
2
SystemModel and Review of Literature

In the late 1990s, a practical demonstration of vertical Bell laboratory layered space-time
architecture (V-BLAST) multi-antenna wireless system by Bell Labs [Foschini, 1996] followed by
the theoretical prediction of very high capacity of MIMO channels in rich scattering environments
by Telatar [1999] and Foschini and Gans [1998] put a new perspective of exploitation of spatial
dimension in wireless communications. The MIMO and massive MIMO technologies have
undergone an intensive research in last decade. The 4G of wireless mobile communication has
MIMO as a key technology for accessing the spatial dimension along with OFDM for frequency
dimension. MIMO is considered to be a mature technology with well developed channel
models, channel estimation, space-time codes, detection, precoding, hardware and commercial
deployment in different communication standards. At the same time, the research is going on for
future generation of mobile communication where the massiveMIMO is a promising candidate. A
significant work has been done onmassiveMIMO in last few years. However, there are a few open
issues like channel modeling, channel estimation, inter-cell interference management, and system
architecture where more research is needed for massive MIMO to become a matured technology
for future generation of wireless mobile communication systems. In this chapter, a discussion is
providedon the research activities being carried out onmassiveMIMOand the existing gapswhere
more work is needed.

2.1 ORIGIN AND PRELIMINARY RESEARCH
The MIMO technology projected two major gains as spatial diversity and spatial

multiplexing. More specifically, in a wireless link with N number of transmit antennas and K
number of receive antennas in a point-to-point MIMO system, the probability of outage can be
written as

Poutage ∝ SNR−NK

With spatial multiplexing, the achievable rate scales as

Rachievable ∝ min(N,K) log2(1+SNR)

After these promising outcomes, the natural question is: What does stop a system to gain as
much as desired by increasing the number of antennas? The major bottlenecks in doing so are
the complexity of signal processing, the size constraint on MTs, and the conditioning of channel
matrix. The prime step for handling these issues was to give up the point-to-point MIMO systems,
which was a necessary step irrespective of losing all the research done on the space-time codes
and joint processing over antennas. The Point-to-point MIMO is basically the cause of several
problems in scaling the multi-antenna technology in conventional cellular systems. The small size
of MTs cannot support a large number of antennas. The small computation power limited by the
battery and the low cost processor inMTs is not able to support the computationally complex signal
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processing required for MIMO system with a large number of antennas. In the line-of-sight (LOS)
propagation, theMIMO channel matrix becomes badly conditionedwith rank as low as one which
makes the MIMO gains unachievable. At this point, the massive MIMO plays a significant role.

The preliminary work on state-of-the-art massiveMIMO systems includes [Marzetta, 2006]
and [Marzetta, 2010]. The massive MIMO systems shift the large number of antennas at BS
and keeps MTs with single antenna because BS has lesser constraints on size and power. The
multi-user setting preserves the multiplexing gains even in the LOS scenarios provided that the
angular separation ofMTs is more than the Rayleigh resolution of BS antenna array. These systems
have a much larger number of antennas at BS than the number of single antenna users served
simultaneously in each cell. This setting creates the well conditioned hardened channel matrix
based on the Marčenko-Pastur law which states that if an N ×K matrix H has zero mean i.i.d.
entries with unit variance then the empirical distribution of the eigenvalues of 1

N HHH converges
almost surely, as N,K → ∞ with K/N → , to the following density function [Tulino and Verdu,
2004; Chockalingam and Rajan, 2014]:

fX(x) = 1− 1 +
(x)+

(x−a)+(b− x)+

2 x
, (2.1)

where (z)+ = max(z,0), a = (1−√
)2, and b = (1+

√
)2. For << 1, the eigenvalues of

1
NHHH are bounded significantly away from zero. With such a well conditioned channel matrix, a
linear processor like zero forcing (ZF) i.e. the pseudo inverse operator ((HHH)−1HH) can perform
satisfactorilywhen used as a decoder or a precoder in amassiveMIMO system. ZF in such a setting
not only forces the intra-cell interference to zero but also averages out the additive i.i.d. random
noise. The lesser computational complexity of ZF processor is suitable for a very large number of
antennas at BS.

