005; Hu et al., 2010; Taketani et al., 2012; Pramanik and Majumdar, 2013; Qiu et al.,
2014; Adhikari and Kumar, 2016]. Clearly, for a perfect teleportation, the value of fidelity is
unity and, in general, if two users in a protocol share a maximally entangled state, a unit fidelity
teleportation can be achieved. For multiqubit systems, one can consider maximally entangled
GHZ states [Greenberger et al., 1989] to be useful resources for single-qubit teleportation [Karlsson
and Bourennane, 1998]. However, if the shared entangled state is non-maximally entangled,
teleportation may lead to fidelity less that the unity [Hillery et al., 1999; Karlsson et al., 1999;
Shi et al., 2000; Fang et al., 2003; Xiao et al., 2004; Shi and Tomita, 2002; Wang et al., 2007b].
In multiqubit cases, one also encounters situations where a controller controls the amount of
information between a sender and a receiver, e.g., if GHZ states are used as resources, Charlie can
act as a controller for information transfer between Alice and Bob. For non-maximally entangled
resources, such as W states, the teleportation is probabilistic and fidelity of teleportation depends
on the parameters of the unknown state to be teleported [Shi and Tomita, 2002; Agrawal and Pati,
2002]. On the other hand, Agrawal and Pati proposed a new class of three-qubit W-type states
for deterministic teleportation of a single-qubit by performing three-qubit joint measurements
[Agrawal and Pati, 2006]. Moreover, non-maximally entangled states such as W and -type
states have been used extensively for teleportation of single as well as multiqubit information [Shi
et al., 2000; Li et al., 2000; Agrawal and Pati, 2002; Albeverio et al., 2002a; Yan and Wang, 2003;
Gorbachev et al., 2003; Fang et al., 2003; Cao and Song, 2005; Gordon and Rigolin, 2006; Singh et al.,
2016]. Rigolin (2005), demonstrated a teleportation scheme for teleporting an arbitrary two-qubit
state using direct product of two Bell states as a quantum channel [Rigolin, 2005]. A lot of other
theoretical schemes of teleportation have been proposed in last three decades to teleport the single
or multiqubit information using ideal as well as noisy channels [Braunstein, 1993; Brassard, 1996;
Bandyopadhyay, 2000; Gorbachev and Trubilko, 2000; Henderson et al., 2000; Hao et al., 2000; Lee,
2001; Lloyd et al., 2001; Joo et al., 2003; Verstraete and Verschelde, 2003; Dai et al., 2004; Deng, 2005;
Deng et al., 2005a; Leuenberger et al., 2005; Dantan et al., 2005; Yeo andChua, 2006; Yeo, 2006b; Chen
et al., 2006; Zhang, 2006; Agrawal and Pati, 2006;Man et al., 2007;Muralidharan and Panigrahi, 2008;
Jung et al., 2008a,b; Kumar and Krishnan, 2009; Hu, 2011; Qiu et al., 2014; Li and Jin, 2016; Xiao et al.,

20



2016; Li et al., 2016b; Mozrzymas et al., 2018; Xu et al., 2018].

In 1997, Bouwmeester demonstrated the first experimental realization of original
teleportation scheme using parametric down-conversion technique to produce a pair polarization
entangled photons. One of the major challenges in experimental teleportation is to identify and
distinguish all the orthogonal set of states at the sender’s end [Bouwmeester et al., 1997]. The
identification of all the four Bell states in teleportation protocol was proposed by Boschi et al.
[Boschi et al., 1998]. Further, teleportaion over inter-atomic distance was realized using solution
state Nuclear Magnetic Resonance (NMR) [Nielsen et al., 1998]. The protocol was also generalized
for teleportation of atomic qubits [Barrett et al., 2004]. Moreover, teleportation between objects of
a different nature, i.e., light and matter was demonstrated by Sherson et al. (2006) [Sherson et al.,
2006]. Zhang et al. (2006) took a step forward to propose experimental teleportation of an arbitrary
two-qubit state from a sender to a receiver [Zhang et al., 2006]. In general, a number of experiments
have been proposed to realize quantum teleportation of single as well as multiqubit information
with higher fidelity and unit probability. [Bouwmeester et al., 1997; Braunstein and Kimble, 1998;
Kok and Braunstein, 2000; Shih, 2001; Kim et al., 2001a; Lombardi et al., 2002; Bowen et al., 2003; Pan
et al., 2003a; Fattal et al., 2004; Yonezawa et al., 2004; Huang et al., 2004; Zhang et al., 2006; Herbst
et al., 2015; Takesue et al., 2015a; Pirandola et al., 2015; Wang et al., 2015; Sun et al., 2016; Valivarthi
et al., 2016; Singh et al., 2016]

