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Nonlocal Quantum Correlations and Cumulant operators

4.1 INTRODUCTION
The discussion on nonlocality for bipartite and multiqubit systems in previous chapters

confirm the fundamental importance associated with quantum correlations for the essential
speed-up and efficiency of quantum information and computation, and hence is essential to
identify, distinguish and manipulate classical and quantum correlations present in a system. Such
nonlocal correlations between entangled qubits with no classical analogues not only distinguish
the quantumworld from its classical counterparts, but also play a key role in providing a physical
insight into the fundamentals of quantum information theory and computation. Although the
nonlocal properties of pure bipartite systems are well studied [Gisin, 1991], the characterization of
nonlocal properties of entangledmixed bipartite systems still requires adequate attention [Werner,
1989; Munro et al., 2001a; Ghosh et al., 2001; Ma et al., 2015; Singh and Kumar, 2018]. For example,
there exists bipartite mixed entangled states such as Werner state which are entangled but do
not violate the Bell inequality [Werner, 1989]. Moreover, the notion of quantum correlations
was initially limited to entangled systems only- the existence of nonclassical correlations in some
separable systems, however, raised serious questions on entanglement being solely responsible
for quantum correlations. For example, the deterministic quantum computation model shows
that highly mixed states can be used to achieve essential speed-up over the best known classical
algorithms [Knill and Laflamme, 1998; Vedral, 2003; Datta et al., 2008]. Therefore, the need to study
correlations from a perspective different than the entanglement versus separability paradigm.
Ollivier and Zurek proposed quantum discord [Ollivier and Zurek, 2001] as a prominent measure
of nonclassical quantum correlations for an underlying bipartite state. It has received considerable
attention for efficient, secure and optimal quantum information processing applications especially
beyond the scope of entanglement [Henderson and Vedral, 2001; Badziag et al., 2003; Koashi and
Winter, 2004; Peuntinger et al., 2013; Wu and Zhou, 2015; Gheorghiu et al., 2015; Chanda et al.,
2015; Qiang et al., 2016; Roga et al., 2016; Zou and Fang, 2016; Jebaratnam et al., 2017; Moreva et al.,
2017; Bera et al., 2017; Christ andHinrichsen, 2017; De Chiara and Sanpera, 2017; Braun et al., 2017].
Alternately, a closely related attempt is provided by Henderson and Vedral to separate classical
and quantum correlations in bipartite quantum states [Henderson and Vedral, 2001]. Quantum
systems coupled to a heat bath give rise to another measure of quantum correlations originating
from the “work (extracted from the heat bath) deficit” using the bipartite state shared between
two parties in comparison to the case when the entire state is in possession with one party only
[Oppenheim et al., 2002]. Other significant measures of quantum correlations are measurement
induced disturbance [Luo, 2008b] and dissonance [Modi et al., 2010] where the first one is based on
the idea that generic quantum measurements disturb the quantum system which can be used to
quantify the quantumness of correlations therein; the latter exploits the concept of relative entropy
to distinguish different correlations. In addition, one can also define a measure to detect quantum
correlations in large classes of separable bipartite systems based on the existence of linear witness
operators for quantum discord [Adhikari and Banerjee, 2012] .

Quantum discord, among all the measures to distinguish quantum and classical
correlations, has been extensively studied, e.g., it has received substantial attention in studies
involving fuzzy measurement [Vedral, 2003], broadcasting [Piani et al., 2008], complementarity
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and monogamy relationship between classical and quantum correlations [Oppenheim et al.,
2003; Koashi and Winter, 2004], dynamics of discord [Maziero et al., 2009; Mazzola et al., 2010],
operational interpretations of quantumdiscord in terms of statemerging [Madhok andDatta, 2011]
and teleportation fidelity [Yang et al., 2005], and the relation between discord and entanglement
[Cornelio et al., 2011; Adhikari and Banerjee, 2012]. Quantum discord also finds applications in
computing [Datta and Shaji, 2011], nuclear magnetic resonance [Katiyar et al., 2012], spin chains
[Nag et al., 2011; Dhar et al., 2012] and ground and thermal states of the clusters [Pal and Bose, 2011].
Although, an algorithm has been developed to calculate quantum discord for general two-qubit
states [Girolami andAdesso, 2011], the analytical expression for the quantumdiscord has only been
obtained for two-qubit states with maximally mixed marginals [Luo, 2008a], e.g., a certain class of
X-structured states. Recent studies have shown that an analytical expression is difficult to obtain
for arbitrary two-qubit states because of the optimization procedures involved. Considering this
complexity, Dakic et al. introduced another measure -geometric discord [Dakić et al., 2010], which
provides a much simpler way to quantify the amount of nonclassical correlations in an arbitrary
two-qubit state [Luo and Fu, 2010]. The formulation of geometric discord was further generalized
to the case of dimensional systems [Luo and Fu, 2010].

