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Analysing Nonlocality in Multiqubit Entangled States under

Noisy Conditions andWeak Measurements

3.1 INTRODUCTION
In the previous chapter, we analysed nonlocal correlations in the finally shared two-qubit

state under the influence of different noisy channels. We demonstrated the applications of
weak measurements and further proposed a two-qubit state for efficient quantum information
processing in comparison to other pure andmixed two-qubit entangled states. Similar to two-qubit
systems, theoretical as well as experimental characterization of entanglement and nonlocality
in multiqubit systems have also been at the center of research to understand foundations of
quantum mechanics and quantum information [Home and Selleri, 1991; Khalfin and Tsirelson,
1992;Mermin, 1993;Kwiat et al., 1995; Zeilinger et al., 1997; Zeilinger, 1999; Kwiat et al., 2000; Rungta
et al., 2001; Weinfurter and Żukowski, 2001; Batle et al., 2002; Zhao et al., 2004; Thew et al., 2004;
Genovese, 2005; Rigolin et al., 2006; Tokunaga et al., 2008; Barreiro et al., 2010; Batle and Casas,
2011; Ma et al., 2011; Lastra et al., 2012; Brandao and Christandl, 2012; Sperling and Vogel, 2013;
Brunner et al., 2014; Islam et al., 2015; Batle et al., 2016; Chen et al., 2016; Cianciaruso et al., 2016; Zhao
et al., 2016; Hu et al., 2016; Batle et al., 2017; Luo et al., 2017]. Clearly, the analysis of nonlocality
not only satisfies the fundamental quest to verify the foundations of quantum mechanics but
also leads to secure and optimal quantum information and communication protocols due to the
importance of nonlocal correlations [Karlsson and Bourennane, 1998; Shi and Tomita, 2002; Pan
et al., 2001a; Agrawal and Pati, 2002; Lee et al., 2002; Wójcik and Grudka, 2003; Zhang and Man,
2005; Agrawal and Pati, 2006; Gordon and Rigolin, 2006; Muralidharan and Panigrahi, 2008;
Chamoli and Bhandari, 2009; Das et al., 2014; Herbst et al., 2015; Li et al., 2016b; Singh et al., 2016].
Unlike the pure two-qubit states, where nonlocal correlations arewell studied, the characterization
of nonlocality in multiqubit systems is much more complex due to the increased complexity of the
system [Svetlichny, 1987; Seevinck and Svetlichny, 2002; Collins et al., 2002a,b; Cereceda, 2002; Pan
et al., 2003b; Zhao et al., 2003; Eibl et al., 2003, 2004a; Walther et al., 2005a; Lavoie et al., 2009; Ghose
et al., 2009, 2010; Ajoy and Rungta, 2010; Bancal et al., 2010; Zhao et al., 2012; Chaves et al., 2012;
Tian et al., 2012; Bancal et al., 2013; Barrett et al., 2013a; He and Reid, 2013; Brunner et al., 2014;
Fonseca and Parisio, 2015; Paul et al., 2016; de Rosier et al., 2017; Lawrence, 2017]. For example, in
case of three-qubit systems one needs to distinguish between bi-separable and genuine tripartite
nonlocality; and within the class of genuinely entangled three-qubit states, one needs a way to
identify all the entangled states exhibiting genuine quantum correlations [Collins et al., 2002b;
Cereceda, 2002; Ghose et al., 2009; Lu et al., 2011b; Zhang et al., 2016]. Precisely, the three-qubit
Mermin inequality [Mermin, 1990] is violated by bi-separable as well as genuinely entangled
three-qubit states, thus, making it difficult for one to distinguish between bipartite and genuine
tripartite nonlocality. Moreover, it is also evident that the Mermin inequality does not identify a
set of entangled states in GHZ class for < 1/2 or < 1/4 [Mermin, 1990; Chi et al., 2010].

In order to confirm the presence of genuine long-range quantum correlations between
three and four qubits, one can use the Svetlichny inequality whose violation is a signature
of genuine three- or four-qubit correlations [Svetlichny, 1987]. The Svetlichny inequality,
however, also fails to identify a set of GHZ states with <1/2; nevertheless, the violation of
Svetlichny inequality confirms the presence of genuine multiqubit quantum correlations. For
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four-qubit systems, one can use Scarani-Acin-Schenck-Aspelmeyer (SASA) [Scarani et al., 2005]
or Wu-Yeo-Kwek-Oh (WYKO) [Wu et al., 2007] inequalities which are maximally violated by
cluster [Briegel and Raussendorf, 2001] and type of states [Yeo and Chua, 2006], respectively.
Similarly Mermin-Ardehali-Belinskii-Klyshko (MABK) [Mermin, 1990; Ardehali, 1992; Belinskiĭ
and Klyshko, 1993] and Werner-Wolf-Zukowski-Brukner (WWZB) [Werner and Wolf, 2001;
Żukowski and Brukner, 2002] inequalities are useful for confirming N-qubit nonlocality. Apart
from these, there exist several other theoretical and experimental measures based on Bell-type
inequalities for estimating nonlocal correlations in multiqubit systems [Chen et al., 2011; Vértesi
and Brunner, 2012; Reid et al., 2012; Pramanik and Majumdar, 2012; Lanyon et al., 2014; Chaves
et al., 2014; Caban et al., 2015; Sharma et al., 2016; Alsina and Latorre, 2016; Vallins et al., 2017].
In general, entangled resources violating multiqubit Bell-type inequalities are considered to be
useful resources for quantum information and computation. As discussed in the previous chapter,
these resources, however, suffer from decoherence under real experimental set-ups, and such
degradation of nonlocal correlations may lead to non-violation of multiqubit Bell-type inequalities
[Zurek, 2003; Carvalho et al., 2004; Hein et al., 2005; Mintert et al., 2005; Bandyopadhyay and Lidar,
2005; Almeida et al., 2007; Liu et al., 2010; Fröwis and Dür, 2011; Mahdian et al., 2012; Ramzan,
2013; Sohbi et al., 2015; Tchoffo et al., 2016]- questioning their usefulness in terms of resources
for quantum information and computation. Among several decoherence models proposed [Shor,
1995; Calderbank and Shor, 1996; Steane, 1996; Lidar et al., 1998; Facchi et al., 2004; Sun et al., 2009;
Kim et al., 2012; Lu et al., 2011a; Cheong and Lee, 2012; Singh et al., 2018], the one that stands out
and is used extensively for protecting entanglement in two-qubit and multiqubit systems, is weak
measurement and its reversal operations. For two-qubit systems, we have already demonstrated
the pivotal role played by these operations in improving the efficiency of finally shared state
in quantum information processing. Hence, the analysis of nonlocal properties in multiqubit
systems under real conditions is very important to characterize the complex nature of multiqubit
nonlocality and to identify the set of states relevant for quantum information processing.