1.5.2 Quantum dense Coding
Quantum dense coding is one of the simplest and elementary application of quantum

information processing which utilizes quantum entanglement to enhance the information content,
communicated between two distant users. Hence, quantum dense coding is an efficient protocol
to prove that entanglement is not only the fundamental resource in quantum communication but
it also enhances the channel capacity for classical communication. For example, in dense coding
if Alice and Bob share a bipartite entangled state, then by locally manipulating only her qubit,
Alice can send two-bit information to Bob. In the original protocol [Bennett and Wiesner, 1992],
Alice shares a two-qubit Bell state with Bob such that qubit is with
Alice and qubit is with Bob. In order to communicate a two-bit information, Alice performs
one of the four unitary operations given by identity , or Pauli operators locally on
her qubit. Using these four unitary operations, Alice essentially maps the originally shared state
with Bob to one of the four maximally entangled two-qubit states depending on what information
she wants to communicate. For example, depending on whether she wants to transmit 00, 01,
10, or 11, Alice will transform into different Bell states as represented in Table 1.1. After

Table 1.1 : A scheme to map the originality shared state to four Bell states

performing the requisite operation, Alice sends her qubit to Bob. After receiving her qubit, Bob
performs a joint measurement in Bell basis on qubits and to distinguish the four Bell states. By
performing Bell state measurements (BSM), Bob determines the state which Alice has prepared,
and thus decodes the two-bit classical informationwhichAlicewanted to communicate. In general,
if Alice and Bob share a qubit entangled state, then Alice can map the original state to
entangled states. This will allow her to transmit bits of classical information by creating
distinct messages for Bobwho can, in principle, distinguish between themessages as the entangled
stateswill be orthogonal to each other. More generally, a sender can transmit classical bits to
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a receiver using quantum dense coding protocol using a shared maximally entangled state of
dimensional Hilbert space. It is important to note that using the classical protocol one can only
transmit -bit information if the sender has a bit state. Quantum dense coding is also known as
super dense coding if single qubit unitary operations are restricted to identity and Pauli operators.

The first experimental realization of quantum dense coding for sending the classical
information was demonstrated in 1997 by Mattle et al. [Mattle et al., 1996]. Subsequently, Fang
et al. (2000) proposed experimental dense coding using NMR techniques [Fang et al., 2000]. In
addition, Bose et al., proposed an experimental quantumdense coding schemewith non-maximally
entangled resources and they further analysed a case where the shared entangled state is a mixed
state [Bose et al., 2000]. For multiqubit systems, Alice can transmit 3-bit information to Bob by
locallymanipulating her two qubits of the shared three-qubit GHZ state [Lee et al., 2002;Wójcik and
Grudka, 2003]. Further, Hao et al. (2000) proposed a theoretical scheme for controlled superdense
coding in which a controller named Charlie, controls the amount of information communicated
between Alice and Bob [Hao et al., 2001]. There are several theoretical and experimental schemes
for optimum communication involving dense coding using different entangled systems [Mattle
et al., 1996; Shimizu et al., 1999; Hao et al., 2001; Choi, 2001; Cereceda, 2001; Ralph and Huntington,
2002; Hiroshima, 2002; Lee et al., 2002; Mermin, 2002; Gorbachev et al., 2002; Liu et al., 2002; Jing
et al., 2003;Wójcik andGrudka, 2003; Akhavan and Rezakhani, 2003; Bruß et al., 2004; Rigolin, 2004;
Schaetz et al., 2004; Mozes et al., 2005; Pati et al., 2005; Mozes et al., 2005; Wang et al., 2007a; Hwang
et al., 2011; Shadman et al., 2011; Tsai et al., 2011; Li, 2012; Saha and Panigrahi, 2012; Horodecki and
Piani, 2012; Shadman et al., 2012, 2013; Prabhu et al., 2013; Sazim and Chakrabarty, 2013; Das et al.,
2014; Lee et al., 2014; Das et al., 2015; Roy andGhosh, 2015; Kögler and Neves, 2017; Roy et al., 2017].
For evaluating the dense coding capacity of a quantum state, Barenco et al. derived an analytical
expression [Barenco and Ekert, 1995; Hausladen et al., 1996; Bowen, 2001] such that the maximum
amount of information that can be sent using an entangled state is given as

(1.32)

where is the dimension of Alice’s subsystem, is the density operator of the shared entangled
state, is reduced density operator corresponding to Bob’s qubit, and is the von-Neumann
entropy.