Therefore, the characterization of states, which are entangled but do not violate the Bell
inequality, requires more attention to understand the distinction between quantum and classical
worlds, and to ascertain the efficient success of quantum information processing protocols. Hence,
the relationship between nonclassicality and correlations needs a deeper analysis to understand
the importance and significance of quantum correlations in communication and computing. In
this chapter, to quantify nonlocal correlations, we propose to modify the Bell-CHSH inequality
[Clauser et al., 1969] using statistical correlation coefficients- such coefficients provide the extent
of correlations between the qubits, which is a direct measure of entanglement [Osborn, 1977;
Fano, 1983; Huang, 1987; Schlienz and Mahler, 1995; Audenaert and Plenio, 2006; Altafini, 2004;
Kumar and Krishnan, 2009]. In this chapter, we first define the modified Bell inequality as the
Bell-Cumulant inequality. For this, we derive an expression to modify the Bell-CHSH inequality
using correlation coefficients, indicating the degree of correlations between the qubits. We show
that a two-qubit state will violate the Bell-Cumulant inequality if the maximum expectation value
of the Bell-Cumulant operator is greater than zero. The analysis using correlation coefficients
further allows us to establish a relation between the maximum expectation value of Bell-Cumulant
operator and the state parameter of a two-qubit pure state. For arbitrary two-qubit mixed states,
we derive a criterion for the violation of Bell-Cumulant inequality using the celebrated Horodecki
criteria for the Bell inequality violation. Interestingly, our results show that the Bell-Cumulant
operator identifies the nonlocal correlations in certain classes of two-qubit mixed states, where the
Bell-CHSH operator fails to capture the nonclassical correlations. Furthermore, we also propose
a way to define geometric discord in terms of correlations coefficients. This further allows us
to establish a relation between geometric discord and the Bell-Cumulant operator. We finally
illustrate the results obtained in this chapter using examples of certain two-qubit mixed entangled
states. The analysis using correlation coefficients may prove to be an important study, as these
correlation coefficients can be estimated experimentally as well. Furthermore, we also extend our
study to analyse and characterize the nonlocal properties in three-qubit systems.

4.2 BELL-CUMULANT INEQUALITY
In order to facilitate the discussion, we first briefly define the correlation coefficients

existing between the qubits [Fano, 1983; Kumar and Krishnan, 2009]. For this, we alternately
represent an arbitrary two-qubit density operator as

I r I s (4.1)
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where represent the qubit index, represents a identity operator, r and s are polarization
vectors of two spins, ’s stands for standard Paulimatrices, and represents a second rank tensor,

i.e., whose coefficients represent correlations between the qubits defined

by , where . Further, from Eq. (1.3) correlation matrix
can also be defined as , where represents conjugate transpose of and is a real
matrixwhose coefficients are given by . Therefore, coefficients of correlation
matrix are defined by r s , where . The approach presented here can
be applied to qubits or other spin-1/2 systems as well as photons. Interactions between qubits do
result in correlations of the type described here.

The Bell-CHSH [Clauser et al., 1969] inequality revealed the distinction between classical
correlations allowed by local hidden variable models and quantum correlations which are less
intuitive and are explained by quantum theory. As discussed in the second chapter, the Bell-CHSH
inequality in its generalized form can be represented as