In this chapter, we readdress the question of three- and four-qubit nonlocality under
real experimental or noisy conditions. For this, we consider different classes of three-qubit
entangled systems which are shown to be useful for quantum information and computation, e.g.,
Greenberger-Horne-Zeilinger (GHZ) and W class states [Dür et al., 2000]. The analysis of nonlocal
correlations in these systems under real conditions allows us to establish an analytical relation
between the maximum value of the Svetlichny operator for a given system, state parameter, noise
parameters, and strength of weak measurement and its reversal operations. As examples of
noisy channels, we use the interaction between the principal system and the environment through
amplitude-damping, phase-damping and depolarization channels. Surprisingly, for generalized
GHZ class and amplitude-damping channels, our results indicate that for certain values of weak
measurement strengths and range of for initially prepared states, the violation of Svetlichny
inequality is more if one starts with non-maximally entangled states instead of a maximally
entangled GHZ state. Apart from GHZ and W class of states, considering its importance in
quantum information processing, we also characterize the nonlocality in type of states [Agrawal
and Pati, 2006; Adhikari and Gangopadhyay, 2009; Singh et al., 2016].

Interestingly, for the phase-damping channel, we find that the strength of nonlocal
correlation remains independent of the initial entanglement and strength of weak measurement
operations. Precisely, after the applications of noise and weak measurement, the expectation
value of Svetlichny operator is evaluated to be exactly the same, independent of whether one
starts with a maximally or a partially entangled initial state, thereby releasing the constraint to
prepare a maximally entangled state to start with. However, for the depolarizing channel, weak
measurements and its reversal operations lead to increase in the strength of nonlocal correlations
in comparison to the adverse impact of depolarizing noise on quantum correlations. Furthermore,
we also describe the nonlocal properties of four-qubit GHZ class states by establishing the
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analytical relation between maximum expectation value of the four-qubit Svetlichny operator,
state parameter, noise parameters and strengths of weak measurement and its reversal operations.
We believe that the results obtained in this chapter will be of utmost significance since the states
considered here for the analysis of nonlocal correlations are experimentally accessible [Laflamme
et al., 1998; Bouwmeester et al., 1999; Pan et al., 2000, 2001b; Eibl et al., 2004b; Dogra et al., 2015; Dong
et al., 2016].

3.2 THREE-QUBIT GHZ ANDW STATES
Three-qubit states can be classified into two different inequivalent classes, i.e., GHZ class

and W class [Dür et al., 2000]. The states of both the classes are shown to be useful for quantum
information and computation. The degree of entanglement in the GHZ class is quantified in terms
of residual entanglement, i.e., three-tangle ( ) given in Eq. (1.17). As discussed in subsection
1.3.2.(b), the three-tangle, however, fails to capture the genuine entanglement in W class states.
Alternately, one can use [Emary and Beenakker, 2004] or sum of concurrences of the three
reduced bipartite density operators obtained from a W class state as an entanglement measure
for W-class states [Dür et al., 2000; Linden et al., 2002]. In this chapter, we use the following two
GHZ class states for our analysis, namely the generalized GHZ states

(3.1)

and Slice states [Carteret and Sudbery, 2000]

(3.2)

where, and are state parameters. The maximally entangled GHZ state for or
, has been used for deterministic transfer of information in many protocols [Karlsson

and Bourennane, 1998; Gottesman and Chuang, 1999; Hillery et al., 1999; Raussendorf et al., 2003;
Browne and Rudolph, 2005; Lee et al., 2006]. On the similar lines, we further consider two different
W class states, namely

(3.3)

where , , and are real, and

(3.4)

where is a positive integer and and are relative phases. Unlike the maximally entangled
GHZ states, the standard states cannot be used for deterministic information transfer [Karlsson
and Bourennane, 1998; Shi and Tomita, 2002]. On the other hand, states [Agrawal and
Pati, 2006] can be used as resources for deterministic teleportation and dense coding. The price
one needs to pay for the deterministic information transfer using states is in terms of joint
three-qubit measurements. The use of standard single-qubit and two-qubit measurements instead
of three-qubit joint measurements leads to significant reduction in the efficiency of states
[Adhikari and Gangopadhyay, 2009]. This special class of W states has also been generalized for
a case of N-qubits [Singh et al., 2016]. Considering the importance of these states for quantum
information, it is essential to characterize nonlocal correlations in these states as well. The study
will certainly provide an insight into the usefulness of these resources in real conditions.
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3.3 NONLOCALITY IN GHZ CLASS STATES UNDER REAL CONDITIONS
In order to characterize genuine tripartite nonlocality, we use the Svetlichny inequality (SI)

