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Channel Estimation and Tracking in Massive MIMO Systems

In previous chapter the channel matrix for massive MIMO systems was explored and
modeled. Another crucial part of the system design is that the knowledge of channel matrix at
BS is essential as shown in our system model from (2.2) to (2.7). Based on the literature review
on channel estimation in chapter 2, the existing pilot-based and blind channel estimation methods
have adverse effects on performance. This chapter presents a blind channel estimation and tracking
method for massive MIMO systems. One of the properties of massive MIMO channel model
developed in chapter 3, i.e., temporal correlation between consecutive RBs over time-frequency
grid is exploited in this work.

In recent years, with the appearance of the “turbo principle” [Berrou et al., 1993],
the architecture of iterative receivers has become popular. In the existing state-of-the-art
MIMO-OFDM technology, iterative channel estimation for refining the pilot-based estimates has
been advocated in several research papers [Kadrija et al., 2013; Liu and Sezginer, 2012; Du et al.,
2009]. These methods are based on the slow variations in the channel over time due to temporal
correlation. Using frequent pilot-based estimates, the system keeps on tracking the channel in
such methods. However, such works are limited in the literature for massive MIMO systems.
Also, the pilot-free tracking of channel in massive MIMO systems and associated issue of signal
to interference plus noise ratio (SINR) need more research in contrast to the existing pilot-training
based MIMO-OFDM systems. Inter-stream interference among MTs is a bottleneck for pilot-free
massive MIMO systems.

In general, the iterative estimation algorithms have two components: the initial estimation
and the convergence process. For convergence process to take place, certain limits are required on
the input parameters to the estimation algorithm. Therefore, the initial estimation plays a crucial
role in such methods. In existing literature, the initial estimate in such methods is obtained by
certain operations on the received signal such as eigenvalue decomposition (EVD) and subspace
projection. The convergence process employs some error correction techniques like least square
projection (LSP) and least reliable layer (LRL).

The proposed method is designed to fulfill two purposes: first, to blindly correct the
channelmatrix and second, to track the channel matrix over time. Themethod takes the advantage
of inherently available temporal correlation between two consecutive RBs for tracking the channel.
The tracking provides the initial estimates for iterative channel estimation in each RB. The
convergence process employs log-likelihood ratio (LLR) based detection and error correction code
(turbo code)which leads to correction in the channel estimate. Inside the shell of proposedmethod,
the existing well explored techniques like ZF estimator, LLR detection, turbo code, theory of large
random matrices, and the iterative estimation of temporally correlated channel are connected to
solve the prominent problem—the channel estimation—in massive MIMO systems. The error
correction code needs not be necessarily turbo code. Other codes like convolutional code and low
density parity check (LDPC) code can also be used.

The computational complexity of any method in massive MIMO systems is a concern due
to large dimensions of the system. The usage of ZF estimator—the best linear unbiased estimator
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(BLUE) [Kay, 1993]—keeps the computational complexity lower than that of other blind channel
estimation methods. Better applicability in terms of lesser limitation on system parameters over
the existing state-of-the-art blind channel estimation methods makes this method more useful for
a system design. In the same sequence, the impact of several system parameters like number of
BS antennas (N), number of active MTs (K), number of symbols in an RB (T ), signal to noise ratio
(SNR), the correlation between consecutive RBs ( b), and the iteration count of the algorithm (C)
on the performance of the scheme is studied.

4.1 SYSTEMMODEL
The massive MIMO channel comprises of two components as per the equation (2.6): the

small scale fading matrix Hlm and the large scale fading matrix Dlm. The large scale fading
matrix describes the statistics of the channel which varies slowly and can be estimated without
significant burden. The variations in statistics of the channel are typically caused by shadow
fading due to buildings, foliage, and other structures. However, the small scale fading matrix
changes significantly faster with time, frequency, and space in a typical environment. Therefore,
the channel estimation in massive MIMO systems is mainly related to this matrix. It is assumed
that the statistics of each channel vector are available at corresponding MTs. In non-cooperative
settings among cells, the required channel matrix to be estimated is Hll (l = m) and analysis on a
single cell is sufficient with considering the inter-cell interference as additional noise.

