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Usefulness of Multiqubit W-Type States in Quantum

Information Processing

6.1 INTRODUCTION
Quantum entanglement plays a key role in many potential applications in quantum

information and computation [Bennett and Wiesner, 1992; Bennett et al., 1993; Zukowski et al.,
1993; Boström and Felbinger, 2002; Gisin et al., 2002]. The theoretical and experimental progress
to characterize bipartite and multiqubit entanglement and nonlocality, and to use these entangled
resources for quantum information and computation has received a lot of attention in last three
decades [Svetlichny, 1987; Cirac and Zoller, 1994; Hagley et al., 1997; Tittel et al., 1998; Pan et al.,
2000; Seevinck and Svetlichny, 2002; Collins et al., 2002a,b; Cereceda, 2002; Batle et al., 2002; Pan
et al., 2003b; Zhao et al., 2003; Eibl et al., 2003; Di Giuseppe et al., 2003; Eibl et al., 2004a; Marcikic
et al., 2004; Zhao et al., 2004; Peng et al., 2005; Kiesel et al., 2005; Bruß et al., 2005; Leibfried et al.,
2005; Walther et al., 2005b; de Oliveira et al., 2006; Prevedel et al., 2007; Lu et al., 2007; Vallone et al.,
2007; Tokunaga et al., 2008; Ghose et al., 2009; Bancal et al., 2010; Batle and Casas, 2011; Zhao et al.,
2012; Barrett et al., 2013a; Batle et al., 2016; Chaves and Budroni, 2016; Ringbauer et al., 2016; Batle
et al., 2017; Brito et al., 2018]. For example, in the simplest scenario, the direct product of Bell pairs
can be used for theoretical description of multiqubit states, and can be efficiently used for several
communication protocols [Lee et al., 2002; Fang et al., 2003; Rigolin, 2005; Deng et al., 2005b]. On the
other hand, multiqubit GHZ states, cluster states, and Brown states possess genuine andmaximum
multiqubit entanglement [Karlsson and Bourennane, 1998; Hein et al., 2005; Muralidharan and
Panigrahi, 2008]. Moreover, the experimental realization of these states further supports the
analysis of entanglement, and strengthens the area of quantum information and computation
[Zeilinger et al., 1997; Sackett et al., 2000; Weinfurter and Żukowski, 2001; Zhao et al., 2004; Kiesel
et al., 2005; Tokunaga et al., 2005; Browne and Rudolph, 2005; Vallone et al., 2007; Tokunaga
et al., 2008; Gao et al., 2010; Pan et al., 2012]. The maximally entangled multiqubit states are used
extensively in the literature to performefficient computation that cannot be achievedusing classical
resources [Karlsson andBourennane, 1998; Gottesman andChuang, 1999; Briegel andRaussendorf,
2001; Hillery et al., 1999; Raussendorf et al., 2003; Lee et al., 2006; Yeo and Chua, 2006; Man et al.,
2007; Wang et al., 2007a; Muralidharan and Panigrahi, 2008]. In general, the optimal success
of a quantum communication protocol can be ascertained by use of maximally entangled states
as resources for information transfer. However, the use of non-maximally entangled resources
largely leads to probabilistic protocols and the fidelity of information transfer is always less than
the unity [Shi et al., 2000; Li et al., 2000; Agrawal and Pati, 2002; Albeverio et al., 2002a; Yan and
Wang, 2003; Gorbachev et al., 2003; Cao and Song, 2005; Gordon and Rigolin, 2006; Wang et al.,
2007b; Jung et al., 2008b; Kumar and Krishnan, 2009; Das et al., 2014; Li and Jin, 2016; Kögler and
Neves, 2017] . For example, quantum teleportation of a single-qubit using a three- and four-qubit
W states is always probabilistic and teleportation fidelity depends on the unknown parameter
of the teleported state [Shi and Tomita, 2002; Agrawal and Pati, 2002]. Although the maximally
entangled four-qubit GHZ state is a quantum channel to teleport special cases of two-qubit states
such as , the same cannot be accomplished for an arbitrary two-qubit
state [Rigolin, 2005]. Similarly, teleportation of an arbitrary two-qubit state cannot be realized
by four-qubit and five-qubit non-maximally entangled W states. Agrawal and Pati [Agrawal
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and Pati, 2006] proposed a new class of three-qubit W-type states for deterministic teleportation
of a single-qubit by performing three-qubit joint measurements. The efficiency of these W-type
states, however, decreases if one performs standard two-qubit and single-qubit measurements
only [Adhikari and Gangopadhyay, 2009] instead of performing joint three-qubit measurements.
Considering this, in this chapter, we discuss the issue of usefulness of partially entangled states
for optimizing the information transfer between a sender and a receiver. For this, we demonstrate
two separate analysis for information transfer; one including multiqubit joint measurements and
another involving standard single- and two-qubit measurements only.