1.5.3 Entanglement Swapping
Entanglement swapping is a protocol for entangling qubits that have neither come through

the same source nor interacted with each other in the past [Bennett et al., 1993; Zukowski
et al., 1993]. It can be regarded as an elementary application of quantum mechanics for
mutual exchange of entanglement between qubits associated with different entangled states.
In order to understand the basic premise, let us assume that Alice has a two-qubit entangled
state . In addition, Alice also shares an entangled pair

with Bob such that qubit is with Alice and qubit is with Bob. Now if
Alice performs a Bell state measurement on her qubits and then the joint state of qubits
and will be projected onto one of the four possible Bell states with a given probability.

For example, the joint state of four qubits can be expressed in terms of Alice’s measurement
basis as , i.e., if Alice’s
measurement outcome is with a probability of 1/4, then she will share state with
Bob. Interestingly, qubits 3 and 4 belong to twodifferent entangled states, but after a standardBSM,
these qubits are now entangled with each other even without interacting with each other. Hence,
the entanglement which was between qubits 1 and 4 and qubits 2 and 3 is now swapped between
qubits 1 and 2 and qubits 3 and 4. Thus, the process of entangling qubits which neither came from

22



the same source nor interacted with each other in the past is termed as entanglement swapping.
Entanglement swapping protocol to manipulate a multipartite system has been proposed by
Bose et al. in 1997 [Bose et al., 2000]. The concept finds its applications in quantum repeaters
[Briegel et al., 1998], quantum secret sharing [Hillery et al., 1999; Karimipour et al., 2002; Zhang
and Man, 2005], generation of Greenberger-Horne-Zeilinger (GHZ) states [Zeilinger et al., 1997;
Bose et al., 1998], and other quantum communication protocols [Zhong-Xiao et al., 2005; Zhou et al.,
2005; Man et al., 2006; Dong et al., 2008]. Similar to quantum teleportation, continuous variable
entanglement swapping [Polkinghorne and Ralph, 1999; Abdi et al., 2014; Takeda et al., 2015], and
probabilistic entanglement swapping using non-maximally entangled resources have also been
suggested [Polkinghorne and Ralph, 1999]. Experimental realization of entanglement swapping
was first demonstrated by Pan et al. in 1998 using two pairs of EPR states [Pan et al., 1998]. A
number of experimental implementations have been suggested since then by different groups,
using nuclear magnetic resonance (NMR) [Boulant et al., 2003], trapped ions [Riebe et al., 2008],
and photons of the telecom wavelength range [Jin et al., 2015]. Furthermore, a lot of development
has happened in the area of entanglement swapping on theoretical as well as experimental front
[Lu and Guo, 2000; Boulant et al., 2003; Song, 2003; Glöckl et al., 2003; Zhang and Man, 2005; Short
et al., 2006; Riebe et al., 2008; Hu and Rarity, 2011; Sangouard et al., 2011; Chen and She, 2011; Qu
et al., 2011; Gao et al., 2011; Ma et al., 2012; Lin and Hwang, 2013; Wang et al., 2013; Megidish et al.,
2013; Khalique et al., 2013; Song et al., 2014; Torres et al., 2014; Roa et al., 2014; Khalique and Sanders,
2014; Jin et al., 2015; Ye, 2015; Kirby et al., 2016; Pakniat et al., 2017]