Following above assumptions, we drop the cell index l for simplicity. The proposed scheme
is independent of the spatial signature of the signal. Therefore, the channel model of (3.2) is further
simplified by setting ri jc = 1, pi jc = 0, and Nc = 1. To keep the analysis simple and oriented to small
scale fading, i jc is kept as one which can be assumed under power control at MTs to make the
channel vectors statistically symmetric. The correlated block fading assumption of channel model
(3.2) ismaintained. For a practical system, such a channelmodel is realized by using the orthogonal
frequency division multiplexing (OFDM) to convert a wide-band frequency selective channel into
blocks of correlated flat channelswith a certain overhead of cyclic prefixes. A typical example is the
LTE standard. The proposed method is designed to take the advantage of the correlation between
consecutive blocks which may exist along both time and frequency. However, to keep the concept
simple, the scheme is limited for utilizing the correlation only along time axis.

Now, considering the aforementioned preambles, if T number of symbols (after removing
the cyclic prefixes) are communicated from each MT to BS in a given RB with index (tb, f b) and the
considered wireless cellular massive MIMO system has K active MTs and one BS with N antennas
in a cell, the baseband equivalent received matrix then can be written as:

Y(tb, f b) = H(tb, f b)X(tb, f b)+
1

√
pu

W(tb, f b) , (4.1)

where

• (tb, f b) is the index of RB,

• Y(tb, f b) is an N×T received complex matrix,

• X(tb, f b) is a K×T transmitted complex user data matrix where the entries of X(tb, f b) come
from an M-QAM (64-QAM in current setup) constellation,

• W(tb, f b) is an N×T complex AWGNmatrix with zero mean unit variance i.i.d. entries, and
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• H(tb, f b) is an N×K baseband equivalent complex channel matrix.

The parameter pu is a measure of common transmit power. Under the considered symmetric
channel vectors, pu can further be interpreted as an uplink SNR. In non-cooperative multi-cell
settings, it is reasonable to assume the inter-cell interference as white and Gaussian distributed.
Thus, the systemmodel of (4.1) is also applicable tomulti-cell settingswhere pu becomes the uplink
signal to noise plus inter-cell interference ratio. Setting pi jc = 0 in (3.2) makes the elements of
H(tb, f b) i.i.d across antennas and MTs. Further, the temporal variations are modeled by using
Markov process instead of defining a generalized temporal covariance matrix as in channel model
of (3.2) so that the analysis for two consecutive RBs is sufficient to draw an insightful conclusion.
The correlation between the channel coefficients in RBs with indexes tb and tb+1 is defined by b
such that

H(tb+1, f b) = bH(tb, f b)+
(

{1− 2
b}W̃(tb, f b) , (4.2)

where W̃(tb, f b) has zero mean unit variance i.i.d. complex Gaussian entries. Further, the
matrix W̃(tb, f b) is independent of H(tb, f b). The correlation value b can be written as:

b = E
$
h∗i j(t

b+1, f b)hi j(tb, f b)
%

(4.3)

∀ 1 ≤ i≤ N and 1 ≤ j ≤ K.

An overview of signal flow is shown in Figure 4.1. A sequence of Fb number of RBs is
assigned to each of K MTs over frequency dimension. Each RB comprises of a certain number of
OFDM sub-carriers and a certain number of OFDM symbols. Total number of symbols (T ) in an
RB is equal to the product of the number of OFDM symbols and the number of OFDM sub-carriers.
Thus, each MT communicates TFb number of symbols in the time span of an RB. The user data at
eachMT are encoded by 1/3 rate turbo code with the parameters as per LTE standard. The coding
runs across all TFb symbols.
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Figure 4.1. : Overview of signal flow

The complete encoded user data matrix from K MTs can be written as:

XTX(tb) = Fapn
	

X(tb,1),X(tb,2), ...,X(tb,Fb)


, (4.4)
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where Fapn represents an operation of horizontal concatenation of matrices. Similarly, the decoded
matrix at BS corresponding to K MTs can be written as:

Z(tb) = Fapn
	

X̃(tb,1),X̃(tb,2), ..., X̃(tb,Fb)


. (4.5)

The channel matrices are specific to RBs. Therefore, the operation related to channel
matrices are performed at block level matrices whereas the encoding and decoding operations
are performed at concatenated forms of data.

4.2 CHANNEL ESTIMATION METHOD
The proposed channel estimation algorithm is divided into four sub-sections. First, a few

preambles are put in the terms of communication strategy. Next, the algorithm operations are
explained step by step. Then, the underlyingmathematics is discussed in next sub-section. Finally,
an analysis on estimation errors of algorithm is provided.