In the following sections, we propose new and efficient class of non-maximally entangled
four-qubit W-type states for quantum information processing and demonstrate the possibility
of deterministic teleportation of a single-qubit with unit fidelity. For practical purposes, we
emphasize on a protocol to share optimal bipartite entanglement, e.g., we use partially entangled
four-qubitW-type states as a starting resource between two users and achieve the optimal bipartite
entanglement byperforming standard single- and two-qubitmeasurements only. Our results show
that the shared two-qubit entanglement can lead to amaximally entangled resource for certain state
parameters. We further demonstrate the need to analyse four-qubit W-type states by comparing
the efficacy of three- and four-qubit W-type states as resources in terms of concurrence [Wootters,
1998] of the finally shared entangled state between the two users. Interestingly, our results show
that for certain ranges of parameters, four-qubit W-type states are more efficient resources in
comparison to three-qubit W-type states for achieving optimal concurrence. For dense coding,
we found that in principle a sender can transmit a 2-bit classical message to a receiver by locally
manipulating his/her single qubit. Moreover, we also generalize teleportation and dense coding
protocols using N-qubit W-type states as resources to achieve deterministic information transfer.
In order to add another dimension and significance to the results obtained in this chapter, we finally
demonstrate experimental preparation of four-qubit W-type states. The experimental generation
of these states is achieved using standard single- and two-qubit unitary operations, and weak
measurements.

6.2 TELEPORTATION USING FOUR-QUBIT W-TYPE STATES
Teleportation is a quantum mechanical process to transmit quantum information over

arbitrary distances using a shared entangled resource. Although non-maximally entangled
three-qubit and four-qubit W states can be used as resources for probabilistic teleportation of a
single-qubit, one cannot achieve teleportation of a single-qubit state using the standard three-
or four-qubit W state with certainty. In general, teleportation leads to probabilistic information
transfer. Pati and Agrawal [Agrawal and Pati, 2006] , however, have shown that there exists a
special class of W-type states, given by

(6.1)

which can be used for perfect teleportation and dense coding. Here is a positive integer and and
are relative phases. Motivated from this, we propose a new class of four-qubit W states, namely

(6.2)

where is a real number and represent phases. The states proposed in Eq. (6.2) can be used
as resources to achieve optimal and deterministic quantum teleportation. For example, if Alice
wants to teleport an unknown state where to Bob then Alice
and Bob need to share the four-qubit state such that Alice has qubits , and and Bob
has qubit .
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Thus, the joint state of five qubits can be represented as

(6.3)

In order to teleport the unknown state to Bob, Alice projects her four qubits onto the states

(6.4)

Although the teleportation protocol works for all , , and , for simplicity, we assume and
. Therefore, the joint state of five qubits can be re-expressed using Alice’smeasurement

basis as

(6.5)

where . A four-qubit joint measurement on qubits and will project
the state of Bob’s qubit onto one of the four possible states as shown in Eq. (6.5) with the equal
probability of 1/4.