[Svetlichny, 1987], , such that

(3.5)

where the Svetlichny operator is given by

A BC BC B C B C A BC BC B C B C (3.6)

and measurements A , and A are performed on the first qubit. Here , and are
unit vectors, and ’s are spin projection operators. The measurements B or B , and C or C are
defined in a similar fashion andare performedon qubits 2 and 3, respectively. The above inequality
is satisfied by all separable and bi-separable states, and hence, violation of Svetlichny inequality
confirms the presence of genuine tripartite nonlocality in an underlying quantum system.

We now proceed to investigate the effect of decoherence on the violation of Svetlichny
inequality for three-qubit GHZ states by establishing an analytical relation between the maximum
expectation value of Svetlichny operator, noise parameters and the state parameter. For this,

Dave
ρg

Decoherence

(γ)
Decoherence

(γ)
Decoherence

(γ)

Figure 3.1 : A scenario to analyse the effect of decoherence on maximum expectation value of the
Svetlichny operator.

we consider a scenario where Dave prepares a three-qubit pure GHZ state
and sends onequbit each toAlice, Bob andCharlie throughamplitude-damping channels

(Figure 3.1) . For the mathematical convenience and simplicity, we consider identical decoherence
parameters for all the three channels.

3.3.1 Amplitude-Damping Channel
The single-qubit amplitude-damping channels are represented in Eq. (2.2). Therefore, the

three-qubit state of a quantum system after an amplitude-damping noise will evolve as

(3.7)
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where . Considering that the shared three-qubit state evolves as , the maximum
expectation value for the Svetlichny operator defined in Eq. (3.6) can be obtained by defining

(3.8)

As earlier, , , and can be defined in a similar fashion with primes on angles. Moreover, the
expression for can be further simplified by defining a pair of mutually orthogonal unit vectors

and such that and , which leads to

(3.9)

Therefore, Eq. (3.6) can be re-expressed as

(3.10)

Eq. (3.10) when maximized with respect to gives

(3.11)

where and are Mermin operators [Mermin, 1990] . Here, we have used the fact that

(3.12)

with the equality resulting for . For evaluating themaximum expectation value of ,
we first calculate corresponding to the first term in Eq. (3.11), such that

(3.13)

The expectation value can be further maximized with respect to , i.e.,

(3.14)

where . Similarly can be given as

(3.15)

Themaximum values of the operators and can also be defined in a similar waywith
primes on required angles. Therefore, from Eq. (3.11), we have

(3.16)
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In order to further optimize the expectation value of the Svetlichny operator, we use the fact that
the maximum of is 1, while the maximum of is 2 [Ghose et al., 2009].
Moreover, we also know that

(3.17)

where the first inequality is realized when =0 or and the second inequality is realized when
= , and hence, Eq. (3.16) can be rewritten as

(3.18)

In case there are no environmental interactions, i.e, Dave sends all the three qubits through
perfect channels such that , then by using , the maximum expectation value
of Svetlichny operator is

(3.19)

The inequality expressed in Eq. (3.19) is exactly the same as the one derived in [Ghose et al., 2009]
indicating themaximumexpectationvalue of Svetlichny operator forGGHZstates for transmission
through an ideal quantum channel. The analytical result obtained here is in complete agreement

Figure 3.2 : Estimation of maximum value of vs 3-tangle of the initial 3-qubit GHZ state
with respect to decoherence parameter .
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with the numerical optimization of the Svetlichny operator for generalized GHZ states under the
influence of an amplitude-damping channel. Figure 3.2 clearly describes that the violation of
Svetlichny inequality decreases very fast even for small values of noise parameters. Moreover, it
also depicts that for noiseless channels and , finally shared state always violates the Svetlichny
inequality. The range of violation, however, decreases with increase in the value of decoherence
parameter, e.g, see Figure 3.3. Further, in Figure 3.3, A and N stand for analytical and numerical
results, respectively, and the same notation will be followed for all the figures hereafter. We now
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Figure 3.3 : Plot of with respect to 3-tangle of the initial 3-qubit GHZ state for four different
values of decoherence parameter.

move forward to analyse the effect of weak measurement and quantum measurement reversal
operations on nonlocal correlations in presence of the amplitude-damping noise. For this, we

Dave
ρg

Decoherence

(γ)
Decoherence

(γ)
Decoherence

(γ)

Λwk(η) Λwk(η) Λwk(η)

Λwkr(η)Λwkr(η)Λwkr(η)

Figure 3.4 : A scenario to analyse the effect of weak measurement and its reversal operations on the
existence of genuine tripartite nonlocal correlations.

start with a scenario represented in Figure 3.4 where Dave prepares a three-qubit pure generalized
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GHZ state , and performs weak measurements on each qubit before
distributing the qubits through amplitude-damping channels. After receiving the qubits, Alice,
Bob and Charlie perform reverse quantum weak measurements on their respective qubits. The
form of weak measurement and its reversal operations are described in the previous chapter
(Eq. (2.12)). Again for the mathematical convenience and simplicity, we assume same weak
measurement strengths for all the channels. Assuming that the strength of weak measurement
reversal is optimal, i.e., , the expectation value with respect to the finally
shared state is given as