AB AB A B A B

where the operators , , , and have standard representations as discussed in previous
chapters, and represents average value of product of measurement outcomes of Alice
and Bob and likewise for similarly defined terms. The violation of Bell-CHSH inequality in
pure two-qubit states acts as a signature to confirm the existence of nonlocal correlations. The
advent of discord, however, suggested that the potential of nonlocal correlations in bipartite
mixed states may not be only related to entanglement, i.e., there are separable states exhibiting
nonlocal correlations, which may be useful for quantum information processing. Moreover, the
Bell-CHSH inequality fails to identify correlations in bipartite mixed entangled states as well for a
certain range of state parameters [Werner, 1989; Horodecki, 1996;Ma et al., 2015; Singh andKumar,
2018]. The characterization of such systems, therefore, is essential for understanding the nature of
nonlocal correlations and the fundamentals of quantum theory. We, therefore, proceed to modify
the Bell-CHSH inequality using correlation coefficients to analyse nonlocal correlations between
qubits. Using the formal definition of correlation coefficients, the modified Bell-CHSH operator is
given by

AB AB A B A B (4.2)

where AB AB A B . The other terms in Eq. (4.2) can be defined in a similar
fashion. We further assume that Alice and Bob always choose their measurements with an
equal probability of . Using the extremal strategy, e.g., a strategy where the outcomes of all
measurements for both Alice and Bob are +1, the maximum classical value for the operator in
Eq. (4.2) is zero. In general, we will get similar results for all other measurement outcomes of Alice
and Bob. Hence, the Bell-Cumulant inequality is given by

AB AB A B A B (4.3)

where the equality can be achieved for product states. Further, to evaluate the maximum
expectation value of Bell-Cumulant operator using quantum strategy, we consider a two-qubit
pure state where , shared between Alice and Bob. The
Bell-Cumulant operator, in terms of spin projection operators, can be re-expressed as

(4.4)
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Similar to previous chapters, for evaluating the maximum expectation value of , we need
to consider a pair of two mutually orthogonal unit vectors and such that

(4.5)

Therefore, Eq. (4.4) using Eq. (4.5) is further simplified as

(4.6)

where unit vectors and are defined as

(4.7)

The unit vectors and can also be defined as unit vectors and with primes on angles. In
order to evaluate the maximum expectation value of Bell-Cumulant operator, we first evaluate the
expectation value of the operator in Eq. (4.6), such that

(4.8)

Eq. (4.8) when maximized with respect to , using the fact that the maximum value of
is and considering , gives

(4.9)

Similarly, the maximum expectation value of the other operator in Eq. (4.6) is

(4.10)

Maximizing Eq. (4.6), with respect to and using Eqs. (4.9) and (4.10), we have

(4.11)

Eq. (4.11) can be further simplified using , such that

(4.12)

To evaluate the optimum value of Bell-Cumulant operator , we use the orthogonality
relation between and , such as the maximum value of is [Ghose et al., 2009].
Hence, Eq. (4.12) gives

(4.13)

Since, the optimum value of Bell operator for a generalized two-qubit state is
[Popescu and Rohrlich, 1992], therefore, from Eq. (4.13), we have

(4.14)

Figure 4.1 demonstrates the relationship between and the state parameter . It shows that
if is varied from 0 to 1 then the optimum value of Bell-Cumulant operator first increases, attains
a maximum value and then decreases to zero. Evidently, the extreme value of 0 can be obtained
for and , and the maximum value of can be obtained for , i.e., for a maximally
entangled Bell state. Clearly, every pure bipartite state violates the Bell-Cumulant inequality.
The analytical result obtained here is in complete agreement with the numerical optimization of
Bell-Cumulant operator for generalized pure two-qubit states.
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Figure 4.1 : Estimation of with respect to the state parameter .

4.3 BELL-CUMULANT OPERATOR FOR AN ARBITRARY MIXED SPIN STATE
The analysis and characterization of nonlocal correlations in an arbitrary bipartite mixed

state is much more complex than the analysis of nonlocality in pure two-qubit states. In this
section, we evaluate an effective criterion for an arbitrary mixed spin state for violating the
Bell-Cumulant inequality. For this, we use the similar optimization technique that was used by
Horodecki et al. to propose a necessary and sufficient condition for violation of the Bell-CHSH
inequality by an arbitrary mixed spin state, represented in Eq. (1.3) [Horodecki, 1995]. The
procedure further allows us to confirm that all pure two-qubit states violate the Bell-Cumulant
inequality. We finally illustrate our results using some important two-qubit mixed entangled
states where the Bell-CHSH inequality fails to detect nonlocal correlations but the Bell-Cumulant
inequality detects the presence of nonlocality. In order to facilitate discussions, we define a
diagonalizable symmetric matrix where stands for correlation matrix defined in Eq.
(4.1) and represents conjugate transpose of . We further define a quantity ,
where and are two positive, greatest, and real eigenvalues of . Therefore, to evaluate
the effective criterion for the violation of Bell-Cumulant inequality, we use general form of the
Bell-Cumulant operator from Eq. (4.4) such that