Hence, teleportation of a single-qubit using non-maximally entangled four-qubit W-type
states is always successful. The useof proposed states as quantumchannels also provides flexibility
to the experimental set-ups by relaxing the requirement of a maximally entangled shared resource
for a faithful teleportation. Since the teleportation is deterministic, the total probability and fidelity
of teleporting a single-qubit using a partially entangled four-qubit W-type state is also unity.

6.3 TELEPORTATION USING N-QUBIT W-TYPE STATES
In the previous section, we have successfully demonstrated the efficient quantum

teleportation of a single-qubit state using a new class of four-qubit W-type states. We now
extend our method to generalize the optimal teleportation protocol using -qubit W-type states
as resources.

For successfully teleporting a single-qubit state to Bob, Alice needs to share a -qubit
W-type state

(6.6)

with Bob such that qubits to are with Alice and qubit is with Bob. In this case, the
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projection basis used by Alice can be represented as

(6.7)

Similar to the teleportation protocol discussed in the previous section, we can express the joint
state of qubits in terms of Alice’s projection basis as

(6.8)

where . Eq. (6.8) clearly shows that the teleportation protocol is always
successful with equal probability of 1/4 for the four different measurement outcomes of
Alice. Therefore, Bob can always recover the original state by performing single-qubit unitary
transformations on the state of his qubit, once he receives the two-bit classical message from Alice
regarding her measurement outcome.

6.4 ANALYSIS OF THE EFFICIENCY OFW-TYPE STATES IN TELEPORTATION PROCESS
We have shown that N-qubit W-type states can be successfully used as optimal resources

for efficient teleportation. The successful completion of teleportation protocol depends on the
availability of experimental set up to perform and distinguish multiqubit measurements. It is
evident that with the present experimental techniques, one can only perform and distinguish
different Bell measurements [Kim et al., 2001b]. Therefore, we analyse the efficacy of our states
for a protocol where two users want to create an efficient bipartite entangled channel between
them using partially entangled four-qubit W-type states . For this, we assume that Alice
initially has a two-qubit entangled state in addition to the shared W-type
entangled state

(6.9)

with Bob such that qubits and are with Alice and qubit is with Bob. In order to share a
bipartite entanglement with Bob, Alice needs to perform Bell measurements

(6.10)
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on her qubits. There are different combinations in which Alice can perform these Bell
measurements to achieve the required two-qubit entanglement. We have examined all possible
combinations andmeasurement outcomes, and here wewill discuss only four optimal cases where
the concurrence of finally shared two-qubit entangled state is optimal and efficient. We now
proceed to analyse the efficacy of the protocol in terms of the concurrence of the finally shared
entangled state.

Case I: In the first case, we consider Alice’s measurement outcomes to be and .
Therefore, the joint state of two qubits shared between Alice and Bob can be represented as

(6.11)

Consequently, the concurrence of is

(6.12)

where the subscript represents number of qubits in initially shared W-type states and
superscript represents different cases. Eq. (6.12) clearly demonstrates that for any given
real positive number , if is varied from to then concurrence first increases and
then decreases to a minimum value. Interestingly, for concurrence of the shared
entangled state is unity, i.e., Alice and Bob can share a maximally entangled state. The
finally shared optimally entangled state, thus, can be used for various information processing
protocols. This can be really useful in scenarios where the users in a communication protocol
only have access to partially entangledmultiqubit states. Further, the analysis presented here
not only allows the users to create maximum entanglement but also releases the constraints
on the experimental set up to perform and distinguish multiqubit measurements.

Case II: In the second case, Alice’s measurement outcomes are considered as and .
Hence, the shared bipartite state and concurrence of this state can be given by

(6.13)

and

(6.14)

respectively. Similar to the first case, the concurrence of the shared state first increases; attains
the maximum and then decreases to 0 for any and . Further, for ,
concurrence of the shared state is unity.