1.5.4 Quantum Algorithms
Quantum algorithms offer an increase in computational speed and space with the size of

system over classical algorithms [Montanaro, 2016]. In early 1982, Richard Feynman observed that
efficient simulation of certain quantummechanical effects on classical computer is far too difficult
[Feynman, 1982]; it prompted researchers and experimentalists to formulate and analyse quantum
algorithms than can run on a quantum computer [Deutsch, 1989; Shor, 1994; Grover, 1996; Ekert
and Jozsa, 1998; Zalka, 1999; Aharonov and Ta-Shma, 2003; Chi et al., 2006; Hallgren, 2007; Childs
and van Dam, 2010; Jordan et al., 2012; Hen, 2014; Wiebe et al., 2015]. Such algorithms are difficult
to design but can be efficiently used to solve the computation problems which are not feasible on a
classical computer with increasing problem size, and by considering the measures such as time or
memory usage. In general, quantumalgorithmsare classified in three different classes [Nielsen and
Chuang, 2010; Bacon and van Dam, 2010; Smith and Mosca, 2012; Montanaro, 2016]. First class of
algorithms is based on the Fourier transformation and used to solve many complex problems over
classical computers. Deutsch-Jozsa algorithm was first well defined quantum algorithm that uses
the Fourier transformation to achieve a speed-up of a quantum computer over classical computers
[Deutsch, 1989; Jozsa, 1998; Schulte-Herbrüggen et al., 2005; Adcock et al., 2009]. Deutsch-Jozsa
algorithm solves the balancing problem with one evaluation, whereas any deterministic classical
algorithm requires evaluations to solve the same problem [Deutsch, 1989; Deutsch and
Jozsa, 1992]. Similarly, in 1994, Peter Shor also demonstrated a quantum algorithm to solve the
problem of discrete logarithm and integer factorization in polynomial time [Shor, 1994, 1999]. The
second class of quantum algorithms is quantum search algorithm. A quantum search algorithm,
also known as Grover’s algorithm, takes evaluations to search an element from unordered
set of elements, whereas the best classical algorithm takes evaluations [Grover, 1996, 1997;
Zalka, 1999]. The third class of algorithms is known as quantum simulations- many algorithms for
quantum simulation have been proposed for Hamiltonians [Aharonov and Ta-Shma, 2003; Wiebe
and Childs, 2012], open quantum systems [Kliesch et al., 2011], and quantum field theory [Jordan
et al., 2014].

There are several other algorithms proposed by different groups for the development
of theoretical and experimental quantum computation in diverse academic spaces [Abrams and
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Lloyd, 1997; Chi et al., 2006; Berry et al., 2007; Aminian et al., 2008; Bacon and van Dam, 2010; Bruß
and Macchiavello, 2011; Chang et al., 2015; Lloyd et al., 2016; Ambainis, 2016].

1.5.5 Quantum Cryptography
Cryptography can be considered as a branch of a broader discipline known as Cryptology.

In general, cryptography can be classified into symmetric and asymmetric cryptography [Stallings,
2003; Forouzan and Mukhopadhyay, 2011]. The two processes can be distinguished from one
another in terms of keys used to encrypt and decrypt the data. For example, in symmetric
cryptography only one key is used to encrypt and decrypt the data, but in asymmetric
cryptography one key is used to encrypt and the another key is used to decrypt the message. For
the very reasons of increased key domain and increased complexity, asymmetric cryptography is
considered as more secure in comparison to symmetric cryptography [Diffie and Hellman, 1976;
Rivest et al., 1978].

Quantum cryptography or quantum key distribution (QKD) uses the fundamental laws of
quantummechanics to ensure secure transmission of private information over the public channel.
In 1983, Wiesner proposed the basic concept of quantum cryptography asserting that an entangled
state could be used as a kind of inauthentic-proof money if one can store it for a long period
of time [Seth et al., 1983]. Following the development, Bennett and Brassard proposed a noble
protocol, known as BB84 protocol for creating a key between a sender and a receiver to establish
secure communication using the classical private cryptography [Bennett Ch and Brassard, 1984;
Bennett and Brassard, 2014]. Bennett, Brassard, and Robert further described the concept of
privacy amplification which is used to increase the security of quantum key distribution [Bennett
et al., 1988]. Since then, a large number of efficient quantum key distribution protocols have
been invented [Ekert, 1991; Bennett, 1992; Goldenberg and Vaidman, 1995; Long and Liu, 2002;
Deng et al., 2003; Zhou et al., 2004; Renner, 2008; Scarani et al., 2009; Branciard et al., 2012;
Braunstein and Pirandola, 2012; Lo et al., 2014; Chau, 2015]. Moreover, Bennett et al. have also
implemented quantum cryptography scheme successfully on the experimental front [Bennett et al.,
1992]. The experimental demonstration of BB84 protocol was further developed by Bethune and
Risk [Bethune and Risk, 2000]. Muller, Zbinden and Gisin demonstrated quantum cryptography
using a 23 km long installed standard optical cable under Lake Geneva [Muller et al., 1996].
Several protocols of quantum cryptography have been theoretically and experimentally analysed
to establish the validity of such protocols [Buttler et al., 1998; Pan et al., 2001a; Cai and Li, 2004;
Lemelle et al., 2006; Noh et al., 2009; Weedbrook et al., 2012; Brida et al., 2012; Barrett et al., 2013b;
Shukla et al., 2013; Buhrman et al., 2014; Takesue et al., 2015b; Chau, 2015; Diamanti et al., 2016; Li
et al., 2016a; Zhu et al., 2017; Islam et al., 2017; Collins et al., 2017].