T T (4.15)

The linearity of inner products lead us to re-express Eq. (4.15) as

T T (4.16)

therefore, we have

(4.17)

In order to maximize , we use pair of mutually orthogonal vectors and as defined in Eq.
(4.5), such that

(4.18)
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Therefore, the maximum expectation value of Bell-Cumulant operator is given as

(4.19)

where and are defined as and . Here, we have
considered and as eigenvectors related to the two largest eigenvalues of symmetric matrix
andmaximum is taken over all unit andmutually orthogonal pair of vectors , and . Therefore,

we get

(4.20)

Hence, if then the state will violate the Bell-Cumulant inequality.

Theorem 4.3.1. An arbitrary mixed spin state represented by density operator violates the
Bell-Cumulant inequality iff .

We readdress the question whether all pure states violate the Bell-Cumulant inequality or
not. For this, we represent a generalized pure bipartite entangled state in Hilbert-Schmidt basis as

(4.21)

where . For further discussion, Eq. (4.21) can be represented in terms of a density
operator as

I I I I

(4.22)

From Eq. (4.22), we evaluate the two largest eigenvalues of real symmetric matrix as
, such that . Therefore, for all pure two-qubit entangled states, ,

and hence every pure bipartite entangled state violates the Bell-Cumulant inequality. Moreover,
the maximum expectation value of Bell-Cumulant operator is

(4.23)

The result obtained in Eq. (4.23) completely agrees with the result evaluated in Eq. (4.13).

We now proceed to analyse nonlocal properties of some of the mixed states where the Bell
inequality fails to confirm the presence of nonlocal correlations.

(1) For mixed states, we first consider two-qubit Werner states [Werner, 1989], represented in
Eq. (2.41). Although Werner states are entangled for , they only violate the Bell-CHSH
inequality for , i.e., Werner states, though entangled, do not violate the Bell-CHSH
inequality for . Hence, one can observe that the original Bell-CHSH inequality
fails to detect nonlocal correlations in Werner states for a certain range of state parameter .
Using the analysis presented in this chapter, the eigenvalues of real symmetric matrix of
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Werner states are . Thus, is and the maximum expectation value of
Bell-Cumulant operator is

(4.24)

Therefore, if then , and hence, Werner states always violate the Bell-Cumulant
inequality for the whole range of , i.e., for .

(2) As our next example, we consider an important set of two-qubit mixed states, namely
Horodecki states [Horodecki, 1996], represented in Eq. (2.44). Horodecki states are entangled
for , but violate the Bell-CHSH inequality only for . Hence, in this case,
the original Bell-CHSH inequality again fails to detect nonlocal correlations for .

The eigenvalues of for Horodecki states are , and thus, the maximum
expectation value of Bell-Cumulant operator can be computed as

(4.25)

Clearly, is greater than , and hence Horodoki states violate the Bell-Cumulant
inequality for the complete range of state parameter .

(3) We also analyse another class of mixed bipartite states proposed by WenChao Ma et al. [Ma
et al., 2015], given by

(4.26)

where is a state parameter. The state is entangled for , but violates the Bell-CHSH
inequality only for . Therefore, we evaluate for the given state, such
that . Hence, the optimum value of Bell-Cumulant operator for the given
state is

(4.27)

Again the Bell-Cumulant inequality is violated for the complete range of state parameter ,
i.e., for .

(4) We finally consider the new class of bipartite mixed states proposed in chapter 2. We have
already demonstrated that the proposed states are always entangled but do not violate the
the Bell-CHSH inequality for certain ranges of amplitude-damping parameter and weak
measurement strength . Therefore, we now advance to analyse nonlocality in the proposed
class of states using the Bell-Cumulant operator. For this, we first re-express the proposed
class of two-qubit mixed states, namely

(4.28)

where and . Clearly, for the proposed

class, ; hence the optimum value of Bell-Cumulant operator for the proposed
class of states is

(4.29)

91



η

ϒ

Figure 4.2 : Estimation of with respect to state parameter of the proposed state in chapter-2
and decoherence parameter .