Marzetta [2010] considers the multi-cell setting without inter-cell cooperation. The uplink
and downlink communications work in the time division duplex (TDD) mode in a time frame
smaller than the coherence time of the wireless channel. Therefore, the channel matrix remains
almost constant during UL and DL transmissions. However, the inter-cell interference originated
during training phase—called ‘pilot contamination’ [Jose et al., 2009]—appears as a bottleneck in
the system. Such a problemwas not evident in earlier similar work on single cell setting [Marzetta,
2006]. The pilot sequences are re-used by MTs in neighboring cells. During the phase of channel
estimation of its own MTs, a BS inadvertently learns the channel to MTs in other cells sharing the
same pilots. When this contaminated CSI is used for decoding the user data at a BS fromMTs of its
own cell, the coherent combining takes place of signals coming fromMTs of others cells in uplink.
Similarly, in downlink, the signals with precoded user data intended for MTs of its own cell, also
combine coherently at MTs of other cells. Thus, the pilot contamination leads to the inter-cell
interference in data transmission in both uplink and downlink.

The detailed understanding of themassiveMIMO systems appears in [Rusek et al., 2013; Lu
et al., 2014; Larsson et al., 2014; de Lamare, 2013; Ngo et al., 2013a; Chockalingam and Rajan, 2014;
Ngo, 2015]. The system modeling and analysis of achievable rates remain in the center of these
works. They provide the system model and the achievable rates for massive MIMO systems with
perfect and imperfect CSI. The discussion on propagation, antenna array, linear decoder-precoder,
detectionmethods, and multi-cell operation is also provided in these papers. They also discuss the
challenges and the issues that remain open before this technology comes to deployment.

Along with these theoretical research activities, the channel measurement campaigns and
studies are also carried out in the literature [Payami and Tufvesson, 2012; Hoydis et al., 2012].
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The results of channel measurements have shown promising channel matrices for massive MIMO
systems. However, there is a deviation in the measured channel from the channel models
employed in theoretical studies, still a lot of gains are expected from the measured channel for
a practical massive MIMO system. In the following sections, the particular research activities
conducted for channel modeling, channel estimation, sum-rate analysis, and system design for
massive MIMO are discussed. The gaps in existing research are analyzed and found out where
more work is needed to bring massive MIMO systems a few steps closer to deployment.

2.2 MASSIVE MIMO SYSTEMMODEL
Let’s consider a system having L number of cells, K number of MTs per cell, one BS per cell,

and N number of antennas per BS. Channel gain between nth antenna of BS inmth cell and kth MT in
lth cell is represented by gnklm as shown in Figure 2.1. The basic design of a massive MIMO system
is non-cooperative across cells which means BS’s of different cells do not cooperate in estimating
the channel and precoding/decoding of the data streams. Thus, a non-cooperative massiveMIMO
system estimates gnklm for l = m only. In mth cell, set of channel coefficients can be represented by
a channel matrix Gmm = [gnkmm]where gnkmm is the (n,k)th entry of channel matrix. Linear processor
matrix used in decoding/precoding — derived from Gmm — is represented by Am. K×1 complex
vectors dr

l and ur
m are received vectors at K MTs in downlink and at N antennas of BS in uplink

respectively. Similarly, K× 1 complex vectors ut
l and dt

m are transmitted vectors from K MTs in
uplink and from N antennas of BS in downlink respectively. wu

m is an additive white Gaussian
noise (AWGN) vector and is considered to be added to signal at N antennas of BS. Similarly, wd

l is
an AWGN vector and is considered to be added to signal at K MTs.
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Figure 2.1. : Cellular massive MIMO system: base band equivalent system view.

Now system model for baseband equivalent uplink can be written by (2.2, 2.3) and for
downlink by (2.4, 2.5). Channel matrix Glm is further partitioned into two components as in
(2.6). The N×K dimensional matrix Hlm represents the small-scale fading coefficients while the
K × K diagonal matrix D represents combined effect of path loss, large-scale fading, antenna
radiation pattern, and other static constituents of the channel matrix. pu is the measure of common
transmit power. If elements of wu

m and wd
m vectors have unit variance, the pu can be interpreted as

‘transmit SNR’ or ‘unprocessed SNR’, whereas the effective SNR is different which is calculated
after involving the linear processing. Different types of decoding/precoding matrices are derived
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from channel matrix as shown in (2.7) using linear operations namely match filtering (MF), zero
forcing (ZF) and minimum mean square error (MMSE) [Ngo et al., 2013a]. The IK is a K × K
dimensional identity matrix.