Case III: The third case provides another interesting observation that for Alice’s measurement
outcomes and the concurrence of shared bipartite state is independent of the
parameter . In this scenario, the shared bipartite state and its concurrence are represented
as

(6.15)

and

(6.16)

respectively. Evidently, the concurrence given in Eq. (6.16) attains its maximum value for
.
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Case IV: The fourth case, i.e., when Alice’s measurement outcomes are and , is even
more interesting as the concurrence of finally shared bipartite state is independent of both
the parameters and . In this scenario, the shared bipartite state and its concurrence are
represented as

(6.17)

and

(6.18)

respectively. Clearly, the concurrence given in Eq. (6.18) does not depend on the parameters
of input states.

Figure 6.1 compares the concurrence of initial state with that of above four cases to analyse the
efficacy of finally shared bipartite states. For and , the efficiency of
finally shared state is better than the efficiency of initial bipartite state in terms of concurrence. For

, concurrence for cases 1 and 2 are the same. Similarly, for large , case 2 and case 3 lead to
identical results. Moreover, Figure 6.1 also shows a relation between and combination of Bell
measurements to be performed to achieve the optimal concurrence.

6.1 (a) : Comparison of efficacies of shared bipartite states and
initial state for K=1. Note that Case-1 and Case-2 are
superimposed to each other.

6.1 (b): Comparison of efficacies of shared bipartite states and 
initial  state for K=2.

6.1 (c) : Comparison of efficacies of shared bipartite states and initial 
state for K=10.

6.1 (d) : Comparison of efficacies of shared bipartite states and
initial state for K=100. Note that Case-2 and Case-3 are
approximately superimposed to each other.

Figure 6.1 : Comparison of efficacies of shared bipartite states in three optimal cases.

A similar calculation for shared -qubit partially entangled states shows that the
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concurrence of finally shared states dependent on input parameters can be given as

(6.19)

where is a variable that takes values from to or . Eq. (6.19) suggests that for
, entanglement of the finally shared state between Alice and Bob depends on the input

state parameters and . For , the concurrence is given by

(6.20)

Hence, for a given range of , if is very large then the W-type state with smaller number of
qubits is a better resource. Similarly the concurrence of finally shared states independent of input
parameters can be expressed as

(6.21)

As above, if is very large then theW-type states with smaller number of qubits can be considered
as better resources. In order to analyse the usefulness of four-qubit W-type states for such a
protocol, we further compare the efficacy of three- and four-qubit W-type states as resources in
terms of concurrence of the finally shared entangled state. We found an interesting observation
that for certain ranges of , the four-qubitW-type states aremore efficient resources in comparison
to three-qubitW-type states for achieving optimal concurrence shared between two users. For this,
let us first give the form of three-qubit W-type states as

(6.22)

Similar to the four-qubit case, there are optimal cases for which the concurrences of finally shared
states can be given as

(6.23)

and

(6.24)

In above two cases the optimal concurrence of finally shared entangled states is dependent on
input state. However, similar to the four-qubit case, for three-qubit case also there exists an optimal
scenario in which concurrence of finally shared state is independent of the input state, i.e.,

(6.25)

Figure 6.2 demonstrates the comparison between efficiencies of three- and four-qubitW-type states
in terms of the concurrence of finally shared bipartite states. Depending on values of the parameter
, we identify four different cases;

Case I: For if then the four-qubit W-type state is a better resource in
comparison to the three-qubit W-type state else both are equally efficient.
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6.2 (a) : Comparison of the efficiencies of three and four-
qubit W-type states for K=1. Note that Cases1 and 2 for 4-
qubit , and Case-3 for 4-qubit & Cases-1 and 2 for 3-qubits
are superimposed to each other

6.2 (b) : Comparison of the efficiencies of three and four-
qubit W-type states for K=2. Note that Case-1 of 3-qubit
and Case-2 of 4-qubit W-type state are superimposed to
each other

6.2 (c) : Comparison of the efficiencies of three and four-qubit
W-type states for K=10

6.2 (d) : Comparison of the efficiencies of three and four-qubit
W-type states for K=100. Note that Case-2 and Case-3 of 4-
qubit W-type state are approximately superimposed

Figure 6.2 : Comparison of the efficiencies of three and four-qubit W-type states as resources.

