2.20	Estimating the entanglement of proposed class of states using the Bell nonlocality measure M^W , nonlinear entanglement witness E^W and the rescaled FEF F^W as a function	4.6
	of weak measurement strength η , considering $\gamma = 0.6$.	46
2.21	Estimation of fully-entangled fraction for a given nonlocality for proposed class of states,	
	pure states and randomly generated two-qubit states (green area) and the coordinates of paints e^{k} (where k d = 6) to characterize the proposed class of states, given in Table 2.4	47
	of points ρ^{n} (where k=1,6) to characterize the proposed class of states, given in Table 2.1.	47
2.22	Channel capacity of the proposed class of states ρ for superdense coding protocol as	
	a function of weak measurement strength if at three different values of deconerence	19
	Comparison of channel capacity of the proposed class with other bipartite entangled	40
2.23	mixed states.	48
3.1	A scenario to analyse the effect of decoherence on maximum expectation value of the	54
	Svetlicnny operator.	54
3.2	Estimation of maximum value of $S_v(\rho_{g_A})_{opt}$ vs 3-tangle (τ) of the initial 3-qubit GHZ state with respect to decoherence parameter γ .	56
3.3	Plot of $S_v(\rho_{g_A}^r)_{opt}$ with respect to 3-tangle (τ) of the initial 3-qubit GHZ state for four different values of decoherence parameter.	57
3.4	A scenario to analyse the effect of weak measurement and its reversal operations on	
	the existence of genuine tripartite nonlocal correlations.	57
3.5	Estimation of maximum value of $S_ u(ho_{g_A}^{wk})_{opt}$ vs 3-tangle (au) of the initial 3-qubit GHZ	
	state with respect to weak measurement strength parameter η , considering $\gamma = 0.5$.	58
3.6	$S_ u(ho_{g_A}^{wk})_{opt}$ with respect to 3-tangle (au) of initial state for different weak measurement	
	strengths, considering $\gamma = 0.5$.	59
3.7	Effect of weak measurement on the maximum expectation value of the Svetlichny operator as a function of noise parameter γ .	59
3.8	Estimation of maximum value of $S_v(\rho_{e_P}^{\gamma})_{opt}$ vs 3-tangle (τ) of the initial 3-qubit GHZ state	
-	with respect to decoherence parameter γ .	61
3.9	Plot of $S_v(\rho_{g_P}^{\gamma})_{opt}$ with respect to 3-tangle (τ) of the initial 3-qubit GHZ state for four	
	different values of decoherence parameter.	62
3.10	Plot of $S_v(ho_{g_P}^\gamma)_{opt}$ with respect to decoherence parameter γ for three different input states.	62
3.11	Effect of decoherence on $S_v \left(\rho_{g_P}^{wk} \right)_{opt}$ for a maximally and a partially entangled input state under applications of weak measurement.	64
3.12	Effect of weak measurement on $S_{v}(\rho_{q_{p}}^{wk})_{m}$ for a maximally entangled state, considering	
	$\eta_r = 0.6$ at different values of γ .	65
3.13	Effect of weak measurement on $S_{\nu}\left(\rho_{g_{P}}^{wk}\right)_{out}$ for a initial state with $ heta=\pi/6$, considering	
	$\eta_r = 0.8$ at different values of γ .	65
3.14	Plot of $S_ u(ho_{g_D}^\gamma)_{opt}$ with respect to 3-tangle (au) of the initial 3-qubit GHZ state for three	
	different values of decoherence parameter.	67
3.15	Effect of depolarizing channel on $S_ u(ho_{g_D}^\gamma)_{opt}$ for three different initial input states.	67
3.16	Plot of $S_ u(ho_{g_D}^{wk})_{opt}$ with respect to 3-tangle (au) of the initial three-qubit GHZ state for	
	three different values of weak measurement strength, considering $\gamma = 0.1$.	69
3.17	Effect of weak measurement on $S_v\left(ho_{g_D}^{wk} ight)_{opt}$ for three different initial input states, considering	
	$\gamma = 0.1$.	69
3.18	$S_{v}(ho_{gs}^{wk})_{opt}$ with respect to 3-tangle (au) of the initial state for different weak measurement	
	strengths, considering $\gamma = 0.5$ for two different values of $ heta_3 = (rac{\pi}{4}, rac{\pi}{2})$.	71
3.19	$S_{\nu}(\rho_{ms}^{\scriptscriptstyle WK})_{opt}$ with respect to 3-tangle (τ) of the initial state for different weak measurement	
	strengths, considering $\gamma = 0.5$ and $\theta = \frac{\pi}{4}$.	72
3.20	Negativity of the finally shared 3-qubit state as a function of noise parameter γ .	72