The received signal vector at BS:

yrm =
√
puGmmut

m+(
√
pu

L

∑
l=1;l=m

Glmut
l)+wu

m. (2.2)

The decoded user data vector at BS:

ur
m = AH

myrm. (2.3)

The received user vector at MTs:

dr
m = (

√
puGT

mmytm)+(
√
pu

L

∑
l=1;l=m

GT
lmytl)+wd

m. (2.4)

The transmit vector (precoded user vector) at BS:

ytm = (AT
m)

Hdt
m. (2.5)

Glm = HlmD1/2
lm or gnklm = hnklm kklm. (2.6)

Am =






Gmm MF

Gmm(GH
mmGmm)

−1 ZF
Gmm(GH

mmGmm+
1
pu

IK)−1 MMSE.

(2.7)

In the decoding process in uplink, MF is an operation of multiplying the conjugate
transpose of channel matrix with baseband equivalent received signal vector from N antennas
of BS. Mathematically, this operation is the projection of received signal onto the direction of
transmitted vector which maximizes the SNR of desired signal streams. ZF is an operation of
multiplying the pseudo inverse of channel matrix with baseband equivalent received signal vector
from N antennas of BS. Mathematically, this operation is the projection of received signal in the
direction which is orthogonal to the subspace of interference signal. This operation forces the
inter-stream interference to zero. MMSE is similar to ZF operation except for that the output
of MMSE operation is bounded which prevents the effective SNR from falling down during
ill-conditioning of the channel matrix. This operation minimizes the mean square error of desired
signal streams. The process at BS in downlink is equivalent to the process in uplink except for that
the transpose of uplink channel matrix is used for the operation.
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2.3 CHANNEL MODELS
The channel modeling in theoretical research for massive MIMO is based on the

propagation of the wireless signal in rich scattered environment [Tse and Viswanath, 2005;
Goldsmith, 2005]. The elements of channel matrix are assumed circularly symmetric complex
Gaussian distributed i.i.d. random variables (∼ CN(0, 2)) with zero mean for establishing the
expressions for maximum achievable rates in early works. The channel with such a distribution
results into classical Rayleigh faded amplitudes of the channel coefficients, therefore, also called
i.i.d. Rayleigh faded channel. Recently, a significant research has been carried out on channel
models for massive MIMO systems [Zheng et al., 2014]. The channel models for massive MIMO
can be broadly divided in two categories: correlation-based stochastic channel models (CBSCMs)
and geometry-based stochastic channel models (GBSCMs). The early channel model with i.i.d.
Rayleigh faded channel is a variant of CBSCMs but without correlation. Other models in CBSCM
category are Kronecker-based stochastic channel model (KBSCM), the Weichselberger model
[Weichselberger et al., 2006], and the virtual channel representation (VCR). GBSCMs can be further
divided into two sub-categories: 2-D based and 3-D based models.

Figure 2.2 provides a brief classification of existing channel models for massive MIMO
systems. CBSCMs are widely used for evaluation of achievable rates and performance of massive
MIMO systems because of their lower implementation complexity and mathematical tractability.
However, they have compromised accuracy due to oversimplification. On the other hand,
GBSCMs are more accurate and consistent with measured channel data but they are not suitable
for system evaluation due to their higher complexity and large number of input parameters.

Massive MIMO channel models

CBSCMs GBSCMs

i.i.d. Rayleigh faded modelCorrelated models

Kronecker modelRX-TX coupling based models

Weichselberger model Virtual channel representation

2-D

3-D

models

models

Figure 2.2. : Classification of channel models for massive MIMO systems.

2.3.1 Correlation-Based Stochastic Channel Models
In [Marzetta, 2010; Mohammed and Larsson, 2013; Rusek et al., 2013], the classical CBSCM

without correlation, i.e., i.i.d. Rayleigh faded channel model is utilized. The opportunity with
such models is that the central limit theorem and results of large randommatrix theory can easily
be applied for the analysis of the system. However, this model ignores the correlation across the
antennas of BS and across the users. Therefore, they are suitable for BS’s with largely separated
antennas and a rich scattered environment in surroundings.