Case II: For ;

• Range 1 : If then the four-qubit W-type state is a better resource in
comparison to the three-qubit W-type state.

• Range 2 : If then the three-qubit W-type state is a better
resource in comparison to the four-qubit W-type state.

• Range 3 : If then the four-qubit W-type state is a better
resource in comparison to the three-qubit W-type state.

• Range 4 : If then the three-qubit W-type state is a better resource in
comparison to the four-qubit W-type state.

Case III: For ;

• Range 1 : If then the four-qubit W-type state is a better resource in
comparison to the three-qubit W-type state.

• Range 2 : If then the three-qubit W-type state is a better
resource in comparison to the four-qubit W-type state.

• Range 3 : If then the four-qubit W-type state is a better
resource in comparison to the three-qubit W-type state.

• Range 4 : If then the three-qubit W-type state is a better resource in
comparison to the four-qubit W-type state.
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Case IV:When is very large

• Range 1 : If then the four-qubit W-type state is a better resource in
comparison to the three-qubit W-type state.

• Range 2 : If then the three-qubit W-type state is a better
resource in comparison to the four-qubit W-type state.

• Range 3 : If then the four-qubit W-type state is a better
resource in comparison to the three-qubit W-type state.

• Range 4 : If then the three-qubit W-type state is a better resource in
comparison to the four-qubit W-type state.

Hence, for practical implementation of an efficient bipartite state sharing protocol, one can choose
W-type states as resources according to the range of parameters and .

For numerical estimation of efficiencies of three- and four-qubit states, one can analyse
the ranges given above to understand the efficacy of such states in terms of concurrence of finally
shared states. Alternately, Table 6.1 shows the range of parameters for , , , ,
and to compare the efficiencies of three- and four-qubit W-type states. For example, for

; four-qubit states are better resources that three-qubit states for , and for
one can choose either of the states as a starting shared resource. Thus, for , four-qubit states
can always be used as a resource either for better efficiency or for same efficiency in comparison
to three-qubit states. Similarly, one can find conclusions for other values of as well.

6.5 SUPERDENSE CODING USING N-QUBIT W-TYPE STATES
Superdense coding deals with efficient information transfer between the users in a

communication protocol using a shared entangled resource. We use

(6.26)

as a shared resource for superdense coding protocol betweenAlice and Bob such that the first qubit
is with Alice and rest of the qubits are with Bob. In order to communicate the classical message
to Bob, Alice first encodes her message using one of the four single qubit operations;
on her qubit 1. The four operations map the originally shared state between Alice and Bob to four
orthogonal states

(6.27)

Thus, in principle, Alice can prepare four distinct messages for Bob by locally manipulating her
qubit. Once Alice encodes themessage, she sends her qubit to Bob. In order to distinguish between
themessages sent by Alice, Bob can always perform an appropriate joint measurement on the state
of four qubits. Hence, Bob will always be able to distinguish between the four messages produced
by Alice. The protocol is optimal as by locally manipulating her one qubit, Alice can transmit two
bits of classical message to Bob.

We now proceed to demonstrate optimal dense coding protocol using our -qubit W-type
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Table 6.1 : Numerical estimation of comparison of concurrences of three and four-qubit states

k

Concurrence
of finally
shared

two-qubit
state using
initially
shared

three-qubit
state as a
resource
(Case-1)

Concurrence
of finally
shared

two-qubit
state using
initially
shared

three-qubit
state as a
resource
(Case-2)

Concurrence
of finally
shared

two-qubit
state using
initially
shared

three-qubit
state as a
resource

(Maximum)

Concurrence
of finally
shared

two-qubit
state using
initially
shared

four-qubit
state as a
resource
(Case-1)

Concurrence
of finally
shared

two-qubit
state using
initially
shared

four-qubit
state as a
resource
(Case-2)

