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Correlations, nonlocality, and usefulness of an efficient class

of two-qubit mixed entangled states

2.1 INTRODUCTION
The use of entangled resources for efficient communication in comparison to their classical

counterparts is based on the existence of long-range correlations between entangled qubits [Bennett
and Wiesner, 1992; Bennett et al., 1993; Zukowski et al., 1993; Boström and Felbinger, 2002; Gisin
et al., 2002]. Such correlations not only distinguish between the quantum and classical world, but
also provide a deeper physical interpretation to fundamentals of quantum theory and applications
of information processing [Einstein et al., 1935; Bohm and Aharonov, 1957; Batle et al., 2002; Batle
and Casas, 2011; Batle et al., 2016, 2017]. In general, for a bipartite system, the distinction between
quantum and classical resources is laid down in terms of Bell-type inequalities whose violation
confirms the existence of quantum correlations in the system [Bell, 1964; Clauser et al., 1969].
Bell-type inequalities, however, do not account for all nonclassical properties of entangled qubits
in mixed states. For example, one can find a mixed bipartite state which may be entangled
but would still not violate the Bell-type inequality [Werner, 1989; Horodecki, 1996; Ma et al.,
2015]. The characterization and usefulness of such systems for quantum communication and
information processing would certainly help us to have a better insight into the nature of quantum
correlations. Moreover, recent studies in quantum information have shown that the relationship
between nonclassicality and correlations is not limited to entangled systems only, but can also
be extended to some separable systems [Knill and Laflamme, 1998; Luo, 2008a; Datta et al., 2008;
Dakić et al., 2010; Zhang et al., 2012]. The degradation of entanglement and quantum correlation
under real experimental set-ups leads to further questions regarding usefulness of final resources
due to interactions with the environment [Zurek, 2003; Almeida et al., 2007]. In general, the finally
shared state will always be a mixed state. Hence, besides the fundamental quest to understand
the nature of quantum correlations, it is also important to analyse and characterize the nonlocal
properties of finally shared mixed state so that one can take informed decisions as to whether it
is useful or not to use the finally shared state for quantum information processing. Fortunately,
entanglement can be protected against noise by performing weak measurements [Korotkov and
Keane, 2010; Lee et al., 2011; Kim et al., 2012]. The role of correlations in quantum information and
communication is, therefore, still requires a much deeper analysis to understand the significance
of quantum correlations in security, communication and information processing.

In this chapter, therefore, we revisit the question of analysing the usefulness of quantum
correlations under noisy conditions and weak measurements. For this, we derive an analytical
relation between the Bell-CHSH inequality, state parameter, noise parameters and strength of
weak measurements. Our results show some interesting observations regarding applications of
weak measurement and its reversal operations under amplitude-damping, phase-damping, and
depolarizing noise. In case of amplitude-damping channels, the analysis further allows us to
propose a class of two-qubit mixed entangled states which does not violate the Bell inequality
for weak measurement strength less than but is still useful in quantum information processing.
Our analysis shows that these states, although not violating the Bell inequality, are still entangled
and have non-zero discord [Luo, 2008a; Dakić et al., 2010]. We further investigate the usefulness of
such a class for quantum information processing in terms of teleportation fidelity [Horodecki et al.,
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1996, 1999a], witness operators [Horodecki, 1996; Terhal, 2000], and channel capacity for dense
coding protocol [Bowen, 2001]. The analysis shows that our states can indeed be used for successful
information processing protocols for certain ranges of noise and weak measurement strength.
Interestingly, we found that the states proposed here can be characterized as efficient and useful
resources for quantum information processing protocols in comparison to a large set of randomly
sampled bipartite mixed and pure states. However, in case of phase-damping channels, we found
that the extent of violation of the Bell-CHSH inequality is independent of the state parameter and
weak measurement strength for optimal weak measurement reversal strength, hence, bringing in
the flexibility to start with any initial state instead of starting with a maximally entangled states
only. On the other hand, if we fix the value of reverse weak measurement, then the expectation
value of Bell-CHSH operator first increases, attains a maximum value and then decreases again.
For depolarizing noise as well, we found that theweakmeasurements may be useful for protecting
nonlocal correlations against the noise.

