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Bell’s Inequality With Biased Experimental Settings

5.1 INTRODUCTION
The classification and quantification of entanglement and nonlocality have received a

significant attention due to its usefulness as a resource in quantum information and computation.
In order to understand and characterize the exact nature of nonlocal correlations derived from
entanglement, one need to analyse as to when nonlocality is useful in context of nonlocal tasks
in comparison to classical correlations. For example, there are instances, where nonlocality does
not provide much advantage or perform better than classical mechanics [Linden et al., 2007;
Almeida et al., 2010] for computing nonlocal tasks or where quantum theory may succeed against
classical theory only under certain scenario [Allcock et al., 2009]. In the context of quantum
information, the uncertainty relations shed further light into the nature and applicability of
nonlocal correlations [Deutsch, 1983; DiVincenzo et al., 2004; Renes and Boileau, 2009; Berta
et al., 2010; Oppenheim and Wehner, 2010; Wehner and Winter, 2010]. A particularly useful
relation that distinguishes between degree of nonlocality in classical, quantumand super-quantum
correlations is fine-grained uncertainty relation proposed byOppenheimandWehner [Oppenheim
and Wehner, 2010]. Another key insight to the degree of nonlocality of the underlying physical
theory was provided by Lawson et al. [Lawson et al., 2010] where they tried to understand the
nature of quantum entanglement in context of a nonlocal game. They showed that for a class
of Bell-CHSH inequality, if two players choose their measurements with a certain bias then for a
certain range of biasing parameters, quantum correlations do not offer any advantage over classical
ones.

In this chapter, we analyse the Bell-CHSH inequality in the settings of a biased nonlocal
game to revisit the question of usefulness of quantum entanglement and nonlocal correlation as a
resource for quantum information processing. Using standardmethodswith the help of Tsirelson’s
inequality [Tsirelson, 1980] and Horodecki’s separability criterion [Horodecki, 1995], we optimize
the expectation value of Bell-CHSH operator for classical and quantum theory to distinguish
between classical, quantum and super-quantum correlations in a biased experimental scenario.
This allows us to demonstrate that the quantum bound is always greater than the classical bound,
for the complete range of biasing parameters. We also use fine-grained uncertainty [Oppenheim
and Wehner, 2010; Dey et al., 2013] relation to analyse the maximum winning probability of
the nonlocal game using classical and quantum theory, which further confirms that quantum
correlations are advantageous in comparison to classical correlations. We show this by evaluating
the ranges of biasing parameters, where the fine-grained uncertainty relation can be a useful
measure to detect nonlocal correlations in any bipartite system. We finally discuss the Bell-CHSH
inequality for pure and mixed states under biased scenario. For this, we find a condition for
the violation of Bell-CHSH inequality by an arbitrary spin-1/2 state under biased measurement
settings. Our analysis shows that all the pure states violate the Bell-CHSH inequality [Clauser
et al., 1969] under biased scenario. For mixed states, the two-qubit states such as Werner state
[Werner, 1989], Horodecki’s state [Horodecki, 1996], a state proposed by WenChao Ma et al. [Ma
et al., 2015] and a class of states proposed in chapter-2 exhibit similar nonlocal behaviour in biased
as well as unbiased experimental set-up.
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5.2 CLASSICAL BOUND FOR THE CHSH OPERATORWITH BIASED EXPERIMENTAL SET-UP
Bell type inequalities provide a way to understand the fundamental differences between

nonlocality and local hidden variable theories. For bipartite systems the CHSH inequality [Clauser
et al., 1969] is given by

A B A B A B A B (5.1)

In this case, Alice and Bob choose their measurements as or and or respectively, with
equal probability of such that

(5.2)

where , , , are unit vectors, ’s are spin projection operators, and represents
average value of product of measurement outcomes of Alice and Bob with . Since the
measurement outcomes of operators , , or are , Eq. (5.1) is valid for all different
measurement outcomes. However, the above scenario is not that simple if Alice and Bob choose
their measurement operators with a certain bias. For example, if Alice chooses to perform her
measurement with probability and with probability , and Bob chooses to perform
his measurement with probability and with probability then the Bell operator can be
expressed as

A B A B A B A B
(5.3)

Interestingly, the introduction of biasing parameters and lead to four different regions to be
considered based on the measurement outcomes of operators , , , and on the values of
and , such that the CHSH inequality modifies as

Case I: If and then the CHSH inequality in Eq. (5.3) can be represented as

(5.4)

Case II: If and then the CHSH inequality in Eq. (5.3) can be represented as

(5.5)

Case III: If and then the CHSH inequality in Eq. (5.3) can be represented as

(5.6)

Case IV: If and then the CHSH inequality in Eq. (5.3) can be represented as

(5.7)

In this chapter, we show that quantum strategies are always better that classical ones in all the
above four regions.