One step ahead to the i.i.d. Rayleigh faded channel model in accuracy and in complexity
is the KBSCMwhich has been used in [Couillet et al., 2011; Noh et al., 2014] with correlation across
BS antennas and across MTs. The two correlation matrices are multiplied from left and right with
the i.i.d. Rayleigh faded channel matrix to give the Kronecker channel matrix as output. However,
this model keeps the transmitter’s and receiver’s correlation matrices separable. Therefore, the
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joint processing of transmitter-receiver correlation is not possible in this model.

Weichselberger channel model [Wen et al., 2011] relaxes the separability restriction of
Kronecker channel model. This model introduces a coupling matrix which is multiplied using
Hadamard product with the i.i.d. Rayleigh faded matrix in Kronecker channel model and the
correlation matrices are replaced by their SVD unitary matrices [Chockalingam and Rajan, 2014,
Ch:11]. The coupling matrix helps to model the joint processing of the correlation of transmitter
and receiver and can be obtained by channel measurement.

The VCRmodel uses the discrete Fourier transform (DFT) matrices to simulate the massive
MIMOchannel. Thismodel is based on the angular transformation of the signal over uniform linear
array (ULA). The accuracy of this model increases with increasing elements in ULA [Ozcelik et al.,
2005]. However, this model is only applicable to ULA with single polarization [Sayeed, 2002].

2.3.2 Geometry-Based Stochastic Channel Models
GBSCMs are propagation basedmodels. A narrow band fading channel formassiveMIMO

is modeled [Chen and Lau, 2014] using an extended one-ring channel model (relatively simplified
GBSCM) for MIMO from [Zhang et al., 2007]. In this model, almost no scatterers are considered in
surrounding of BS and an infinite number of uniform randomly distributed scatterers is considered
on a ring around MTs. Apart from this, cluster-based approach is frequently employed for
GBSCMs. The measured channel data are utilized in [Gao et al., 2013] for cluster-based channel
modeling. The number of the clusters, the visibility region (VR) of the clusters, and the visibility
gain of the clusters is used for modeling the channel in this work. Another variant of cluster-based
modeling with multi-link simulation is presented in [Poutanen et al., 2012] by introducing the
concept of common clusters.

A novel non-stationary three dimensional (3-D) wideband twin-cluster model for massive
MIMO is proposed in [Wu et al., 2014]. The non-stationary properties of the channel over array-axis
and over the time-axis are simulated by introducing appearance anddisappearance of clusters over
array and time axes. The appearance and disappearance of clusters are simulated by death-birth
process. In addition, the near field effect using spherical wavefront is also incorporated in this
model. The sphericalwavefront becomesmore significant for a large antenna array and for clusters
closer to BS. As being a 3-D model, the impact of elevation angles of the clusters are taken into
account for correlation properties.

Using similar death-birth process framework, Wu et al. [2015] propose a wideband two
dimensional (2-D) GBSCM for massive MIMO systems. In this model, the clusters are located
on several ellipses which are confocal but have different lengths of major axes. With such a
model, the angles of arrival (AoAs) and angles of departure (AoDs) are dependent which provides
a joint modeling of transmitter and receiver correlations. Recently, a new GBSCM is proposed
under project “Mobile and wireless communications Enablers for the Twenty-twenty Information
Society” (METIS) [Raschkowski et al., 2015]. The METIS channel model is developed based on
WINNER II channel model [Kyösti et al., 2007] but with consideration of spherical wavefront,
AoAs, and AoDs as in [Wu et al., 2014, 2015].

2.3.3 Need for a New Channel Model
Existing classes of channel models i.e. CBSCMs and GBSCMs have their own limitations.

GBSCMs are mainly developed for simulation of a realistic channel with inclusion of realistic
propagation parameters like geometry of clusters, evolution of clusters along time and antenna
array, AoAs, AoDs, and multipath components (MPCs). But, they are not suitable for evaluation
and understanding of communication schemes and system designs due to their higher complexity.
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On the other hand, the CBSCMs are important channel models for such purposes. Correlation
across BS antennas, acrossMTs, and along time remains the central idea in these models. CBSCMs
assume channel coefficients as random variables sampled along space, time and frequency.