2.2 NONLOCALITY, NOISE ANDWEAKMEASUREMENTS
The violation of Bell-CHSH inequality revealed the fundamentally different nature of

quantum theory in comparison to local hidden variable theories. In the generalized case, if Alice
and Bob choose their measurements as or and or with equal probability of then the
Bell-CHSH inequality can be represented as

AB AB A B A B (2.1)

such that , and , where , are unit vectors and s are spin projection operators.
The measurement operators and can be defined in a similar fashion. In general, states
violating the Bell-CHSH inequality are considered to be useful resources in quantum information
and computation. However, presence of noise hinders the efficiency of such systems due to
degradation of correlations between the qubits. In order to protect entanglement and quantum
correlations from decoherence, several models such as entanglement distillation [Bennett et al.,
1996b,a; Pan et al., 2003b], decoherence free subspace [Lidar et al., 1998; Kwiat et al., 2000], quantum
error correcting codes [Shor, 1995; Calderbank and Shor, 1996; Steane, 1996; Knill and Laflamme,
1997], and quantum zeno effect [Facchi et al., 2004; Maniscalco et al., 2008] have been proposed and
studied. Recently, a new scheme is developed to protect entanglement from decoherence known
asweakmeasurements and its reversal [Korotkov and Jordan, 2006; Kim et al., 2009; Sun et al., 2009;
Korotkov and Keane, 2010; Cheong and Lee, 2012; Xiao and Li, 2013; Zong et al., 2014; Zhang et al.,
2015; He and Ye, 2015; Xiao et al., 2016; Huang et al., 2017; Huang and Situ, 2017]. The concept
of weak measurement is fundamental to quantum mechanics and is defined in terms of partial
collapse measurement operators associated with positive operator valued measure. The process
of weak measurement and its reversal has been found to be very useful to propose interaction free
measurements [Paraoanu, 2006], and to suppress decoherence in single and two-qubit systems
[Korotkov and Jordan, 2006; Bellomo et al., 2008; Katz et al., 2008; Kim et al., 2009; Sun et al., 2009;
Korotkov and Keane, 2010; Barreiro et al., 2010; Sun et al., 2010; Paraoanu, 2011; Franco et al., 2012;
Cheong and Lee, 2012; Xiao and Li, 2013; Zong et al., 2014; Zhang et al., 2015; He and Ye, 2015; Ji
and Liu, 2016; Huang and Situ, 2017]. Moreover, weak measurements have been experimentally
implemented in many quantum systems [Katz et al., 2006; Korotkov and Jordan, 2006; Kim et al.,
2009; Lee et al., 2011; Kim et al., 2012; Xu et al., 2013; Groen et al., 2013; Lim et al., 2014; White et al.,
2016; Zou et al., 2017].

The fundamental theory behind the working principle of weak measurement and its
reversal operations lies in the factual possibility of reversing any partial collapsemeasurement. The
basic approach is to perform weak measurement operations on the individual qubits comprising
the quantum system before distributing entanglement through noisy channels so that the initial
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state suffers less from the applied noise. After weak measurement, and entanglement distribution
through decoherence channels, one performs non-unitary reversal weak measurement operations
on the individual qubits to recover the quantum correlations. The optimal strength of weak
measurement reversal operation, corresponding to the initial strength of weak measurement
operation, can be obtained by maximizing the entanglement and correlations between the
qubits. In the following sub-sections, we analyse the effect of different noise channels and weak
measurements on the correlations existing between qubits of a bipartite state.

2.2.1 Amplitude-Damping Channel
We first proceed to analyse the effect of decoherence and weak measurements by

establishing a relation between the maximum expectation value of the Bell-CHSH operator, state
parameter, noise parameters and weak measurement strengths. For this, we start with a scenario
where Charlie prepares a two-qubit pure state and sends
one qubit each to Alice and Bob through an amplitude-damping channel. The single-qubit Kraus
operators for an amplitude-damping channel can be given as

(2.2)

where represents the magnitude of decoherence, and or , represents the qubit index.
Therefore, the two-qubit pure state after passing through the amplitude-damping channel evolves
as