4.2.1 Communication Strategy and Settings
The proposed algorithm considers a massive MIMO cellular system working in time

division duplex (TDD)mode. Under the consideration of temporal correlation from one RB to next
RB, the size of RBs is smaller than the coherence time of the channel such that there is a significant
correlation between consecutive RBs on time axis. For the first time when communication is
initiated, one set of allFb RBs for tb = 1 comprises of both the uplink data and pilot training symbols
which means the channel at tb = 1 is estimated using pilot-based estimation. In subsequent set of
Fb RBs (i.e. with tb > 1 and f b = 1 to Fb), MTs send the uplink data encoded over all Fb RBs with T
symbols per RB. BS jointly estimates the channel and uplink data. The estimated channel is used
to precode the downlink data. BS then transmits the precoded data in same set of RBs in which
the uplink data were received. The estimates of channel in current set of RBs (tb) are passed to
next set of RBs (tb+1) as initial estimates of the channel. The process continues upto completion
of the communication. For pilot-based estimation, the MMSE estimation is considered. Same is
simulated in this work as follows [Ngo et al., 2013a]:

H̃PBE(tb, f b) =
pu

1+ pu

�
H(tb, f b)+

1
√
pu

W(tb, f b)

�
, (4.6)

where is the length of uplink pilot train. In order to provide a comparison of proposed scheme
with pilot-based scheme,MMSE based estimate of channel is also simulated for eachRB separately.

4.2.2 Channel Estimation Algorithm
The flowchart of the the proposed algorithm is shown in Figure 4.2. As per the

communication strategy, the algorithm starts with initial estimation of channel using pilot-based
estimate received from previous RB. This is indicated by step (1) in the figure. The step (2) is
the entry point for the estimate of channel from previous RB during the tracking of channel. In
the step (3), an operation of pseudo inverse of the current estimate of channel matrix (H̃(tb, f b))
is performed on the received matrix Y(tb, f b) over all RB indexes from f b = 1 to f b = Fb. Step (4)
consists of matrix concatenation function of (4.4) which gives the K×TFb dimensional complete
encoded user datamatrix corresponding to Fb RBs as output. Step (5) uses LLR detecter to generate
soft bit outputs corresponding to all K MTs which are further processed by turbo decoder in step
(6) to produce error corrected data bits.
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Figure 4.2. : Joint algorithm for channel estimation, data decoding and channel tracking.

The operation of pseudo-inverse in step (3) is the best linear unbiased estimator (BLUE)
which performs well under certain limits on N, K, T , b, and pu. This operation of estimation is
also justified in the point-of-view of complexity while working with large dimensions. Step (5)
and (6) apply the error correction on data bits in each iteration which is basically the essential part
of an iterative estimation algorithm. The complexity of LLR detection and max-log-MAP based
turbo decoding [Berrou et al., 1993; H. and Wu, 2001] operations in steps (5) and (6) is logarithmic
function of constellation size (or linear function of number of bits per constellation point) as they
execute on bits in contrast to the existing computationally complex ILSP based algorithm which
has complexity exponential in constellation size. The turbo code is one of the best available error
correction code. Therefore, the performance improvements over existing blind estimationmethods
is also significant.

Step (7) applies the turbo encoding on the error corrected bits which are modulated on
M-QAM constellation which gives the symbol matrix as output in step (8). Step (9) performs a
slicing operation—inverse of append operation of step (4)—onK×TFb dimensional symbolmatrix
to give Fb number of K×T dimensional matrices as outputs. The iteration count is compared with
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a maximum preset value of iteration count in step (10) which takes the decision on terminating
or continuing the iterations. While continuing the iterations, step (11) applies the right-sided
pseudo-inverse of refined data matrix X̃d(tb, f b) on the received matrix Y(tb, f b) for all RBs from
f b = 1 to f b = Fb to produce new refined estimates of channel matrices. Step (12) passes the new
estimates to step (3) for next iteration.