Webegin our discussionwithdescribing the CHSH inequality as a nonlocal quantumgame.
A key insight to the properties of nonlocal correlations was provided by Lawson et al. [Lawson
et al., 2010] where they introduced a biased nonlocal quantum game in which two parties decide
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to choose their measurements with some probability for a CHSH game [Clauser et al., 1969]. In
an unbiased scenario, the left side of CHSH inequality given in Eq. (5.1) can be considered as
an average score which is calculated over all the rounds where the factor is considered as a
probability to choose a particular pair of measurement and . Therefore, Eq. (5.1) represents
the maximum possible score that can be achieved using a classical strategy. Clearly, if this game is
played using quantum strategies then this inequality is violated, suggesting that one can perform
better if the measurements are performed on entangled quantum systems. Alternately, this game
can also be interpreted as an input-output problem in computer science and engineering [Dey et al.,
2013] where Alice and Bob have input binary variables and , and output binary variables and
, respectively. If Alice chooses then takes the value 0, and if Alice chooses then takes
the value 1. The output variable takes values or depending on whether Alice’s measurement
outcome is or . The values for Bob’s input and output variables can be defined in a similar
fashion. The CHSH game’s winning conditions for Alice’s and Bob’s particles are

(5.8)

where denotes addition modulo 2. Therefore, the average score that can be achieved by Alice’s
and Bob’s particles can then be represented as

(5.9)

where represents the probability that input pair is . For simplicity, we take
where and . As we have

shown above, we need to consider the average score in four different regions as given in Eq. (5.4) -
Eq. (5.7). Lawson et al. [Lawson et al., 2010] computed the maximum classical and quantum scores
for this game, where they only considered . In subsequent sections, we analyse the whole

space and compare the maximum classical and quantum score for the CHSH game.

5.3 QUANTUM BOUND FOR THE CHSH OPERATORWITH BIASED EXPERIMENTAL SET-UP
In this section, we consider the nonlocal biased gamewith quantum strategy inwhich Alice

and Bob initially share a bipartite entangled state. In general, when measurements are performed
on entangled systems, inequality in Eq. (5.1) is violated due to the existence of nonlocal correlations
between entangled particles. Quantum theory imposes a limit on such nonlocal correlations,
and Tsirelson [Tsirelson, 1980] showed that the maximum limit of this violation is . Precisely,
Tsirelson showed that

I (5.10)

Using Tsirelson’s inequality, it is easy to show that

(5.11)

We first analyse Tsirelson’s inequality for a biased measurement set-up such that Eq. (5.10) can be
expressed as

B

I

(5.12)
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where is an anti-commutator of operators and , and is a commutator of
operators and . The commutator and anti-commutator for operators and are defined in
a similar fashion. Thus, the maximum expectation value of Eq. (5.12) can be given as

B

(5.13)

Since and , hence Eq. (5.13) when maximized with respect
to and gives themaximumviolation of CHSH inequality for quantummeasurements in biased
scenario as

B

(5.14)

Similar to the case described above, based on the biasing parameters and we need to consider
four different cases as shown below

Case I: If and , then the maximum expectation value of B is

B

(5.15)

Case II: If and , then the maximum expectation value of B is

B

(5.16)

Case III: If and , then the maximum expectation value of B is

B

(5.17)

Case IV: If and , then the maximum expectation value of B is

B

(5.18)
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We have computed the maximum possible score in a CHSH game using classical and quantum
strategies in Eqs. (5.4-5.7) and Eqs. (5.15-5.18), respectively. In both the cases, the score depends
on biasing parameters and and can be divided into four different regions. Figure 5.1 clearly

p

q

Figure 5.1 : Comparison of classical and quantumbounds of CHSHoperator varying with parameters p,q
in a biased experimental set-up.

demonstrates that for all space, the bound of the score of a CHSH game using quantum
strategies is always greater than the score of CHSH game using classical strategies when we
choose measurement operators with certain probability. Therefore, one can say that quantum
correlations are better resources than classical correlations for whole range of biasing parameters
, . Furthermore, Figure 5.1 also differentiates the classical, quantum and super-quantum

correlations based on maximum possible value of CHSH function in biased experimental set-up.