The variations in the channel over time are caused by Doppler spread in the signal. In a
typical environment, the mobility of MTs is a major contributor to the Doppler spread. Further,
the surroundings of MTs are typically rich scattered and the signal is the sum of a large number of
MPCs with different Doppler shifts. Therefore, it is reasonable to consider the variations being
random along time. The spectrum of these variations is bounded by the Doppler spectrum.
Therefore, there is a correlation between consecutive channel realizations along time axis when the
time scale is taken at the order of the coherence time of the channel. These underlying phenomena
support the CBSCMs for simulation of channel along time.

The variations in the channel over frequency are caused by delay spread. Similar to the
temporal variations, the variations over frequency can be modeled as random variables because
the resultant signal has severalMPCs of different path lengths. Similar to the temporal correlation,
there is a correlation between consecutive channel realizations along the frequency axis when the
frequency scale is of the order of the coherence bandwidth of the channel. Thus, the underlying
phenomena support the CBSCMs also for the simulation of channel along frequency.

The variations in the channel over BS array axis are caused by variations in the phase of
incomingMPCs from antenna to antenna. The change in the phase of a givenMPC for a given time
and frequency, depends primarily on AoA of that MPC. When several MPCs come from different
directions, the change in phase of an individual MPC is different which leads to random variations
in the channel amplitude and phase. However, if angular spread of the signal is small, then the
changes in the phase of all MPCs from one antenna to next antenna are similar which does not
change the interference pattern of MPCs significantly along a spatial dimension. Consequently,
there is only change in phase of the overall channel over the array. In such cases, the variation
in the channel over array obtains a shape of complex sinusoidal function as the angular spread
becomes narrower. Modeling of such a variation by a random variable is not suitable in the point
of view of accuracy. Line-of-sight (LOS) propagation is one of such cases where correlation across
antenna is high. But, the inner product of the measured channel in [Payami and Tufvesson, 2012]
for a large antenna array in multi-user settings shows a very small cross user correlation for LOS
scenario. Therefore, there is need for analytically tractable channel model which can accurately
model the spatial variations along with temporal and spectral variations of the channel.

2.4 CHANNEL ESTIMATION
As discussed in the chapter 1, channel matrix is the prime requirement for processing

the signal in massive MIMO systems. Thus, there exists an extensive research on the channel
estimation for massive MIMO systems. The channel estimation can be broadly classified into two
categories: pilot-based estimation and blind estimation. In pilot-based estimation, a known signal
is transmitted by MTs which is orthogonal across MTs. BS uses this signal to estimate the channel.
In blind estimation, the uplink data is the basis for channel estimation. BS uses the uplink data
along with some properties of channel—sometimes with partial training signals—to estimate the
channel.
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2.4.1 Pilot-Based Methods and Associated Issues
The pilot-based estimation has been considered for channel estimation from the

preliminary work on massive MIMO systems [Marzetta, 2006, 2010]. Further, an enhanced design
of pilot signals is presented in [So et al., 2015] where training-based received SNR maximization
approach is used. A low complexity channel estimation with pilot-based method is proposed in
[Shariati et al., 2014] where Polynomial ExpAnsion CHannel (PEACH) estimators are introduced
for arbitrary channel and interference statistics. However, the pilot-based estimation have two
major drawbacks. First, they consume a number of symbols in each RB which is at least equal to
the number of MTs served simultaneously. In the scenarios where the size of an RB is small due to
low coherence time, the pilot signals significantly overload the system. Consequently, the spectral
efficiency of the system reduces drastically.

Another drawback of pilot-based estimation is that during the channel estimation stage,
albeit being orthogonal inside the cell, the pilot sequences are re-used in neighboring cells which
creates an interference and contaminates the estimated channel. During the channel estimation,
the advantages of a massive MIMO system are not available because the array gain is absent in
this stage. The contaminated channel estimate is not mere the deviated version of the desired
estimate. Rather, this estimated channel when used for decoding or precoding the user data,
introduces inter-cell interference in both uplink and downlink. In uplink, the usage of such an
estimate constructively combines the inter-cell interference coming from the MTs of neighboring
cells, that share the same pilots. Similarly during downlink, the usage of such an estimate makes a
BS transmit the beam-formed signal to MTs of neighboring cells, that share the same pilots. Thus,
an inter-cell interference is caused in the system.