(2.3)

where . In order to find whether the above state violates the Bell-CHSH inequality or not,
we need to evaluate the maximum expectation value of the Bell-CHSH operator given in Eq. (2.1).
In terms of spin projection operators, Eq. (2.1) can be re-expressed as

(2.4)

Considering a pair of mutually orthogonal unit vectors such that and
, Eq. (2.4) can be rewritten as

(2.5)

where unit vectors and are defined as

(2.6)

Similar definitions stand for and with primes on angles. The first term, in Eq. (2.5),
representing the expectation value gives

(2.7)
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The expectation value of can be maximized with respect to , such that

(2.8)

where we have used the fact that maximum value of is and
. Similarly, the second term representing expectation value gives

(2.9)

Eq. (2.5) is maximized with respect to , and therefore, we have

(2.10)

To optimize the expectation value for the operator , we use the orthogonality relation between
and such as , and hence

(2.11)

If Charlie sends both the qubits through perfect channels such that , then optimized
expectation value of the Bell-CHSH operator will be as it should be for transmission
through an ideal quantum channel [Popescu and Rohrlich, 1992].

γ
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γ
2

Figure 2.1 : Estimation of with respect to decoherence parameters and for a maximally
entangled two-qubit state.

Figure 2.1 clearly demonstrates that the Bell-CHSH inequality is violated for a small region
only where the values of noise parameters are very small; even for the violation region where
the values of noise parameters are small, the violation decreases very fast. The analytical result
obtained here is in complete agreementwith the numerical optimization of the Bell-CHSHoperator
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Figure 2.2 : Effect of noise parameter , considering = = , on for different two-qubit
entangled states.

for . The effect of noise on nonlocality is also depicted in Figure 2.2 which describes the
degradation of nonlocal correlations due to decoherence for different initial states, i.e., for different
values. If we consider the noise parameters to be the same then the Bell-CHSH inequality is

violated by finally shared states iff . For example, if we start
with a maximally entangled initial state, i.e., if , then the range of decoherence parameter
for the Bell inequality violation is . Therefore, if we start with a maximally entangled
state then finally shared state does not violate the Bell inequality for . Interestingly,
the non-violation region for a state with is , i.e., a partially entangled
two-qubit state is more robust towards decoherence in comparison to a maximally entangled
two-qubit state.

We now move forward to analyse the effect of weak measurements on the existence of
nonlocal correlations in noisy conditions. For this, we assume that Charlie prepares a two-qubit
entangled state , , and performs weak measurements on both
qubits before sending them through amplitude-damping channels. Similarly, after receiving the
qubits both Alice and Bob carry out reversal of weak measurement on their qubits. The weak
measurement and reverse weak measurement operators performed at both ends can be
given by

(2.12)

where and are strengths of weak measurement and weak measurement reversal operations,
respectively. The optimal weak measurement reversal strength is defined by ,
where [Korotkov and Keane, 2010; Lee et al., 2011; Kim et al., 2012]. Assuming that the
strength of weak measurement reversal is optimal, the finally shared state between Alice and Bob
evolves as

(2.13)
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where and and i=1,2. For analytical optimization
of the Bell-CHSH operator, we first consider the first term representing expectation value in
Eq. (2.5), such that

(2.14)

Similar to the way we evaluated the optimum value of Bell-CHSH operator for , one can show
that the optimum expectation value of the Bell-CHSH operator for is

(2.15)

For , the expression in Eq. (2.15) will be the same as for a pure state. This is possible since the
state becomes a pure state, free from any decoherence for . Figure 2.3 demonstrates the
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Figure 2.3 : Estimation of with respect to weak measurement strengths and for a
maximally entangled initial state, considering .

effect of weak measurement strengths on the Bell-CHSH operator for a decoherence parameter
value of , and . The state clearly violates the Bell-inequality for
when the values of ’s exceed a certain minimum, and the amount of violation increases with
the increase in weak measurement strength. From Figure 2.2, one can conclude that if one starts
with a maximally entangled two-qubit state then for , the Bell-CHSH inequality is not
violated. However, performing weak measurement and weak measurement reversal operations
result in the violation of Bell-CHSH inequality confirming the existence of nonlocal correlations in
the finally shared entangled state. For simplicity, we consider a scenario where both channels have
same decoherence, i.e., and both qubits are subjected to identical weak measurement
strengths, i.e., . In such a case, the optimal expectation value of the Bell-CHSHoperator
is