Figure 4.2 shows the violation of Bell-Cumulant inequality with respect to state parameters
and . It suggests that the proposed class of states always violate the Bell-Cumulant inequality,
further confirming the results shown in Figure 2.14 and Figure 2.15, respectively. Therefore, the
Bell-Cumulant inequality detects nonlocal correlations in mixed entangled states, where even the
Bell inequality fails to detect nonlocality for certain ranges of state parameters.

4.4 RELATIONSHIP BETWEEN THE BELL-CUMULANT INEQUALITY AND DISCORD
Quantum discord or discord captures nonlocal correlations in entangled as well as

separable systems [Ollivier and Zurek, 2001; Henderson and Vedral, 2001]. Alternately, one can
also evaluate geometric discord [Dakić et al., 2010] to confirm the presence of nonlocal correlations
in an underlying state. In this section, we evaluate themaximumandminimumvalues of geometric
discord for an arbitrary two-qubit state in term of correlationmatrix . The analysis further allows
us to establish an analytical relation between geometric discord and the Bell-Cumulant inequality.
Finally, we illustrate the importance of our results for certain important classes of two-qubit states.

Geometric discord is a relatively simpler measure to quantify nonclassical correlations in
an arbitrary bipartite state in comparison to discord, and is defined as

(4.30)

where represents the set of zero-discord states and is the square norm.
In order to simplify the calculations, we use the analytical expression for geometric measure of
discord for an arbitrary two-qubit system represented in Eq. (1.30), and given as

where is the maximum eigenvalue of matrix . In order to compute the maximum
and minimum value of geometric discord, we use Weyl’s theorem [Horn et al., 1990; Knutson and
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Tao, 2001] which states that if where denotes the set of Hermitian matrices,
and and represent eigenvalues of and operators, respectively,
arranged in an ascending order such that represents the minimum eigenvalue and
represents the maximum eigenvalue of , then for

(4.31)

In terms of correlation matrix , the geometric discord for an arbitrary two-qubit state, using a
relation , is defined as

(4.32)

where . Moreover, from the inequality in Eq. (4.31), and
from Eq. (4.32), we have

(4.33)

From the inequalities in Eq. (4.33), one can define

(4.34)

(4.35)

Clearly, from Eqs. (4.34-4.35), if all eigenvalues of the matrix are equal then
. Using the above result, one can also establish an analytical relation between

geometric discord and the Bell-Cumulant operator. For example, from Eq. (4.35), we have

(4.36)

Therefore, from Eq. (4.20) and Eq. (4.36), we get

(4.37)
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Hence, for an arbitrary two-qubit mixed entangled state , we have

(4.38)

Further, from Theorem 4.3.1, an arbitrary two-qubit state violates the Bell-Cumulant inequality, iff
, hence it follows the Bell-Cumulant inequality will be violated iff . In order to

demonstrate the importance of our results, we now illustrate few specific examples of entangled
bipartite states.

(1) We first consider a pure two-qubit state , and then represent it in
term of a density operator as

I I I t (4.39)

The correlation matrix and geometric discord for are given as

(4.40)

and

(4.41)

respectively. From Eq. (4.40), the eigenvalues of matrix are , , and .
Hence, and from Eq. (4.20), Eq. (4.34), and Eq. (4.35), it is straight forward
to obtain

(4.42)

(4.43)

and

(4.44)

Therefore, from Eq. (4.42) and Eq. (4.43), one can see that . This
clearly validates the results obtained in Eq. (4.38). In addition, it is also evident that the
maximum value of geometric discord can be easily computed from the optimum value of
Bell-Cumulant operator. Hence, the Bell-Cumulant inequality is a very useful tool to detect
nonclassical correlations in pure bipartite systems. Further, from Eq. (4.41) and Eq. (4.43),
it is also clear that . Figure 4.3 demonstrates the maximum and minimum
value of geometric discord for pure two-qubit entangled states using the results evaluated
in this section. Figure 4.3 also exhibits the validity of our analytical results computed in this
section.
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Figure 4.3 : A comparison between estimated values of geometric discord, andmaximumandminimum
value of geometric discord as evaluated using correlation coefficients with respect to the
state parameter .