(3.20)

where . Similar to the discussion in case of amplitude-damping
channels, one can show that the optimum expectation value of the Svetlichny operator for the
finally shared state (after implementing the protocol based on weak measurements and quantum
measurement reversal) is given as

(3.21)

For =1, the expression in Eq. (3.21) will again be the same as for a pure three-qubit GGHZ
state [Ghose et al., 2009]. From Figure 3.2 and Figure 3.3, in absence of weak measurement, the

η

Figure 3.5 : Estimation of maximum value of vs 3-tangle of the initial 3-qubit GHZ state
with respect to weak measurement strength parameter , considering .

Svetlichny inequality will not be violated for even if the shared initial state is a maximally
entangled GHZ state. The effect of weak measurement strengths on the maximum expectation
value of Svetlichny operator for a decoherence value of is depicted in Figure 3.5 and Figure
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Figure 3.6 : with respect to 3-tangle of initial state for different weak measurement
strengths, considering .

3.6. Clearly, for a given decoherence parameter the violation of Svetlichny inequality increases
with the increase in weakmeasurement strength. In fact, Figure 3.6 shows that for certain values of
weakmeasurement strengths (except ) and range of of initially prepared states, the violation
of Svetlichny inequality is more if one starts with non-maximally entangled pure states instead of a
maximally entangled GHZ state. For amaximally entangled initial GHZ state, Figure 3.7 describes

η

Figure 3.7 : Effect of weakmeasurement on themaximum expectation value of the Svetlichny operator
as a function of noise parameter .

the effects of noise parameter and weak measurement strengths on the maximum expectation
value of Svetlichny operator. Certainly, the use of weak measurement and quantummeasurement
reversal is advantageous for enhancing the genuine tripartite nonlocality in the presence of an
amplitude-damping noise.
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3.3.2 Phase-Damping Channel
We now proceed to analyse the nonlocal correlations in generalized GHZ class under

the influence of a phase-damping channel. The single-qubit Kraus operators for phase-damping
channels are described in Eq. (2.20). As in the previous cases, for simplicity and mathematical
convenience, we consider the qubits to be transmitted through identical decoherence channels,
i.e., , and . Therefore, the initial three-qubit pure state after passing through the
phase-damping channels evolves as

(3.22)

For our purpose, we consider a scenario where Alice prepares a three-qubit pure GHZ state as
represented in Eq. (3.1), and sends second qubit to Bob and third qubit to Charlie through identical
phase-damping channels. Therefore, here we consider that Alice performs an identity operation
on her qubit 1. Using Eq. (3.22), the three-qubit pure GGHZ state after passing through the
phase-damping channel can be represented as

(3.23)

where

(3.24a)
(3.24b)
(3.24c)

Considering that the shared three-qubit state evolves as , the maximum value for
Svetlichny operator in Eq. (3.6) can be evaluated in a similar way, as in the case of
amplitude-damping channels. Hence, for evaluating the maximum expectation value of ,
we first calculate the expectation value in Eq. (3.11) , such that

(3.25)

The above expectation value can be maximized with respect to , considering
, i.e.,

(3.26)

Similarly can be evaluated as

(3.27)

The maximum expectation values of the other two operators and in Eq. (3.11) can
be calculated in a similar fashion with primes on required angles. Therefore, we have

(3.28)
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The expectation value of can be further optimized using the orthogonality relation between
and so that the maximum value of is 1, and the maximum of is

2, thus

(3.29)

Further, by using Eq. (3.17) to maximize Eq. (3.29) with respect to and , and re-expressing
, we get

(3.30)

Since, the value of three-tangle for the generalized GHZ state is , Eq. (3.30) can be rewritten
as

(3.31)

If the initially prepared state is a maximally entangled GHZ state, i.e., if , then we have

(3.32)

Figure 3.8 and Figure 3.9 demonstrate that the analytical result obtained here is in complete

Figure 3.8 : Estimation of maximum value of vs 3-tangle of the initial 3-qubit GHZ state
with respect to decoherence parameter .

agreement with the numerical optimization of the Svetlichny operator for generalized GHZ
states. It shows that the violation of Svetlichny inequality decreases very fast, even if values of
decoherence parameter are very small, i.e., the range of violation decreases rapidlywith increase in
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Figure 3.9 : Plot of with respect to 3-tangle of the initial 3-qubit GHZ state for four different
values of decoherence parameter.

the value of decoherence parameter. Moreover, degree of violation of the Svetlichny inequality for
the finally shared state is always more if one starts with a maximally entangled initial state rather
than starting with a non-maximally entangled initial state under the phase-damping channel.
Figure 3.10 shows a plot of noise parameter vs Svetlichny operator for three different initial states,
i.e., for , and . Apparently, the range of violation further decreases with
the decrease in degree of entanglement of the initial state. Further, if there are no environmental
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Figure 3.10 : Plot of with respect to decoherence parameter for three different input states.

interactions, i.e, if Alice sends qubits to Bob and Charlie through perfect channels, i.e., then
the maximum expectation value of Svetlichny operator is

(3.33)
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The inequality expressed in Eq. (3.33) is the same as Eq. (3.19) for the transmission through an
ideal quantum channel.