(2.16)
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where . In order to compare the effects of weak measurement vs
amplitude-damping, in Figure 2.4, we show plots between optimal expectation value of the
Bell-CHSHoperator andweakmeasurement strength for different initial states considering .
We consider a higher value of noise parameter as in the absence of weak measurement, the
Bell-CHSH inequality is not violated by all the states. We again observe that a partially entangled

α

η

Figure 2.4 : Effect of weak measurement strength on , for different two-qubit entangled
states, considering the noise parameter .

initial state with higher is a better and robust resource in comparison to a maximally entangled
initial state. Moreover, depending on a initial state used, the Bell-CHSH inequality is violated by
the finally shared state only after a certain value of weak measurement strength . In general
the non-violation regime increases with decrease in the value of . For a given initial state, we
further deduce a condition, , for
the violation of Bell-CHSH inequality by a finally shared state. For example, if then for a
initial statewith , the strength ofweakmeasurement required for the violation of Bell-CHSH
inequality is .

For a maximally entangled initial state, Figure 2.5 and Figure 2.6 describe the effects of
noise parameter for different values of weak measurement strength and effects of weak
measurement strength for different values of noise parameter on maximum expectation value
of the Bell-CHSH operator. Clearly weak measurement and its reversal is a win-win situation
for enhancing the correlations between the qubits. Similarly, Figure 2.7 and Figure 2.8 illustrate
relations between the violation of Bell-CHSH inequality and value of for different values of noise
parameter for , and different values of weakmeasurement strength for , respectively.

2.2.2 Alternate method to estimate violation of the Bell-CHSH inequality
Horodecki et al. [Horodecki, 1995] have shown a necessary and sufficient condition for the

violation of Bell-CHSH inequality by an arbitrary spin- state. According to Horodecki’s theorem,
maximum violation of the CHSH inequality for any arbitrary two-qubit state is given by

(2.17)
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Figure 2.5 : Effect ofdecoherenceon for amaximally entangled input state at different values
of weak measurement strength .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

η

B
(ρ

n
e
w

A
) o
p
t

 

 

=0

=0.1

=0.5

=0.9

=1

Figure 2.6 : Comparisonof theBell inequality violation vsweakmeasurement strength for amaximally
entangled input state at different values of decoherence parameter.
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Figure 2.7 : Comparison of vs state parameter at different values of noise parameter ,
considering .
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Figure 2.8 : Comparison of vs state parameter for different values of weak measurement
strength, considering .

where , and are the eigenvalues of . Here, denotes
the conjugate transpose of , where is a correlation matrix, and the inequality (2.1) is violated
by an arbitrary two-qubit state iff . Therefore, we calculate considering identical
noise parameters and identical weak measurement strengths , such that

(2.18)

and hence,

(2.19)

One can clearly see that Eq. (2.19) is the same as Eq. (2.16) obtained analytically, earlier in this
chapter.

2.2.3 Phase-Damping Channel
In case of a phase-damping channel, the Kraus operators can be represented as

(2.20)

where represents phase-damping noise parameter, and represents the qubit index. Again,
for simplicity we consider that both qubits comprising the initial input state are transmitted
through identical decoherence channels, i.e., . Similar to the case of amplitude-damping
channel, the input state shared between Alice and Bob now evolves as

(2.21)

Therefore, using the Horodecki’s theorem, optimum expectation value of the Bell-CHSH operator
is given as

(2.22)
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Figure 2.9 describes the effect of decoherence on the correlations after both the qubits pass through
phase-damping channels. Unlike the case of amplitude-damping channel where a non-maximally
entangled state seems to be more robust than a maximally entangled state for a particular range
of decoherence parameter, here the maximally entangled state is always robust in comparison to
non-maximally entangled states. For a given two-qubit initial state, the finally shared state always
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Figure 2.9 : Effect of decoherence on for different two-qubit entangled states.

violates the Bell inequality for the whole range of decoherence parameter.