5.4 FINE-GRAINED UNCERTAINTY RELATIONS
Alternately, classical, quantumand super-quantum correlations can be distinguished using

fine-grained uncertainty relations as proposed by Oppenheim and Wehner [Oppenheim and
Wehner, 2010]. For a CHSH nonlocal game, they established a relation between the upper bound
of uncertainty relation, maximum winning probability, and degree of nonlocality associated with
a physical theory. The upper bound of the CHSH nonlocal game with unbiased measurement
settings in classical, quantum, and no-signalling theory was shown to be , , and 1
respectively. Moreover, if the winning probability of the game is less than 1, the outcome of the
CHSH game is uncertain. The maximum winning probability for a nonlocal game with biased
experimental set-up is given as [Oppenheim and Wehner, 2010; Dey et al., 2013]

B (5.19)

where B is the maximum expectation value of Bell-CHSH operator in Eq. (5.3) with
respect to a bipartite system . Therefore, the fine-grained uncertainty can be used as a tool
to distinguish between classical, quantum, and super-quantum correlations for the unbiased
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measurement settings. However, in biased measurement settings, fine-grained uncertainty
succeeds only for certain range of biasing parameters. Ansuman et al. [Dey et al., 2013] computed
the maximum winning probability for this game in region IV where biasing parameters are ,
and . Although the other regions are symmetrical, here we consider the whole (p, q) space
to compare our results in previous section and compute the maximumwinning probability of the
game in the underlying classical, and quantum theories using Eqs. (5.4-5.7) and Eqs. (5.15-5.18),
such that

Case I: For , , and , the maximum
winning probabilities with biased measurement settings in classical and quantum theories
are

(5.20)

Case II: For , , and , the
maximumwinning probabilities with biasedmeasurement settings in classical and quantum
theories are

(5.21)

Case III: For and , and , the
maximumwinning probabilities with biasedmeasurement settings in classical and quantum
theories are

(5.22)

Case IV: For , , and , themaximum
winning probabilities with biased measurement settings in classical and quantum theories
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are

(5.23)

The winning probability reduces to the value in classical theory and to the value of in
quantum theory for the unbiased case, when and . Figure 5.2 illustrates a region, where

Figure 5.2 : Region in [p,q] space where fine-grained uncertainty can distinguish between quantum and
classical correlations.

the upper bound of the fine grained uncertainty differentiates between the quantum and classical
correlations.

The average score of this game for super quantum correlations or no-signalling theory
[Barrett et al., 2005] is

(5.24)

which is the same as upper bound of the fine-grained uncertainty relation. Here, one can easily
observe that the winning probability of quantum theory is always greater than classical theory for
the whole range of biasing parameters.
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5.5 ARBITRARY SPIN STATE AND THE CHSH INEQUALITY WITH BIASED EXPERIMENTAL SET-UP
The nonlocal properties of pure bipartite systems in an unbiased scenario is well defined.

For example, all pure bipartite states violate the Bell-CHSH inequality [Gisin, 1991].However, due
to complex nature of mixed entangled states, the nonlocal properties of such systems still surprise
the research community [Werner, 1989; Horodecki, 1996; Munro et al., 2001a; Ghosh et al., 2001; Ma
et al., 2015]. Therefore, in this section, we analyse the nonlocal properties of pure and mixed states
under biased scenario.

For an unbiased experimental set-up where Alice and Bob choose their measurements with
equal probability, Horodecki et al. [Horodecki, 1995] proposed an effective criterion for violation
of CHSH inequality by an arbitrary mixed spin-1/2 state. Any arbitrary spin-1/2 state can be
represented using a density operator as

I I r I I s t (5.25)

where is a identity operator, r and s represent polarization vectors of two spins, respectively,
and coefficients form a real matrix which is denoted by such that . In
order to facilitate further discussions, we define a diagonalizable symmetric matrix
where represents transpose of . We further define and as two positive, greatest,
and real eigenvalues of . We now proceed to demonstrate the criterion for violation of the CHSH
inequality under biased scenario. For this, we use the general form of Bell operators [Popescu and
Rohrlich, 1992] associated with the CHSH inequality in the following form

B (5.26)

Eq. (5.26) can be re-expressed under biased scenario as

B (5.27)

We now evaluate the mean value of B for an arbitrary mixed bipartite state , such that

B (5.28)

For maximizing B , we introduce two orthogonal unit vectors such that

(5.29)

where . Therefore, the maximum expectation value of CHSH operator is given by

B

(5.30)

The two largest eigenvalues of can be defined as and where
and are chosen as eigenvectors related to the two largest eigenvalues of real symmetric matrix
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, and maximum is taken over all unit and mutually orthogonal pair of vectors ( ). Similar to
the arguments given above, we get four different regions based on the biasing parameters as

Case I: If and , then the maximum expectation value of B for arbitrary mixed
spin- state is

B (5.31)

Case II: If and , then the maximum expectation value of B for arbitrary mixed
spin- state is

B (5.32)

Case III: If and , then themaximum expectation value of B for arbitrarymixed
spin- state is

B (5.33)

Case IV: If and , then themaximum expectation value of B for arbitrarymixed
spin- state is

B (5.34)

In order to address the nonlocality of pure and mixed states under biased scenario, we now
illustrate few specific examples of entangled bipartite states.