We now move forward to analyse the effect of weak measurement and its reversal
operations to investigate whether the operations suppress the effects of phase-damping noise
on quantum correlations or not. For this, we again start with a scenario where Alice prepares a
three-qubit pure generalized GHZ state , and performs weak measurements on qubits 2 and
3 before distributing them through phase-damping channels. After receiving the qubits, Bob and
Charlie perform reverse quantum measurements on their respective qubits. Again, we assume
same weak measurement strengths for both the qubits for the mathematical convenience and
simplicity. Here, we will use weak measurement and reverse weak measurement
operators as described in Eq. (2.12).

Therefore, in the given scenario, the three-qubit generalized GHZ state, under the influence
of phase-damping noise and weak measurements, evolves as

(3.34)

where

(3.35a)

(3.35b)
(3.35c)

(3.35d)

Similar to above discussions, we evaluate the expectation value in Eq. (3.11) with respect to
the finally shared state , such that

(3.36)

where . Following the arguments for optimizing the Svetlichny operator
in the phase-damping case, one can evaluate the optimum expectation value of the Svetlichny
operator for the finally shared state, using weak measurement, and its reversal operations as

(3.37)

63



The optimal weak measurement reversal strength leading to maximum correlations between
the qubits is evaluated to be . Therefore, assuming the strength of weak
measurement reversal operation to be optimal, the expectation value of Svetlichny operator is
re-expressed as

(3.38)

Surprisingly, Eq. (3.38) shows that the maximum expectation value of Svetlichny operator for
the finally shared tripartite state is independent of the state parameter and weak measurement
strength . Furthermore, Eq. (3.38) is the same as Eq. (3.32), and hence for communication
protocols affected by phase-damping, one can choose to start with any non-maximally entangled
initial three-qubit pure GHZ state instead of a maximally entangled state. The use of weak
measurement and its reversal operations, therefore, releases the constraint of preparing a
maximally entangled state by optimizing the expectation value of Svetlichny operator to be
the same for all . A comparison between Figure 3.10 and Figure 3.11 further confirms the
importance of use of weak measurement and its reversal operations under phase-damping
channels. Interestingly, if we do not consider the optimal strength relation for weak measurement
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Figure 3.11 : Effect of decoherence on for a maximally and a partially entangled input state
under applications of weak measurement.

reversal operation, i.e., but instead fix its value, say for example , then
for a maximally entangled initial state, the extent of violation first increases, attains a maximum
value, and then decreases. For example, Figure 3.12 exhibits the behaviour of genuine tripartite
nonlocal correlations for a maximally entangled initial state. For small decoherence, the finally
shared state attains the maximum violation of at , which is same as , as the same
is also evident from for . Similarly, if we consider then for
the state parameter, , Figure 3.13 shows a similar behaviour, i.e., the extent of violation first
increases, attains the maximum value, and then decreases. The use of weak measurement and its
reversal operations, therefore, can indeed be very useful for protection against the phase-damping
decoherence.

3.3.3 Depolarizing Channel
The single-qubit Kraus operators for a depolarizing channel are described in Eq. (2.26).

Like the phase-damping case, we again consider identical decoherence parameters for both the
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Figure 3.12 : Effect of weak measurement on for a maximally entangled state, considering
at different values of .
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Figure 3.13 : Effect of weak measurement on for a initial state with , considering
at different values of .

distributed qubits, i.e., . In this case, the initial three-qubit generalized GHZ state after
passing through the depolarizing channel can be given as

(3.39)
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where

(3.40a)

(3.40b)

(3.40c)

(3.40d)

(3.40e)

(3.40f)

(3.40g)

In order to find the maximum expectation value of Svetlichny operator in the evolved three-qubit
mixed state , the first term in Eq. (3.11) can be evaluated as

(3.41)

where . Similar to the previous cases, we calculate the optimum
expectation value of for the state , shared between Alice, Bob and Charlie, such that

(3.42)

Since , Eq. (3.42) can be rewritten as

(3.43)

For distribution through perfect channels, i.e., for , the maximum expectation value of
Svetlichny operator is

(3.44)

Evidently, the inequality expressed in Eq. (3.44) using the depolarizing noise is the same as Eq.
(3.19). Our results, in Figure 3.14, describe the effect of noise parameter on the expectation value
of Svetlichny operator against the three-tangle of the initially prepared three-qubit generalized
GHZ state. One can clearly conclude that the effects of depolarizing noise are much more
severe than the effects of amplitude-damping or phase-damping noise- the violation of Svetlichny
inequality decreases very fast for small values of noise parameters. Figure 3.15 shows the effects
of noise parameter on the expectation value of the Svetlichny operator for three different initial
states, i.e., for , and . The range of violation further decreaseswith decrease
in the degree of entanglement of the initial state.