3.21	Negativity of the finally shared 3-qubit state as a function of weak measurement strength	-
	η at different values of deconerence parameter γ .	73

3.22	Plot of maximum expectation value of the Svetlichny operator $S_{\nu}(\rho_{gs}^{wk})_{opt}$ with respect to Negativity N of the finally shared state for different values of weak measurement strength, considering $\gamma = 0.5$.	73
3.23	Maximum expectation value of $S_v(\rho_W^{wk})_{opt}$ with respect to the varying sum of concurrences $(C_{12} + C_{23} + C_{31})$, for different weak measurement strengths, considering $C_{12} = \frac{2}{3}$ and	
	$\gamma = 0.1$.	75
3.24	$S_{\nu}(\rho_{W_n}^{\nu\kappa})_{opt}$ with respect to the varying sum of concurrences $(C_{12}^{\prime\prime}+C_{23}^{\prime\prime}+C_{31}^{\prime\prime})$, for different weak measurement strengths, considering $\gamma = 0.1$.	76
3.25	Maximum expectation value of $S_{\nu}(\rho_{W_n}^{W_n})_{opt}$ vs <i>n</i> for W_n type states at different weak measurement strengths, considering $\gamma = 0.1$.	76
3.26	Estimation of $S'_{\nu}(\rho'_G)_{opt}$ with respect to 4-qubit entanglement (τ_4) of the initial GHZ state considering four different values of decoherence parameter γ .	81
3.27	Estimation of $S'_{\nu}(\rho_G^{wk})_{opt}$ with respect to 4-qubit entanglement (τ_4) of the initial GHZ state for different weak measurement strengths, considering $\gamma = 0.5$.	81
3.28	Maximum expectation value of the Svetlichny operator as a function of noise parameter	
	γ for the finally shared state at different values of weak measurement strength.	82
3.29 3.30	Negativity of the finally shared 4-qubit state as a function of noise parameter γ . Negativity of the finally shared 4-qubit state as a function of weak measurement strength	83
2 24	at three different values of holse parameter γ . Estimation of $S'(a^{wk})$ with respect to Negativity $N(a^{wk})$ for different values of weak	63
3.31	measurement strengths, considering $\gamma = 0.5$.	83
4.1	Estimation of $B_C(\Psi angle)_{opt}$ with respect to the state parameter $lpha.$	89
4.2	Estimation of $B_C(\varrho)_{opt}$ with respect to state parameter η of the proposed state in chapter-2 and decoherence parameter γ .	92
4.3	A comparison between estimated values of geometric discord, and maximum and minimum value of geometric discord as evaluated using correlation coefficients with respect to	
	the state parameter θ .	95
4.4	A comparison between estimated values of geometric discord, and maximum and minimum value of geometric discord as evaluated using correlation coefficients with respect to	
	the state parameter of the Werner state.	96
4.5	A comparison between estimated values of geometric discord, and maximum and minimum value of geometric discord as evaluated using correlation coefficients with respect to	96
4.6	A comparison between estimated values of geometric discord and maximum and minimum	90
4.0	value of geometric discord as evaluated using correlation coefficients with respect to the state parameter of the state proposed by WenChao Ma <i>et al.</i>	97
4.7	A comparison between estimated values of geometric discord, and maximum and minimum value of geometric discord as evaluated using correlation coefficients with respect to	
4.8	the state parameter of the proposed class of states in chapter-2. Estimation of maximum expectation value of $S_C(\rho_g)_{opt}$ with respect to 3-tangle $\tau(\rho_g)$	98
	of three-qubit generalized GHZ states.	100
5.1	Comparison of classical and quantum bounds of CHSH operator varying with parameters p,q in a biased experimental set-up.	107
5.2	Region in [p,q] space where fine-grained uncertainty can distinguish between quantum and classical correlations.	109
5.3	Maximum possible classical and quantum scores of a CHSH game with an arbitrary pure	110
	orpartite entangled state for different values of Diasing parameters p and q.	112
6.1	Comparison of efficacies of shared bipartite states in three optimal cases.	120
0.2	compansion of the environces of three and four-qubit wetype states as resources.	177