In order to analyse the effect of weak measurement and its reversal, we again assume
that before sending the qubits through phase-damping channels, Charlie first performs weak
measurements on both the qubits as given in Eq. (2.12). After receiving the qubits, Alice and Bob
perform weak measurement reversal operations on their respective qubits. Therefore, the finally
shared state between Alice and Bob evolves as

(2.23)

where , , , and . The optimized
value of Bell-CHSH operator for the state can be calculated in a similar fashion as in the case
of , and can be given as

(2.24)

The optimal weak measurement reversal strength leading to maximum correlations between the

qubits is evaluated to be . Hence, assuming the strength of weak measurement
reversal operation to be optimal, the expectation value of Bell-CHSH operator is given as

(2.25)

Interestingly, Eq. (2.25) shows that the maximum expectation value of Bell-CHSH operator of
a shared bipartite state is independent of the parameter and weak measurement strength .
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Moreover, provided , which is always true for a two-qubit entangled
state. Hence, the application of weak measurement can indeed be useful in upgrading the nonlocal
correlations against the phase-damping decoherence. For optimal reversing weak measurement
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Figure 2.10 : Effect of decoherence on for a maximally entangled, and any partially entangled
input state under the application of weak measurement.

strength, Figure 2.10 clearly indicates that the maximum expectation value of Bell-CHSH operator
for the finally shared state does not depend on the initial input state and is always the same, as
for a maximally entangled initial state. The use of weak measurement and its reversal protocol,
therefore, provides a flexibility to communication protocols such that one can choose to start
with any initial two-qubit pure state. However, for non-optimal weak measurement reversal, i.e.,
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Figure 2.11 : Effect of weak measurement on for non-optimal strength of weak measurement
reversal operation for different values of decoherence parameter , considering
and .

assuming and a given input state considering , the effect of weak measurement
strengths on the maximum expectation value of Bell-CHSH operator for different values of noise
parameter is depicted in Figure 2.11.
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2.2.4 Depolarizing Channel
Finally, we consider another important decoherence channel characterized by depolarizing

noise such that the single-qubit Kraus operators are described as

(2.26)

where is a decoherence parameter. Here, we again consider identical decoherence channels, i.e.,
. In this case, the initial state after passing through depolarizing channels can be given

as

(2.27)

where

(2.28a)

(2.28b)

(2.28c)

(2.28d)

Thus, the optimum expectation value of of the two-qubit state shared between Alice and
Bob is

(2.29)

Figure 2.12 demonstrates the effect of noise parameter on the expectation value of Bell-CHSH
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Figure 2.12 : Effect of decoherence on for different two-qubit entangled states.
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operator for three different initial states, i.e., for , and . One can observe that
the violation of Bell-CHSH inequality decreases very fast even for small values of noise parameters.

We now analyse the effect of weak measurement and quantum measurement reversal
operations on nonlocal correlations of the finally shared state. For the depolarizing channel,
we replace with and with in Eq. (2.12) such that the expressions of weak

measurement and weak measurement reversal operations are now given as and

, respectively [He and Ye, 2015]. Similar to the previous cases, the finally shared

state between Alice and Bob evolves as

(2.30)

where

(2.31a)
(2.31b)
(2.31c)
(2.31d)
(2.31e)

The optimized value of Bell-CHSH operator for the state can be obtained in a similar fashion
as discussed above, and can be given as

(2.32)

The optimal reversing weak measurement strength, in case of a depolarizing channel, for
maximizing the amount of entanglement in the finally shared state is evaluated as

(2.33)

Using Eq. (2.33), maximum expectation value of the Bell-CHSH operator can be achieved for
, and can be expressed as

(2.34)

From Eq. (2.29) and Eq. (2.34), one can further deduce that is always greater than
. Furthermore, for optimal weak measurement reversal strength and a maximally

entangled initial input state, Figure 2.13 describes the effect of weak measurement strength on
the maximum expectation value of Bell-CHSH operator considering .