Allied with previous cases, we now evaluate the outcomes of weak measurement and its
reversal measurement operations. For depolarizing channel, we define with and
with in Eq. (2.12) such that the expressions of weak measurement and weak measurement

reversal operations are now given as and , respectively [He

66



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

τ(ρg)
S

v
(ρ

γ g
D

) o
p
t

 

 

A, =0

N, =0

A, =0.1

N, =0.1

A, =0.2

N, =0.2

Figure 3.14 : Plot of with respect to 3-tangle of the initial 3-qubit GHZ state for three
different values of decoherence parameter.
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Figure 3.15 : Effect of depolarizing channel on for three different initial input states.

and Ye, 2015; Singh and Kumar, 2018]. The finally shared state between Alice, Bob and Charlie,
therefore, evolves as

(3.45)
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where

(3.46a)

(3.46b)
(3.46c)
(3.46d)
(3.46e)
(3.46f)

(3.46g)

(3.46h)

As earlier, for evaluating the maximum expectation value of , we first evaluate the
expectation value, , given in Eq. (3.11), i.e.,

(3.47)

where . One can evaluate the optimum expectation value of the
Svetlichny operator for the finally shared state to obtain

(3.48)

We further evaluate a relationship between weak measurement strength and reverse weak
measurement strength for maximizing the amount of correlations in the finally shared state under
the influence of a depolarizing channel, such that

(3.49)

Using above relation, the maximum expectation value of Svetlichny operator can be achieved for
, and can be expressed as

(3.50)

which, in fact, is the same as Eq. (3.43) for a maximally entangled state, i.e, Eq. (3.43) for .
Hence, one can deduce that is always greater than . Furthermore, Figure
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Figure 3.16 : Plot of with respect to 3-tangle of the initial three-qubit GHZ state for three
different values of weak measurement strength, considering .
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Figure 3.17 : Effect of weak measurement on for three different initial input states,
considering .

3.16 describes the effect of weak measurement strength on the maximum expectation value of
Svetlichny operator against three-tangle of initial state, considering for optimal weak
measurement reversal strength. In addition, for optimal weak measurement reversal strength and
for initial states with , , and , Figure 3.17 describes the effect of weak
measurement strength on the maximum expectation value of Svetlichny operator considering

. The use of weak measurement and its reversal protocol, therefore, can be useful in
protecting the nonlocal correlations against mild depolarizing decoherence.
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3.4 ESTIMATION OF NONLOCALITY IN THE GENERALIZED GHZ CLASS STATES
In the previous section, we discussed the nonlocality in generalized GHZ class states

under different noisy conditions. Here, we further extend our analysis to describe the effect of
amplitude-damping and weak measurement strength on the following class of states,

(3.51)

where and are state parameters. For and , the set of states in Eq. (3.51)
correspond to the set of states in Eq. (3.1) and Eq. (3.2), respectively. In this case, we assume that
Charlie prepares a three-qubit state as defined in Eq. (3.51), and sends qubit 1 to Alice and qubit
2 to Bob. Before distributing the qubits through amplitude-damping channels, Charlie performs
weak measurements on qubits 1 and 2. Similarly, Alice and Bob also perform reverse quantum
measurements on their respective qubits once they receive it from Charlie.

Similar to previous cases, in order to find the maximum expectation value of Svetlichny
operator in the evolved three-qubit mixed state , the first term, , in Eq. (3.11) can be
expressed as

(3.52)

where = , = ,
= , = and = . Eq. (3.52)

can be further maximized using Eq. (3.9) with respect to by considering , , and
to be independent variables. Thus, one can easily deduce that and .

Therefore, from Eq. (3.11) the Mermin operator is given as

(3.53)

The sequential optimization of the Mermin operator is summarized below as

(3.54)

(3.55)

(3.56)

(3.57)
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where we have used the inequalities (3.12) and (3.17). In the above equations, the maximization is
performedwith respect to in Eq. (3.53), in Eq. (3.54), and and in Eq. (3.55). Furthermore,
in Eq. (3.56) we assumed that , , and . Similarly, the optimized value for
operator turns out to be the same as in Eq. (3.57) by considering and . Moreover,
three-tangle and residual concurrence for the states are given by
and , respectively. Therefore, using these expressions for three-tangle
and residual concurrence of the input state, the optimum value of Svetlichny operator can be
re-expressed as

(3.58)

(3.59)

Clearly, for perfect channels, i.e., for , the maximum expectation value of Svetlichny
operator is the same as derived in [Ajoy and Rungta, 2010]. Similarly, for weak measurement
strength, , the effect of decoherence fully vanishes and the optimum value of Svetlichny
operator is again the same as given in [Ajoy and Rungta, 2010]. Figure 3.18 shows the relationship
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Figure 3.18 : with respect to 3-tangle of the initial state for different weak measurement
strengths, considering for two different values of .

between and 3-tangle of the input state, for different values of weak measurement
strength considering noise parameter , for two different sets of GHZ states, i.e., for ,
and . Moreover in Figure 3.19, we show the relation between and 3-tangle
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of the initial input state, i.e., MS state , for different values of weak measurement
strength, considering noise parameter . Clearly, for , the effect of decoherence is
fully suppressed as the finally shared state always violates the Svetlichny inequality; and for
lower values of weak measurement strength, the finally shared state still violates the Svetlichny
inequality for a considerable range of three-tangle of the initial input state.
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Figure 3.19 : with respect to 3-tangle of the initial state for different weak measurement
strengths, considering and .

We further establish a relation between the maximum expectation value of the Svetlichny
operator and negativity [Sabín and García-Alcaine, 2008b] of the finally shared three-qubit
mixed state, numerically. For example, Figure 3.20 and Figure 3.21 demonstrate the effect of
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Figure 3.20 : Negativity of the finally shared 3-qubit state as a function of noise parameter .

amplitude-damping noise and weak measurement strength, respectively on the negativity of the
finally shared state. Lastly, in Figure 3.22, we show the relation between the optimum expectation
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value of Svetlichny operator and negativity of finally shared state for different values of weak
measurement strength, considering and .
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Figure 3.21 : Negativity of the finally shared 3-qubit state as a function of weak measurement strength
at different values of decoherence parameter .
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Figure 3.22 : Plot of maximum expectation value of the Svetlichny operator with respect to
Negativity of the finally shared state for different values of weakmeasurement strength,
considering .