The issue of pilot contamination is addressed in [Yin et al., 2013; Bogale and Le, 2014;
Neumann et al., 2014]. Yin et al. [2013] have considered the coordinated approach for channel
estimation for suppression of pilot contamination. Bogale and Le [2014] consider the optimization
algorithm for creating an optimized set of pilots by converting the problem of channel estimation
into the weighted sum mean square error (WSMSE) minimization problem. Neumann et al.
[2014] utilize the uplink data for suppression of pilot contamination which is based on maximum
a-posteriori criterion. Although, these methods perform well over the previously available
simple pilot-based methods. But the efforts put for pilot decontamination result into a higher
computational complexity. Further, thesemethods address only a part of the problem. The issue of
spectral efficiency remains unaddressed in thesemethods. Therefore, the need for blind estimation
methods becomes significant.

2.4.2 Blind Methods and Associated Issues
Joint processing of pilots and uplink data has been proposed as an efficient approach for

MIMO systems in early literature [Jindal et al., 2009]. Blind estimation methods for massiveMIMO
systems available in the literature, in general, depend on the properties of large random matrices
and asymptotic settings [Muller et al., 2014; Ngo and Larsson, 2012; Alshamary and Xu, 2016].
Muller et al. [2014] have proposed a sub-space based blind pilot decontamination method aimed
at removing the pilot contamination. However, the pilot usage is same as in conventional MIMO
systems. Ngo and Larsson [2012] propose an eigenvalue decomposition (EVD) basedmethodwith
a small amount of pilot training. The iterative least square projection (ILSP) from [Talwar et al.,
1996] is further embedded with EVD based method to enhance the performance. The optimal joint
decoding of data and channel without pilots is investigated in [Alshamary and Xu, 2016] with
non-exponential complexity in coherence time based on generalized likelihood ratio test (GLRT).

There are a few issues with the existing blind estimation methods for massive MIMO
systems. The aforementionedmethods rely on asymptotic settings either in the number of symbols
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in an RB (T ) or in the number of the base station antennas (N) or in both. The method of
[Ngo and Larsson, 2012] has an inherent bottleneck in judging the ordering of channel vectors
in estimated channel matrix. This method uses a distinct mapping between the eigenvalues of
channel-covariance matrix and MTs in the cell. This mapping is obtained by ordering of average
channel gains ( ) for MTs. However, ideally such a mapping is feasible for infinitely large N and
T . When this solution is applied with finite N and T , then the point-to-point distinctive mapping
is not possible, rather a range based distinct assignment is possible. For practical settings, this
mapping can support only a few number of MTs (K) in a cell which specifically have average
channel gains that are at least separated by this allowed range. For a larger K, there is a high
probability that separation between average channel gains of two or more MTs will be less than
the required minimum separation for distinct mapping. Several random locations in a cell have
similar average channel gains due to the significant contribution of shadow fading in the statistics
of the channel. Due to these reasons, there is an insignificant probability that the increasing number
of MTs will have required distinct intervals of average channel gains. Moreover, the required
stationarity of the channel over time has to be addressed before using statistics for such a mapping.
The complexity of EVD-ILSPmethod is another issuewhich imposes a need formorework on blind
channel estimation.

The method of [Muller et al., 2014] is blind in a sense that it aims at removing the pilot
contamination without CSI. In this method, the received signal matrix is projected on a subspace
of the unitary matrix obtained from the singular value decomposition (SVD) of the received
signal matrix. This projection converts the N × K dimensional massive MIMO system into a
K×K dimensional conventional MIMO system which needs pilot-based channel estimation. The
major claim of the scheme is the array gain without complete CSI. However, the scheme relies on
asymptotic settings. For a realistic ratio of N and K (for example N/K = 10), the array gain for
a desired link is slightly higher than the gains for interfering links. Since, this process converts
the N×K massive MIMO system into a K×K conventional MIMO system, therefore, no further
massive MIMO gains are possible.

The scheme proposed in [Alshamary and Xu, 2016] has lower complexity compared to
the exhaustive search methods used for comparison in their work. However, the computational
complexity is still very high which limits the scheme usage to a small number of symbols andMTs.
The higher dependency on asymptotic settings is again reflected in this work during performance
and complexity evaluation. In general, the dependency of blind estimation methods for massive
MIMO systems on higher value of N/K and T/K has been found in the literature. For a practical
system, T/K may not be very high due to limited coherence time and N/K also need to be small for
cost effectiveness. Therefore, there is a need for a new blind channel estimation method which can
reduce these dependencies by some means with a manageable complexity and lesser limitations
on system parameters.