(2) For the next example, we consider two-qubit Werner states [Werner, 1989], defined in Eq.
(2.41). The geometric discord of Werner states is evaluated as

(4.45)

Similarly, the correlation matrix for two-qubit Werner states is given as

(4.46)

Since all eigenvalues of matrix are equal, i.e., , the expressions for
maximum and minimum geometric discord are given as

(4.47)

Further, from Eq. (4.24) and Eq. (4.47), we also have . Figure
4.4 further demonstrates that the maximum and minimum values of geometric discord are
equal to geometric discord in case of Werner states due to the fact that eigenvalues of the
matrix are equal.

(3) As earlier, we now analyse Horodecki states [Horodecki, 1996] as defined in Eq. (2.44).
Clearly, the correlation matrix for Horodecki states is expressed as

(4.48)

and from Eq. (4.34) and Eq. (4.35), the maximum and minimum value of geometric discord
can be also be evaluated as

(4.49)

(4.50)
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Figure 4.4 : A comparison between estimated values of geometric discord, andmaximumandminimum
value of geometric discord as evaluated using correlation coefficients with respect to the
state parameter of the Werner state.

Interestingly, Figure 4.5 shows that the value of geometric discord always lies between the
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Figure 4.5 : A comparison between estimated values of geometric discord, andmaximumandminimum
value of geometric discord as evaluated using correlation coefficients with respect to the
state parameter of Horodecki states.

maximumandminimumvalues of geometric discord forHorodecki states as evaluated using
the correlation matrix .

(4) We further consider another important class of two-qubitmixed states, as defined in Eq. (4.26),
for which the correlationmatrix and expressions for maximum andminimum geometric
discord can be given as

(4.51)
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(4.52)

(4.53)

respectively. Figure 4.6 suggests that the value of geometric discord evaluated using
correlation coefficients lies between the maximum and minimum value of geometric discord
for the above class of states as well.
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Figure 4.6 : A comparison between estimated values of geometric discord, andmaximumandminimum
value of geometric discord as evaluated using correlation coefficients with respect to the
state parameter of the state proposed by WenChao Ma et al.

(5) As in the previous section, we finally analyse our proposed class of two-qubit mixed states,
as defined in Eq. (4.28), such that the correlation matrix for is given as

(4.54)

Moreover,

(4.55)

(4.56)

Similar to other cases, Figure 4.7 again confirms the validity of results evaluated in
this section. Hence, from above analysis, one can conclude that analytical computation
of the maximum and minimum values of geometric discord using statistical correlations
coefficients can be used as an alternative to capture nonclassical correlations in an underlying
two-qubit state.

4.5 MODIFIED SVETLICHNY INEQUALITY FOR THREE-QUBIT STATES
In the previous section, to quantify the nonlocal correlations in bipartite systems, we

derived an analytical expression to modify the Bell-CHSH inequality using statistical correlation
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Figure 4.7 : A comparison between estimated values of geometric discord, andmaximumandminimum
value of geometric discord as evaluated using correlation coefficients with respect to the
state parameter of the proposed class of states in chapter-2.

coefficients indicating the degree of correlations between the individual qubits. In this section, we
modify the Svetlichny inequality using the statistical correlation coefficient for the characterization
of nonlocality in three-qubit systems. Further, we derive an analytical relation between the
modified Svetlichny inequality and three-tangle , which measures the genuine tripartite
entanglement for generalized GHZ states. As discussed earlier, due to the increased complexity
in multiqubit systems, the characterization of nonlocality in three-qubit generalized GHZ states is
muchmore complex in comparison to analysing nonlocal correlations in pure two-qubit states. For
example, in case of three-qubit systems, to confirm the presence of genuine quantum correlations
between three qubits, one needs to distinguish between bi-separable vs genuine tripartite
nonlocality. In general, three-qubit entangled resources violating the Svetlichny inequality are
considered to be useful resources for quantum information and computation.