3.5 ANALYSIS OF NONLOCAL CORRELATIONS IN THE W CLASS AND -TYPE STATES
We now proceed to analyse another important class of three-qubit states, i.e., W states as

represented in Eq. (3.3). Ajoy and Rungta [Ajoy and Rungta, 2010] have shown that the Svetlichny
inequality is more suitable to identify the tripartite nonlocality in W class of states- the inequality,
though, is violated only when the sum of concurrences of three bipartite reduced states exceeds a
certain threshold.

In order to analyse nonlocal correlations in W states in a similar communication scenario
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as described in the previous section, we first calculate the expectation value of the first term, i.e.,
in Eq. (3.6), in the evolved three-qubit state , such that

(3.60)

where = , = , = , = ,
and = . For maximizing the value of Svetlichny operator, we first assume

[Ajoy and Rungta, 2010], and then add the first four terms in Eq. (3.6) to get

(3.61)

The expression for can be written in a similar fashion. For simplicity and mathematical
convenience, let us define , , , and
where , such that

(3.62)

here the second equality is obtained by considering . Hence,

(3.63)

where

(3.64)

From Eq. (3.63), we can see that the finally shared tripartite entangled states will violate the
Svetlichny inequality iff . Clearly, for weak measurement strength

, the effect of decoherence fully vanishes, and a general tripartite entangled W state violates
the Svetlichny inequality when , where , , and

are the concurrences of the three reduced states of input state . Moreover, the
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Figure 3.23 : Maximum expectation value of with respect to the varying sumof concurrences
, for different weak measurement strengths, considering and

.

optimum value of Svetlichny operator is 4.354, which occurs when , = ,
and . The violation of Svetlichny inequality with respect to the varying sum
of concurrences of three reduced states of is depicted in Figure 3.23.

Furthermore, Pati and Agrawal [Agrawal and Pati, 2006] have shown that there is a
special class of W states, Eq. (3.4), which can be used for deterministic teleportation and dense
coding. Considering the importance of such a class in quantum information and computation, we
characterize nonlocal properties of these states under noisy conditions. For this, we consider the
set of states given in Eq. (3.4) and assume the phase vectors and to be for mathematical
convenience. The first term in Eq. (3.6) for the evolved three-qubit state can be
represented as

(3.65)

where = , = , and , , and
are the concurrences of bipartite states associated with finally shared state . The

optimized value of Svetlichny operator for the state can be calculated in a similar fashion as in
the case of , and can be given as

(3.66)

The violation of Svetlichny inequality for class states is confirmed, when
. Figure 3.24 and Figure 3.25 describe the effects of weak

measurement strength , considering , on the optimum value of the Svetlichny operator
against the varying sum of concurrences of the three reduced bipartite states of and the state
parameter for states, respectively.
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Figure 3.24 : with respect to the varying sum of concurrences , for different
weak measurement strengths, considering .
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Figure 3.25 : Maximum expectation value of vs for type states at different weak
measurement strengths, considering .

3.6 NONLOCALITY IN THE FOUR-QUBIT GHZ STATES
The Svetlichny inequality for a four-qubit system can be expressed as

(3.67)

Here the Svetlichny operator is given by

(3.68)

where , , and measurement operators are
defined in a similar fashion as for three-qubit systems. The violation of Svetlichny inequality in
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Eq. (3.67) confirms the presence of nonlocal correlations in an underlying state. In this section,
we analyse the effect of decoherence and weak measurements on nonlocality of the generalized
four-qubit GHZ states, i.e.,

(3.69)

For this, we first establish an analytical relation between nonlocality of the finally shared state with
four-qubit entanglement measure of the initial state , state parameter, noise parameter, and
the weak measurement strength. We further demonstrate the relation between nonlocality of the
evolved mixed state with the negativity of the finally shared state as an entanglement measure.

In order to analyse the effect of decoherence and weak measurements, we now consider a
scenario where Alice prepares a four-qubit pure GHZ state , performs weak measurement on
qubits 2, 3 and 4 and then sends second qubit to Bob, third to Charlie, and fourth to Dave through
amplitude-damping channels. After receiving the qubits, Bob, Charlie and Dave perform reverse
quantum measurements on their respective qubits. For simplicity, we again consider identical
decoherence parameters and identical weak measurement strengths for every channel. Therefore,
the expectation value in Eq. (3.68) with respect to the finally shared state is

(3.70)

where , and
. Similarly, one can evaluate other terms in Eq. (3.68), and rearrange it as a sumof two terms

so that

(3.71)

Here and are defined as

(3.72)
(3.73)

where

(3.74)
(3.75)

and

(3.76)

(3.77)

(3.78)

(3.79)
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For evaluating the relationship between and , we further consider two unit vectors and
where and such that

(3.80)

Therefore, and can be re-expressed as

(3.81)

and

(3.82)

where

(3.83)
(3.84)

The other coefficients , etc. can be defined in a similar fashion with primes on different
angles. In order to simplify and optimize the expressions further, we assume , and define
two unit vectors and such that and , i.e.,

(3.85)

This allows us to re-express Eq. (3.81) and Eq. (3.82) as

(3.86)

and

(3.87)

where

(3.88)
(3.89)

From Eq. (3.86) and Eq. (3.87), one can get

(3.90)

(3.91)
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Using these inequalities,the iterative maximization of Eq. (3.71) can be summarized below as