1.6 SCOPE OF THE THESIS
As discussed above, quantum entanglement and nonlocal correlations are used as essential

ingredients not only for describing and analysing the foundational aspects of quantummechanics
but also as resources to implement many efficient and optimal protocols in quantum information
and computation. Considering the importance of entanglement and nonlocality for information
and communication protocols, a lot of theoretical and experimental progress has been made
in last three decades towards the development of this area. However, there are many aspects
which still require a much better physical interpretation to understand the nature of quantum
correlations in bipartite and multiqubit systems. For example, there are mixed entangled
systems which are entangled but do not violate the Bell inequality or the failure of multiqubit
Bell-type inequalities to identify nonlocal correlations in a large set of entangled states- the
non-violation of such inequalities definitely raises questions over the usefulness of such resources
in quantum information and computation. The nature of quantumcorrelations becomes evenmore
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complicated under real noisy conditions. This Thesis is an attempt to readdress the question of
analysing the usefulness of quantum correlations under noisy conditions using the applications
of weak measurements in two- as well as in multiqubit systems. For this, we analyse the
Bell inequality for two-qubit systems, and the Svetlichny inequality for three- and four-qubit
systems. In the present work, we further modify the Bell and Svetlichny inequality using statistical
correlation coefficients to detect and characterize nonlocal correlations in entangled systems where
other Bell-type inequalities fail to detect nonlocality. In addition, we also consider to analyse the
efficiency of nonlocal correlations under biased experimental set-up, i.e., for a nonlocal game or
a class of Bell-CHSH inequalities where both Alice and Bob choose their measurements with a
certain probability. Furthermore, we also propose a four-qubit non-maximally entangled state
for efficient information transfer and generalize the proposed state to be used as a resource for
quantum information processing. This thesis is organized in 7 chapters and the content of each
chapter is described briefly as follows.

In chapter-1, we discuss some of the basic concepts associated with quantum information
and processing and provide a brief review of the literature related to the problems considered in
this thesis.

In chapter-2, we analyse nonlocal correlations in bipartite entangled systems under
different noisy conditions using applications of weak measurement and its reversal operations. In
order to compute nonlocality in the evolved two-qubit state under noisy conditions, we establish
an analytical result between the Bell-CHSH inequality, the state parameter, noise parameters,
and a parameter representing strength of weak measurement and its reversal operations. The
analysis also allows us to propose a class of two-qubit mixed entangled states for efficient quantum
information processing. We further determine the usefulness of proposed states using various
measures such as teleportation fidelity, singlet fraction, linear entropy and dense coding channel
capacity. Interestingly, our results show that the proposed states are better resources in comparison
to a large set of pure and mixed two-qubit states.

Based on above results we extend our analysis in chapter-3 to investigate the effect of noise
and weak measurements on nonlocal correlations in different classes of multiqubit maximally
and non-maximally entangled states. Similar to the two-qubit case, here we derive an analytical
expression between the three- and four-qubit Svetlichny inequalities, the state parameter, noise
parameters, and strength of weak measurement and its reversal operations. As in the previous
case, we use examples of amplitude-damping, phase-damping, and depolarizing noise. Our
results indicate that more correlations in the initially prepared state do not always guarantee more
correlations in the finally shared state. We further analyse entanglement properties of the finally
shared three- and four-qubit states using three- and four-qubit negativity of the finally shared
states. In all the above cases our analytical results give excellent agreement with the numerical
results.

In chapter-4, wemodify the two-qubit Bell-CHSH inequality and the three-qubit Svetlichny
inequality using correlation coefficientswhich are considered as indicators of correlations between
qubits. Using our approach, we analyse two- and three-qubit pure and mixed entangled states for
violation of modified inequalities. We extend our analysis by establishing an analytical relation
between the modified Bell inequality and maximum and minimum value of geometric discord.
Our results suggest that correlation coefficients can be used as an emerging tool for characterizing
nonlocal properties of a quantum system. We demonstrate the utility of modified inequalities as
quantifiers of entanglement and nonlocality in bipartite mixed entangled states and three-qubit
pure entangled states.

In chapter-5, we proceed to analyse the efficiency of nonlocal correlations under biased
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