Concurrence
of finally
shared

two-qubit
state using
initially
shared

four-qubit
state as a
resource
(Case-3)

Concurrence
of finally
shared

two-qubit
state using
initially
shared

four-qubit
state as a
resource

(Maximum)

k=1

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.771 0.771 0.771 0.923 0.923 0.771 0.923
0.2 0.943 0.943 0.943 1.000 1.000 0.943 1.000
0.3 0.997 0.997 0.997 0.965 0.965 0.997 0.997
0.4 0.990 0.990 0.990 0.891 0.891 0.990 0.990
0.5 0.943 0.943 0.943 0.800 0.800 0.943 0.943
0.6 0.866 0.866 0.866 0.700 0.700 0.866 0.866
0.7 0.762 0.762 0.762 0.591 0.591 0.762 0.762
0.8 0.629 0.629 0.629 0.471 0.471 0.629 0.629
0.9 0.447 0.447 0.447 0.324 0.324 0.447 0.447
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k=2

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.866 0.700 0.866 0.980 0.866 0.771 0.980
0.2 0.990 0.891 0.990 0.980 0.990 0.943 0.990
0.3 0.992 0.976 0.992 0.898 0.992 0.997 0.997
0.4 0.943 1.000 1.000 0.800 0.943 0.990 0.990
0.5 0.866 0.980 0.980 0.700 0.866 0.943 0.943
0.6 0.771 0.923 0.923 0.600 0.771 0.866 0.866
0.7 0.661 0.831 0.831 0.499 0.661 0.762 0.762
0.8 0.533 0.700 0.700 0.392 0.533 0.629 0.629
0.9 0.371 0.507 0.507 0.267 0.371 0.447 0.447
1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k=5

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.980 0.644 0.980 0.990 0.815 0.771 0.990
0.2 0.980 0.843 0.980 0.866 0.968 0.943 0.968
0.3 0.898 0.947 0.947 0.738 1.000 0.997 1.000
0.4 0.800 0.994 0.994 0.629 0.973 0.990 0.990
0.5 0.700 0.996 0.996 0.533 0.911 0.943 0.943
0.6 0.600 0.958 0.958 0.447 0.825 0.866 0.866
0.7 0.499 0.881 0.881 0.365 0.717 0.762 0.762
0.8 0.392 0.755 0.755 0.283 0.585 0.629 0.629
0.9 0.267 0.557 0.557 0.191 0.411 0.447 0.447
1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k=10

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.995 0.623 0.995 0.908 0.795 0.771 0.908
0.2 0.884 0.823 0.884 0.722 0.957 0.943 0.957
0.3 0.760 0.933 0.933 0.589 1.000 0.997 1.000
0.4 0.650 0.988 0.988 0.489 0.982 0.990 0.990
0.5 0.553 0.999 0.999 0.408 0.927 0.943 0.943
0.6 0.464 0.969 0.969 0.338 0.845 0.866 0.866
0.7 0.380 0.898 0.898 0.274 0.739 0.762 0.762
0.8 0.295 0.777 0.777 0.211 0.605 0.629 0.629
0.9 0.199 0.577 0.577 0.141 0.428 0.447 0.447
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k=100

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.548 0.602 0.602 0.404 0.774 0.771 0.774
0.2 0.383 0.802 0.802 0.276 0.944 0.943 0.944
0.3 0.297 0.918 0.918 0.212 0.997 0.997 0.997
0.4 0.240 0.981 0.981 0.171 0.989 0.990 0.990
0.5 0.197 1.000 1.000 0.140 0.941 0.943 0.943
0.6 0.161 0.979 0.979 0.115 0.864 0.866 0.866
0.7 0.130 0.915 0.915 0.092 0.760 0.762 0.762
0.8 0.099 0.798 0.798 0.070 0.626 0.629 0.629
0.9 0.066 0.598 0.598 0.047 0.445 0.447 0.447
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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states,

(6.28)

where qubit 1 is with Alice and rest of the qubits are with Bob. Similar to the four-qubit case, Alice
can produce four distinct messages for Bob using single qubit unitary transformations
such that

(6.29)

Therefore, our -qubit W-type states can also be used for optimal super dense coding protocol.