(3.92)

(3.93)

(3.94)

where Eq. (3.92) is maximized with respect to , and the first and second terms in the Eq. (3.93)
are maximized separately with respect to . To simplify and optimize Eq. (3.94), we use Eq. (3.88)
and Eq. (3.89), such that

(3.95)

Eq. (3.95) when maximized with respect to , using the inequality (3.12), gives

(3.96)

Similarly, the other terms in Eq. (3.94) can be evaluated as

(3.97)

(3.98)

(3.99)

where, for optimization,we consider . Therefore,
using Eqs. (3.96-3.99); Eq. (3.94) can be re-expressed as

(3.100)

Considering the orthogonality of unit vectors and , the maximum value of is
2 and maximum value of is 1, i.e.,

(3.101)
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Similarly, from the orthogonality of unit vectors and , Eq. (3.101) can be further optimized as

(3.102)

A further maximization on the parameter gives

(3.103)

Therefore, the relationship between and can be defined as

(3.104)

Using Eq. (3.104), the optimum value of Svetlichny operator in Eq. (3.71) can now be given as

(3.105)

Clearly, for states lying in the range

(3.106)

the bound of Svetlichny operator in Eq. (3.105) is maximized when attains its maximum value of
4, and hence the corresponding value of . Therefore, the expression for the maximum value
of Svetlichny operator for the states in range given by Eq. (3.106) is

(3.107)

Similarly, for the states lying in the range

(3.108)

the bound of Svetlichny operator is maximized when , and is . Therefore, the
expression for maximum value of Svetlichny operator for the states satisfying Eq. (3.108) is

(3.109)

Hence, the optimum expectation value of the Svetlichny operator for finally shared state is now
given by

(3.110)

Eq. (3.110) can be re-expressed in form of the four-qubit entanglement of the initially shared
generalized GHZ state, given by , such that

(3.111)

For perfect channels, i.e., with no noise or amplitude-damping ), one can deduce that the
maximum expectation value of Svetlichny operator is

(3.112)
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Figure 3.26 : Estimation of with respect to 4-qubit entanglement of the initial GHZ state
considering four different values of decoherence parameter .
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Figure 3.27 : Estimation of with respect to 4-qubit entanglement of the initial GHZ state
for different weak measurement strengths, considering .

Similarly, the effect of amplitude-damping channel completely vanishes when , i.e., the
finally shared state becomes a pure four-qubit state . Therefore, the expression for optimized
expectation value of Svetlichny operator will be the same as in Eq. (3.112). Based on our results, in
Figure 3.26, we demonstrate the effect of noise parameter on the expectation value of Svetlichny
operator against entanglement of the initially shared four-qubit GGHZ state. Similarly, Figure 3.27
demonstrates the effect of weak measurement strength on the expectation value of Svetlichny
operator against entanglement of the initially shared four-qubit GGHZ state, considering noise
parameter . Clearly, performing weak measurements on the qubits strengthens the degree
of correlation in the finally shared state. The analytical result obtained here completely agrees
with the numerical result obtained for the violation of Svetlichny inequality. For a maximally
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η

Figure 3.28 : Maximum expectation value of the Svetlichny operator as a function of noise parameter
for the finally shared state at different values of weak measurement strength.

entangled initial state, Figure 3.28 describes the effects of noise parameter andweakmeasurement
strength on the maximum expectation value of Svetlichny operator. Therefore, the use of weak
measurement and quantum measurement reversal protects genuine four-qubit nonlocality.

In the absence of weak measurement and its reversal operations, i.e., if the system is only
subjected to an amplitude-damping noise then the expectation value of (Eq. (3.68)) with
respect to finally shared state can be given as

(3.113)

where , and . Therefore, the optimum
expectation value of Svetlichny operator for finally shared state in this scenario can be evaluated
as

(3.114)

Similar to the three-qubit GGHZ case, we further evaluate a numerical relation between the
maximum expectation value of Svetlichny operator and negativity of finally shared mixed state.
The effect of amplitude-damping channel and weak measurement on the negativity of finally
shared state is depicted in Figure 3.29 and Figure 3.30, respectively. Figure 3.31 demonstrates the
variation of maximum expectation value of Svetlichny operator vs negativity for different values
of weak measurement strength, considering the noise parameter .
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Figure 3.29 : Negativity of the finally shared 4-qubit state as a function of noise parameter .
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Figure 3.30 : Negativity of the finally shared 4-qubit state as a function of weak measurement strength
at three different values of noise parameter .
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Figure 3.31 : Estimation of with respect to Negativity for different values of weak
measurement strengths, considering .
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3.7 SUMMARY
To summarise, we have analysed the effect of decoherence using amplitude-damping

channels and weak measurement and its reversal operations on genuine three- and four-qubit
nonlocality. We have also analysed the effect of phase-damping and depolarizing channels
under the applications of weak measurement and its reversal operations on genuine three-qubit
nonlocality. Our analysis for generalized three- and four-qubit GHZ states, three-qubit W class
and states allowed us to characterize the multiqubit nonlocal correlations in terms of noise
parameters and strengths of weak measurements. The results obtained here clearly suggest that
the effect of amplitude-damping on multiqubit nonlocality can be reduced or completely removed
depending on the strengths of weak measurement and its reversal operations. We have further
shown that the analytical results obtained in all the cases are in excellent agreement with the
numerical results. In future, it will be interesting to investigate the usefulness of finally shared
three-qubit and four-qubit mixed states for quantum information and computation.

…
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