A signal flow perspective of proposed algorithm is given in Figure 4.3 for a better
understanding. The initial estimates of channel matrices during tracking in step (2) are obtained
using the temporal correlation of channel between the RBswith time index tb and tb+1. In order to
keep the concept simple, the proposed scheme utilizes the simplest way, i.e., to assign the channel
estimates of previous set of RBs as initial estimates in current set of RBs. In practice, there are other
options for the assignment of initial estimates of the channel matrices. Owing to finite Doppler
spectrum of wireless channel [Tse and Viswanath, 2005, Ch 2] and block fading assumption, each
channel coefficient—hi j(tb, f b)—can be considered a band-limited discrete process with time index
as tb. Therefore, the existing extrapolation techniques for band-limited signals [Dharanipragada
and Arun, 1997; Shi et al., 2012] can be used to obtain even better initial estimates of the channel
matrices while starting the iterations in a new set of RBs.
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Figure 4.3. : Signal flow prospective of proposed channel tracking algorithm.

4.2.3 Theory Behind the Algorithm
In this subsection, the mathematical basis and the process of convergence for the proposed

scheme are provided.

Theorem 4.2.1. Dropping the indexes tb and f b in current system model, i.e.,

Y = HX+ 1√
pu

W,

for a given complex valued matrix W̃ with zero mean unit variance i.i.d. entries and an ≥ 0,

lim
(N→∞, constant K)

	(
1+ 2


�(H+ W̃)√
1+ 2

�†

Y = X (4.7)

provided that H and W̃ as well as (H+ W̃) and W are independent.
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The superscript † is the operation of pseudo inverse. (Proof of theorem 4.2.1: See Annexure
A). This theoremreveals thepotential ofmassiveMIMO in asymptotic settingwhich shows that the
impact of estimation error in channel can be controlled by changing the dimensions of the system.
However, the application of such an operation to the system with finite but large N, T , and small
K leads to a finite residual error in the estimate of data matrix. Let the erroneous estimate of data
matrix in step (3) of the algorithm (with dropping the indexes tb and f b) be

X̃ =
	(

1+ 2

�(H+ W̃)√

1+ 2

�†

Y (4.8)

The newly introduced parameter is a measure of error or deviation in the estimate of
channel matrix H. The smaller the , the better is the estimate of channel matrix. Therefore,
should reduce with iteration countC as per the scheme. For simplicity of the expressions, is kept
free of this indexwherever it is out of context. The initial deviation in the estimate of channelmatrix
(i.e. (1); C = 1) arises due to two factors: the accuracy of channel estimate in previous RB and
the variations in actual channel matrix from previous RB to current RB. First factor is described by
the correlation between the estimate of channel matrix and the actual channel matrix in previous
RB ( e). The second factor is described by the correlation between the true channel elements in
previous RB and the true channel elements in current RB ( b).

e b =
1(

1+ 2(1)
(4.9)

Considering the symmetry of the statistics of channel elements, the e and b are same for
different channel elements. Therefore, they can be defined as follows.

e = Corr
	
hi j(tb−1, f b) , h̃i j(tb−1, f b)



(4.10)

b = Corr
	
hi j(tb, f b) , hi j(tb−1, f b)



(4.11)

At the start of communication, the initial estimate in previous RB is obtained by pilot-based
estimation. In subsequent RBs, e itself increases resulting into better initial estimates under the
effect of proposed scheme. Therefore, the first set of RBs when initial estimates of the channel are
obtained from pilot-based estimation, is useful for unbiased analysis of estimation error. For this
set of RBs,

e = Corr
	
hi j(tb−1, f b) , h̃i j(tb−1, f b)PBE



(4.12)

By using (4.6) and (4.10), e for first set of RBs, can be expressed as follows.

2
e =

pu
1+ pu

(4.13)

The estimate X̃ of data matrix in (4.8) can be approximated by using an empirical study
along with the random matrix theory [Tulino and Verdu, 2004] for N >> K >> 1 as follows:
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X̃ = X+

�*
2(C)K
N−K

�
W1 +

�*
1+ 2(C)
pu(N−K)

�
W2 or (4.14)

X̃ = X+∆XA+∆XB , (4.15)

where ∆XA

�*
2(C)K

(N−K)

�
W1 and ∆XB

�*
1+ 2(C)
pu(N−K)

�
W2.