2.3 A NEW CLASS OFMIXED ENTANGLED TWO-QUBIT STATES
Assuming that the input state is a two-qubit pure state, the finally shared state between

Alice and Bob will either be a pure or a mixed state depending on the value of weak measurement
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Figure 2.13 : Effect of weak measurement on for a maximally entangled initial input state,
considering .

strength. Recently, Y. S. Kim et al. [Kim et al., 2012] have shown that using weak measurements in
presence of amplitude-damping channels, the concurrence of the finally shared state is always
non-zero, i.e., the finally shared state is always entangled. WenCho Ma et al. [Ma et al.,
2015] have extended this study and proposed a set of states which are entangled but do not
violate the Bell-CHSH inequality after passing through the amplitude-damping channel. In
this section, we characterize a new class of two-qubit mixed states using weak measurements
under the amplitude-damping noise. Interestingly, we found that the set of states proposed
here are always entangled but do not violate the the Bell-CHSH inequality for certain ranges of
amplitude-damping coefficient and weak measurement strength . Further, our analysis shows
that these states surprisingly outperform some of the mixed states already used as resources for
quantum information processing.

For this purpose, we propose a class of two-qubit mixed states as

(2.35)

where and . In order to characterize the
entanglement and correlations in this class, we use three different measures, i.e., Bell inequality,
concurrence, and geometric discord [Bell, 1964;Wootters, 1998; Dakić et al., 2010; Luo andFu, 2010].
For example, the concurrence (in Eq. (1.7)) of the proposed class is

(2.36)

Moreover, the geometric discord for an arbitrary spin- state is represented in Eq. (1.30). Here,
we are only interested in the numerical estimation of geometric discord. As discussed above, the
optimal expectation value of Bell-CHSH operator for the proposed class is

(2.37)

Figure 2.14, Figure 2.15 and Figure 2.16 demonstrate the effect of weak measurement strength
on concurrence, geometric discord, and Bell-CHSH inequality for , respectively. It is
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Figure 2.14 : Concurrence of the proposed state as a function of weak measurement strength,
considering .
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Figure 2.15 : Geometric discord of the proposed state as a function of weak measurement strength,
considering .
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Figure 2.16 : The optimal expectation value of Bell-CHSH operator of the proposed state as a function
of weak measurement strength, considering .
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evident that the proposed class shows genuine entanglement and quantum correlations for
all but violates the Bell-CHSH inequality for a range of weak measurement strength, i.e., for

.

2.4 USEFULNESS OF THE PROPOSED TWO-QUBIT MIXED STATES IN INFORMATION PROCESSING
TASKS

In this section, we demonstrate the efficiency and usefulness of proposed class of states in
terms of quantum teleportation, dense coding, and fully entangled fraction.

2.4.1 Quantum Teleportation
Quantum teleportation allows a sender to communicate quantum information using an

entangled resource without sending the information through any medium. Horodecki et al.
[Horodecki et al., 1996] described a measure of usefulness for two-qubit mixed entangled states
in terms of fidelity of quantum teleportation, namely

F (2.38)

where and are the eigenvalues of a real symmetric matrix .
They further deduced that a given state is useful as a resource for quantum teleportation iff
. In this sub-section, we show that the class of states proposed in the previous section can always
be used as a resource for quantum teleportation irrespective of the strength of decoherence and
weak measurements. Surprisingly, when it comes to the fidelity of quantum teleportation, our
states outperform many other mixed entangled two-qubit states. For this, we first calculate
for the proposed state , such that

(2.39)

and hence,

(2.40)

Figure 2.17 clearly indicates that teleportation fidelity using our states is always greater than .
Therefore, states of the proposed class are useful resources for quantum teleportation irrespective
of the values of noise parameter for the whole range of weak measurement parameter .

Further, we compare the efficiency of our states as resources for teleportation fidelity with
other existing bipartite mixed states. We first consider the two-qubit mixedWerner state [Werner,
1989], i.e.,

I (2.41)

where stands for probability, I stands for identity matrix representing a white noise and
represents a maximally entangled Bell state, given by

(2.42)
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Figure 2.17 : Teleportation fidelity of the proposed state as a function of weak measurement strength
at different values of decoherence parameter .

The teleportation fidelity of Werner states using Eq. (2.38) is

F (2.43)

Similarly, for Horodecki states [Horodecki, 1996], namely

(2.44)

where stands for the state parameter, teleportation fidelity can be evaluated as

F (2.45)

We further consider another important class of two-qubitmixed states [Munro et al., 2001b], termed
as maximally entangled mixed states (MEMS), given by

(2.46)

where

(2.47)

with , a state parameter, denoting the concurrence of . One can calculate the optimal
teleportation fidelity for , such that

F (2.48)

43



2.18 (a) : Comparison of the teleportation fidelity of proposed
class of states and Werner state.