The Svetlichny inequality for a three-qubit system as defined in Eq. (1.26), is represented
as

where measurement operators A or A , B or B , and C or C are defined in previous chapters.
The above inequality is violated by three-qubit quantum systems exhibiting genuine tripartite
nonlocality, and satisfied by all the separable and bi-separable systems. The three-qubit
generalized GHZ states , represented in Eq. (3.1), violate the Svetlichny inequality only for

, where measures the genuine tripartite entanglement in GHZ class. In
general, the Svetlichny inequality cannot identify nonlocal correlations in a large set of GHZ class
states, i.e., for states with . Hence, to characterize nonlocal correlations in tripartite
systems, wemodify the Svetlichny inequality using three-qubit correlation coefficients [Fano, 1983;
Kumar and Krishnan, 2009]. Similar to the case of two-qubit states, we redefine the original
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Svetlichny operator as

(4.57)

where

(4.58)

and likewise for similarly defined terms. Analogous to the Bell-Cumulant inequality, the
maximum classical value of modified operator in Eq. (4.57) using the extremal strategy is achieved
as zero. Hence, the modified Svetlichny inequality can be expressed as

(4.59)

Clearly, the equality can be achieved by separable and bi-separable systems and the inequality
must be violated by all entangled pure three-qubit states.

In order to evaluate the maximum expectation value of the modified Svetlichny operator
using quantum strategy, we start with three-qubit generalized GHZ states shared between

Alice, Bob, and Charlie. As in the previous case, for optimizing the expectation value of modified
Svetlichny operator, we first need to define in terms of spin projection operators and unit vectors
as defined in Eq. (3.8). Moreover, for evaluating the maximum expectation value of , we further
need to consider a pair of two mutually orthogonal unit vectors and such that

, , and

(4.60)

Following the above discussion, Eq. (4.57) can be re-expressed as

(4.61)

Eq. (4.61) when maximized with respect to , gives

(4.62)

Here, similar to the previous cases, we used the fact that

(4.63)

In order to evaluate the maximum expectation value of with respect to generalized GHZ states,
we now consider calculating the first term in Eq. (4.62), such that

(4.64)

where . The expectation value when maximized with respect to
gives

(4.65)
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In Eq. (4.65), we further assume , such that

(4.66)

The maximum values of the operators , and can also be evaluated in a
similar fashion with primes on required angles. Therefore, from Eq. (4.62), we get

(4.67)

Considering the orthogonality relation between unit vectors and in Eq. (4.60), the maximum of
is 1, while the maximum of is 2. Therefore, inserting these values in

Eq. (4.67), it can be re-expressed as

(4.68)

Further, we know that

(4.69)

where the first equality results when =0 or and the second equality results when = . Using
the above fact, Eq. (4.68) can be maximized with respect to and . Furthermore, the maximum
value of is 1, therefore, is always less than 2, i.e., , and hence the optimum
expectation value of modified Svetlichny operator for generalized GHZ states, considering

is

(4.70)

Figure 4.8 clearly demonstrates the relationship between and three tangle for
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Figure 4.8 : Estimation of maximum expectation value of with respect to 3-tangle of
three-qubit generalized GHZ states.
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generalized GHZ states. It shows that if is varied from 0 to 1 then the optimum value
of modified Svetlichny operator first increases, and then obtains a maximum value at .
The maximum value of modified Svetlichny operator is , achieved for a maximally entangled
three-qubit pureGHZ state. Our analysis shows an excellent agreement between the analytical and
numerical results. Unlike the original Svetlichny inequality, the modified Svetlichny inequality
identifies nonlocal correlations in all the generalized GHZ states for the complete range of the
three-qubit entanglement measure .

4.6 SUMMARY
We have analysed the nonlocal correlations in bipartite and tripartite systems, where

the original Bell-type inequalities fail to capture nonlocality, while the correlation coefficient
based Bell-type Cumulant inequalities give credible results. In this chapter, we estimated the
optimum expectation value of Bell-Cumulant operator for classical and quantum strategy. We
also evaluated a necessary and sufficient condition for the violation of Bell-Cumulant inequality
by an arbitrary two-qubit state. Moreover, we derived an analytical expression to calculate the
maximum and minimum value of geometric discord using properties of correlations coefficients.
For further analysing the nonclassical correlations, wedemonstrated an analytical relation between
the Bell-Cumulant inequality and geometric discord. Further, we also extended our analysis to
characterize nonlocality in three-qubit GGHZ class using a modified Svetlichny inequality. Our
results show that correlation coefficients can be used as quantifiers to characterize and analyse the
usefulness of mixed bipartite and tripartite systems for quantum communication and information
processing. Our study presents an important contribution for deeper analysis and understanding
the importance of nonlocal correlations in an underlying two- or three-qubit state for quantum
information and computation.

…
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