6.6 EXPERIMENTAL GENERATION OF -TYPE STATES
In the previous sections, we have demonstrated the usefulness of four-qubit W-type states

for quantum information processing. Considering the importance of four-qubit W-type states, it is
imperative to propose a method for experimental realization of four-qubit W-type states. We now
proceed to discuss a method for experimental realization of W-type states represented in Eq. (6.2).

The standard three-qubit W-type states have been experimentally realized using
spontaneous parametric down-conversion [Eibl et al., 2004a]. The fundamental and theoretical
framework to analyse the properties of W class of states have allowed the experimental realization
of W class of states to become an area of extensive research [Dogra et al., 2015; Adhikari, 2015;
Zang et al., 2016]. Recently, Wu et al [Wu et al., 2016] described the experimental generation of
tripartite entangled polarization states using stokes operators and Dong et al [Dong et al., 2016]
proposed the experimental preparation of three-qubit W-type states originally proposed by Pati
and Agrawal. In this section, we use three-qubit W-type states generated by Dong et al as a
input to prepare four-qubit W-type states. Our procedure also involves the use of single- and
two-qubit quantum gates [Nemoto and Munro, 2004; Fiorentino and Wong, 2004; Okamoto et al.,
2005; Djordjevic, 2010; Etesse et al., 2015] along with weak measurements [Aharonov et al., 1988;
Kim et al., 2012], if required. It is important to mention that the gates and measurements used here
can be experimentally realized as well. We again define the three-qubit W state prepared by Dong
et al as,

(6.30)

In the simplest case, where all the phases are and , we have

(6.31)

We will use the state for preparation of the four-qubit W state given by Eq. (6.9)
for . For this, we write

(6.32)
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In order to generate the four-qubitW-type state, we first perform a controlled-Hadamard operation
on qubits 1 and 2, considering qubit 2 as the control qubit, such that

(6.33)

We can now perform a C-NOT operation on qubits 1 and 2 by keeping qubit 1 as the control qubit
to get the four-qubit W-type state as

(6.34)

The experimental generation of the generalized four-qubit state requires the input state to be the
direct product of a single-qubit state and a three-qubit W type state expressed in Eq. (6.30) so that
the joint state of four qubits can be expressed as

(6.35)

On qubits 3 and 4, we perform controlled-Hadamard operation keeping qubit 3 as the control to
get

(6.36)

We now perform a C-NOT operation on qubits 3 and 4 by considering qubit 4 as the control qubit
to get

(6.37)

We further perform weak measurements on qubits 1 and 2 and

on qubit 3 such that becomes

(6.38)

The state in Eq. (6.38) is the same as the state in Eq. (6.2) except for the equal phase factors in the

3rd and the 4th terms. For this, we finally perform a simple unitary operation on

qubit 4. Therefore, we have

(6.39)
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6.7 SUMMARY
We have analysed a class of partially entangled four-qubit W-type states for efficient

quantum information processing tasks. Although performing and distinguishing multiqubit
measurements is an uphill task, nevertheless, our states can be used for deterministic teleportation
with unit fidelity. In order to demonstrate the practical utility of such states, we have discussed
and compared the efficiencies of three- and four-qubit W-type states for sharing optimal bipartite
entanglement between two users. Furthermore, we have also proposed experimental realization
of four-qubit states which increases the importance of results obtained in this study. Our
results will be of high importance in situations where users only have access to partially entangled
states and would like to establish optimal bipartite entanglement for efficient and deterministic
information processing. The analytical relations between the range of state parameters, and
optimal concurrence of the finally shared state is also obtained allowing one to decide when to
use a three or four-qubitW-type state for a particular protocol. We have also shown that our states
can be used for optimal dense coding as well. The protocols have also been generalized for the
case of -qubits.

…
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