2.18 (b) : Comparison of the teleportation fidelity of proposed
class of states and Horodecki state.

2.18 (c) : Comparison of the teleportation fidelity of proposed
class of states and MEMS state proposed by Munro et. al.

2.18 (d) : Comparison of the teleportation fidelity of proposed
class of states and generalized MEMS state proposed by Wei
et. al.

Figure 2.18 : Comparison of usefulness of the proposed state with other existing bipartite entangled
mixed states.

A more general class of maximally entangled mixed states was proposed by Wei et al. [Wei et al.,
2003] as a mixture of a maximally entangled Bell state and a mixed diagonal state. Therefore,
the general form of MEMS is given by

(2.49)

where and are non-negative real state parameters such that . The
teleportation fidelity for is given by

F (2.50)

From Eq. (2.50), the optimal teleportation fidelity of can be obtained by considering
such that we get

F (2.51)

Figure 2.18 compares the efficiency of the proposed state in this chapter with the two-qubitWerner,
Horodecki, , and states for quantum teleportation. It clearly shows that the states
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proposed here can always be considered as better resources in comparison to Werner states,
Horodecki states, and states. In case of states, our states prove to be better resources
for teleportation under weak decoherence, however, for strong decoherence either our states or

states can be considered as preferred resources depending on the values of state parameters.
Moreover, for or , the proposed states will always be better resources for teleportation
as compared to states.

2.4.2 Fully-Entangled Fraction
Our analysis in the last subsection suggests that the proposed state is always a better

resource in comparison to other established two-qubit mixed states for quantum teleportation
protocol. In this subsection, we extend our analysis to fully-entangled fraction (FEF) which
is an entanglement witness, and can be defined as

(2.52)

where the maximum is taken over all maximally entangled two-qubit states [Bennett et al.,
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Figure 2.19 : Amount of fully-entangled fraction (FEF) as a function of weakmeasurement strength at
different values of decoherence parameter .

1996c; Horodecki et al., 1999a]. Entanglement witnesses facilitate the experimental detection
of entanglement and exist as a result of Hahn-Banach theorem [Horodecki, 1996; Terhal, 2000;
Holmes, 2012]. Moreover, FEF is considered as an emerging tool in describing many practical
quantum information processing protocols [Zhou and Guo, 2000; Vidal et al., 2000; Albeverio et al.,
2002b; Grondalski et al., 2002; Zhao et al., 2003; Özdemir et al., 2007; Li et al., 2008; Zhao et al., 2010;
Li et al., 2012; Kumar et al., 2013]. For quantum teleportation, Horodecki et al. [Horodecki et al.,
1999a] have shown that a shared bipartite entangled state is useful for teleportation iff ,
where the relation between FEF and the optimal teleportation fidelity is given by

(2.53)

Since teleportation fidelity of the proposed class of states is always greater than , FEF of the
proposed class of states is always grater than . Figure 2.19 indicates the same by showing the
effect of weak measurement strength on FEF of the proposed state at three different values of
amplitude-damping parameter.
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We further consider three different witnesses to measure entanglement and correlations in
the proposed class of states, namely, modified or rescaled version of FEF [Bartkiewicz et al., 2017],
nonlinear entropic measure [Bovino et al., 2005] and Horodecki’s measure [Horodecki, 1996].
The modified FEF detects a larger set of entangled states in comparison to the other two measures.
For this, Bartkiewicz et al. proposed an efficient and realistic experimental procedure based on
entanglement swapping to detect entanglement using modified FEF, defined as

(2.54)

where corresponds to separable states, and maximum value of correspond to
maximally entangled states.