(1) For evaluating the violation of Bell-CHSH inequality by pure states under biased scenario,
we define a pure two-qubit state in term of a density operator as given
in Eq. (4.22). From Eq. (4.22), one can compute the two largest eigenvalues of real symmetric
matrix as , and . If we consider Case I, where and ,
then the maximum classical bound of the CHSH function is , and the maximum
quantum bound of the CHSH function for any pure state is

B

(5.35)

Further, it is well known that for any arbitrary pure bipartite entangled state .
Therefore,

(5.36)

and, hence

B B (5.37)
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Similarly, for other regions of space, one can also find same results, and therefore
every pure bipartite entangled state violates the CHSH inequality under biased experimental
set-up. Figure 5.3 demonstrates the maximum classical and quantum score of the Bell-CHSH
game for different values of biasing parameters p and q, which further confirms that when
the state is maximally entangled, it achieves the maximum quantum bound of Bell inequality
in biased experimental set-up.

Figure 5.3 : Maximum possible classical and quantum scores of a CHSH game with an arbitrary pure
bipartite entangled state for different values of biasing parameters p and q.

(2) For mixed states, we consider an example of Werner state [Werner, 1989] given in Eq. (2.41).
The eigenvalues of the real symmetric matrix of Werner state are .
Considering and , the maximum classical bound of the CHSH function is

, and the maximum quantum bound of the CHSH function is

B

(5.38)

The B in Eq. (5.38) is greater than the classical bound iff

(5.39)
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The maximum value of is 1, therefore if , then quantum bound is
greater than the classical bound. Since in the unbiased scenario, the range of Bell inequality
violation for a Werner state is also [Horodecki, 1995]; the range of violation of
Bell-CHSH inequality is same in both biased and unbiased scenarios.

(3) As another example, we consider Horodecki’s state [Horodecki, 1996], represented in Eq.
(2.44). In an unbiased scenario, this state violates the Bell inequality iff . In the
present case, the eigenvalues of real symmetric matrix are and .
Again, considering and for biased scenario, the maximum classical bound
of CHSH function is , and the maximum quantum bound of CHSH function is

B

(5.40)

Clearly, if then quantum bound is greater than the classical bound. Hence, the
range of violation of Bell-CHSH inequality in unbiased scenario for Horodecki’s state is also
the same as in biased scenario.

(4) We now consider a mixed state proposed by WenChao Ma et al. [Ma et al., 2015] given in
Eq. (4.26). The eigenvalues of the real symmetric matrix are and

. Therefore, the given state violates the Bell-CHSH inequality in unbiased scenario
for a range of state parameter , i.e., for . Considering, and ,
the maximum quantum bound in biased scenario is

B

(5.41)

Therefore, B is greater than the classical value iff

Since the maximum value of is 1, one can see that if then the
quantum bound is greater than the classical bound. Moreover, range of state parameter for
violation of the Bell-CHSH inequality in biased scenario is same as in unbiased scenario.

(5) Finally, we analyse the behaviour of a new class of states proposed in chapter 2 under the
biased scenario. The proposed class of states are defined in Eq. (2.35), where we have also
demonstrated that the proposed set of states violate the Bell-CHSH inequality for a range
ofweakmeasurement strength, i.e., for . Further, fromEq. (2.35),
for Case I, where and , the maximum quantum bound of the CHSH
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function for proposed state is

B

(5.42)

where . From Eq. (5.42), if

(5.43)

then the proposed class of states violate the Bell-CHSH inequality. Since themaximum value
of is 1, one can deduce that the range of state parameter for the violation

of Bell-CHSH inequality is , which is same as in the unbiased
scenario.

5.6 SUMMARY
We analysed a CHSH gamewith biased experimental settings in which both Alice and Bob

choose their measurements with certain probability. For this, we estimated maximum classical
and quantum score for a biased nonlocal game and showed that quantum mechanics offers
more powerful resources than classical mechanics for the whole range of biasing parameters.
Our analysis using fine-grained uncertainty relations to distinguish classical, quantum and
super-quantum correlations also confirmed the advantages the quantum theory holds over its
classical counterpart. We further demonstrated the violation of Bell-CHSH inequality by all pure
states under biased scenario. For bipartite mixed states such as Werner state, Horodecki’s state, a
state proposed by WenChao Ma et al., and a set of states proposed in chapter-2, we found that the
nonlocal behaviour in biased scenario is same as was reported for unbiased scenario.

It will be interesting to find a mixed entangled state whose behaviour can be differentiated
in the two scenarios. Another problem of particular interest would be to analyse the behaviour of
nonlocal correlations subjected to environmental effects under biased scenario.

…
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