2.5 SUM-RATE AND AVERAGE POWER-ALLOCATION
Higher ratewith limited resources is one of the driving forces behind the extensive research

onmassive MIMO systems. As multiple MTs are served using the same time-frequency resources,
the sum-rate of the system is an attractive parameter which the researchers want to analyze and
improve. When switching from point-to-point MIMO to massive MIMO, the asymptotic settings
and user specific statistics of channel come into picturewhile analyzing the rates. The fundamental
work onnon-cooperative cellularmassiveMIMOsystems alongwith preliminary results on system
architecture, capacity, and communication strategy is proposed by Thomas L.Marzetta [2010]. The
detailed understanding of such systems in the context of systemmodeling and capacity appears in
[Rusek et al., 2013; Lu et al., 2014] where several practical aspects of wave propagation and signal
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processing along with perfect CSI are considered. However, the assumption of availability of
perfect CSI is theoretical and useful for demonstration of the potentials of massiveMIMO systems.

For a practical setting, a different sum-rate analysis is required because as CSI varies with
time and frequency, it has to be estimated frequently at a cost of a few resources. Further, this
estimatedCSI is imperfect. Thework on sum-rate for practically affordable linear signal processing
techniques is presented by Ngo et al. [2013a] where the performance of MF, ZF, and MMSE along
with the spectral efficiency of the massive MIMO systems are discussed. A brief discussion on
multi-cell settings is also provided. The analysis of uplink sum-rate of amulti-cell multi-user SIMO
system with ZF processing is provided in [Ngo et al., 2013c]. The analysis on uplink sum-rate for
a multi-cell multi-user massive MIMO systems with finite dimensional channel appears in [Ngo
et al., 2013b] with consideration of pilot contamination and inter-cell interference. The work on
sum-rate is further extended with channel aging and correlated channels in [Kong et al., 2015] and
[Liu et al., 2016a] respectively.

The system models in aforementioned literature consider equal average transmit power at
MTs described by a single scalar multiplier (cf. pu in (2.2) and (2.4)) for representing the average
transmit power per MT [Marzetta, 2010; Rusek et al., 2013; Ngo et al., 2013b,a,c; Kong et al., 2015].
These existing system models implicitly (sometimes explicitly) leave the average power-control
for future work. Since the different MTs have largely different channel gains [Erceg et al., 1999],
thus the average power-control may play an interesting role in maximizing the sum-rate. In case
of imperfect CSI at receiver in uplink, the change in rate and interference are highly varying with
user locations without power control. The fairness among MTs can also be improved along with
energy efficiency (EE) of the system by average power-control.

The average channel gains have been used as a part of the system models in existing
literature of massive MIMO systems. However, the exploitation of average channel statistics has
received an attention recently. A power-allocation scheme (termed Max-Min power-allocation)
based on the maximization of minimum achievable rate is provided in [Zarei et al., 2017]. The
power-allocation schemes for cell-free and small cell massive MIMO systems are explored in
[Nayebi et al., 2017] where full power assignment scheme is shown to be better than Max-Min
power-allocation scheme for cellular massive MIMO systems. A power-allocation scheme based
on standard interference function (SIF) is provided in [Zhang et al., 2016] which maximizes the
EE. Another power-allocation scheme by optimizing the EE over number of BS antennas and
active users is provided in [Björnson et al., 2015]. The maximization of sum-rate along with
power-allocation scheme is explored in [Nguyen et al., 2015] where an improvement in sum-rate
is shown by pilot assignment algorithm.

The sum-rate maximization by power-allocation is discussed in [Dai and Dong, 2016]
where amulti-pairmassiveMIMO two-way amplify-and-forward relaywithMF/ZF is considered
with single-cell setting. Maximization of sum-rate and EE for a full duplex single-cell massive
MIMO system under the effect of self interference and co-channel interference is discussed in
[Li et al., 2017]. Considering the existing literature, there is a possibility for further research to
bring out the simultaneous implementation of sum-rate, EE and fairness optimization by average
power-allocation in inter-cell interference limited multi-cell massive MIMO systems. Meanwhile,
the sum-rate maximization could be kept central to the power-allocation scheme which lacks in
existing literature.

…
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