The form of nonlinear entropic entanglement witness [Bovino et al., 2005] is given by

(2.55)

where the value of varies from 0 for separable states to 1 for maximally entangled two-qubit
states. In addition, for quantifying nonlocal correlations in two-qubit states one may define
Horodecki’s measure [Horodecki, 1996] as

min eig (2.56)

which is greater than if a two-qubit state violates the Bell-CHSH inequality and attains the
maximum value for a maximally entangled state. is directly related to the degree of
Bell-CHSH inequality violation, such that max [Miranowicz, 2004; Horst et al.,
2013].
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Figure 2.20 : Estimating theentanglementofproposed classof statesusing theBell nonlocalitymeasure
, nonlinear entanglement witness and the rescaled FEF as a function of weak

measurement strength , considering .

Figure 2.20 shows that proposed class of states are always entangled for the complete range
of weak measurement strength for , thereby highlighting the importance of the proposed
class of states for quantum information processing protocols. However, linear entropic witness
and Bell nonlocality measure can detect the entanglement and nonlocality in proposed class
of states for , and , respectively.
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Table 2.1 : Fully-entangled fraction and Nonlocality measures of the proposed states (for k
= 1, ..., 6) for different values of and

State
0.6 0.4126 0.7288 0.0000
0.6 0.4984 0.7596 0.3217
0.8 0.7000 0.7994 0.4922
0.4 0.6000 0.8581 0.6738
0.1 0.6000 0.9611 0.9199
0.6 0.9970 0.9982 0.9963

We further compare the fully-entangled fraction of the proposed class of states for a given
degree of nonlocality with randomly generated two-qubit states [Horst et al., 2013]. For
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Figure 2.21 : Estimation of fully-entangled fraction for a given nonlocality for proposed class of states,
pure states and randomly generated two-qubit states (green area) and the coordinates of
points (where k=1,...6) to characterize the proposed class of states, given in Table 2.1.

example, Figure 2.21 numerically estimates the fully-entangled fraction of proposed class of states,
pure states and randomly generated two-qubit states. It shows that the proposed class of states
have higher FEF than pure states and a large set of mixed two-qubit states for a given nonlocality.
Here, we have only considered the states lying between our states and pure states. In Table 2.1,
we present characteristic points (where k=1,...6) for different values of and .

2.4.3 Dense coding
Superdense coding is one of the simplest application of quantum information processing

[Bennett and Wiesner, 1992]. Usefulness of any shared entangled resource in dense coding is
measured in terms of channel capacity, i.e., the maximum number of classical bits transmitted
from a sender to a receiver using the shared resource [Bowen, 2001], where the channel capacity
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using a bipartite entangled state shared between Alice and Bob is given by

(2.57)

where is the dimension of Alice’s subsystem, is the von-Neumann entropy of Bob’s
subsystem and is the von-Neumann entropy of entangled state .
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Figure 2.22 : Channel capacity of the proposed class of states for superdense coding protocol as
a function of weak measurement strength at three different values of decoherence
parameter .

Figure 2.22 suggests that the channel capacity of the proposed class is always greater than
for weak decoherence, and increases with increase in the value of weak measurement strength.

However, for strong decoherence, channel capacity only exceeds the classical channel capacity
for large values of weak measurement strength. Therefore, our states are useful resources for
superdense coding even at high decoherence for certain ranges of . Furthermore, Figure 2.23
compares the efficiency of the proposed class with Werner states, Horodecki states, and for
superdense coding in term of channel capacity. It clearly shows that our states are better resources
for superdense coding in comparison to Werner states, Horodecki states, and states.

2.23 (a) : Comparison of the channel capacity of proposed
class of states and Werner state.

2.23 (b) : Comparison of the channel capacity of proposed
class of states and Horodecki state.

2.23 (c) : Comparison of the channel capacity of proposed
class of states and MEMS state proposed by Munro et. al.

Figure 2.23 : Comparisonof channel capacity of theproposedclasswithotherbipartiteentangledmixed
states.
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2.5 SUMMARY
In this chapter, we readdressed the issue of usefulness of two-qubit mixed states under

noisy conditions. For this, we demonstrated an analytical relation between Bell-CHSH inequality
with state parameter, noise parameters and weak measurement strength parameters. The analysis
allowed us to propose a new class of two-qubit mixed entangled states for quantum information
processing protocols. The study presented here proved to be useful as our class of states is shown
to be better resources in comparison to many other two-qubit mixed states proposed earlier for the
similar communication protocols.

…
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