W1 and W2 are complex AWGN matrices with i.i.d. entries having zero mean and unit
variance. In each iteration, the multiplier

(
1+ 2(C) required in (4.8) is not known where it can

be estimated by SNR estimation techniques. LLR in step (5) is calculated for each bit of the each
symbol (x̃i j) from each MT [Gallager, 2006]. LLR for bth bit of jth symbol from ith MT is calculated
as given in following:

L(b, i, j) = log

�
∑M/2
m=1;sm∈S0

�
e−

1
2 |x̃i j−sm|2�

∑M/2
m=1;sm∈S1

�
e−

1
2 |x̃i j−sm|2�

�
, (4.16)

where S0 is a subset of constellation points in which the bth bit is zero and S1 is a subset of
constellation points in which the bth bit is one. Parameter 2 is the variance of error term ∆XA+
∆XB. LLRs computed for scalar symbols (x̃i j) have performance equivalent to the case if LLRs are
computed for symbol vector over time ([x̃T ] j) [Gallager, 2006, Th 8.4.1]. LLR-based soft detection
is followed by turbo decoding in step (6). The LLR detection and turbo decoding improves the
accuracy of estimate X̃ which leads to better estimates at the output in step (9). Similarly, the new
estimate of channelmatrix for each frequency block index ( f b) in step (11) can be defined as follows:

H̃new = YX̃†
d or (4.17)

H̃new = H+∆HA+∆HB. (4.18)

The one of the error components in (4.18) is: ∆HB = W4/
(

pu(T −K). The nature of error
components in (4.18) is similar to that of (4.15) as found in simulation study. However, ∆HA does
not have an explicit expression in terms of T , K, and pu yet ∆HA is known to be caused by the error
in the estimate X̃d of data matrix.

∆XA and ∆HA reducewith iteration count due to the improved estimate of channel matrix H̃
and datamatrix X̃d respectively. However, the second error components ∆XB and ∆HB additionally
depend on SNR pu. Therefore, they cannot beminimized just by improving the estimate of channel
and data matrices. Rather, they have to be controlled by N, K, and T such that the setting on the
systemparameters keeps the algorithm in convergeable region. The system parametersN, K, T , pu,
and b form a combined boundary. If the system settings reach close to this boundary, the required
number of iterations for convergence increases exponentially. On the other hand, slightly inside
the boundary, the required number of iterations is very small.
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4.2.4 Estimation error analysis
The quantification of the required number of iterations depends on the rate of convergence

which further depends on how fast the error components are reducing with iterations. The
estimation error in the channel matrix (i.e. EH) and in data matrix (i.e. EX ) are defined at a given
iteration index and block-time index as follows:

E2
X = E f b


1
KT

��X̃(tb, f b)−X(tb, f b)
��2
�
and (4.19)

E2
H = E f b


1
NK

��H̃(tb, f b)−H(tb, f b)
��2
�
. (4.20)

As discussed in previous subsection, the unbiased analysis of estimation error corresponds
to first set of RBs, i.e., at the start of communication when the iteration based algorithm is used
for first time where initial estimates of the channel are obtained from pilot-based estimation in
previous set of RBs. In the same sequence, Figure 4.4 shows the linearly fitted curve on simulated
estimation errors for first set of RBs with blind tracking. The error components in estimated data
matrix have more insightful expressions than that of estimated channel matrix while the behaviors
of E2

X and E2
H are similar. Therefore, E2

X has been analyzed to quantify the number of iterations
required for the algorithm. By using (4.14), E2

X can be written as follows:
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Figure 4.4. : Data and channel estimation error verses iteration counts for different values of pu (SNR)
with b = 0.8, K = 20, N = 200 and T = 200.

E2
X =

�
2(C)K
N−K

�
+

�
1+ 2(C)
pu(N−K)

�
. (4.21)
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As shown in Figure 4.4, the change in estimation error with iteration count is not linear.
However, the behavior of error with iteration count is less significant. Rather, the number of
iterations required for obtaining the final value of estimation error is important. Therefore, a linear
fit is used for E2

X which can be written as follows:

E
(q1)
= E1 +

E2 −E1

C2 −C1
(C−C1). (4.22)

At the start, E1
(q2)
=

�
2(1)K
N−K

�
+

�
1+ 2(1)
pu(N−K)

�
and (4.23)

at the end, E2
(q3)
=

�
2(∞)K
N−K

�
+

�
1+ 2(∞)

pu(N−K)

�
, (4.24)

where 2(∞)
(q4)
=

1
pu(T −K)

. (4.25)

q1 corresponds to linear curve fitting on E2
X . The initial estimation error (E1) corresponds

to the first iteration count (C1, i.e., 1) and E2 is the final estimation error when the convergence
completes. q2 and q3 follow from the calculation using (4.21) and q4 follows the calculation of the
error component using (4.18) with ∆∆∆HA = 0.

Next, the least absolute residual (LAR) method is used to fit (4.22) on the simulated mean
square error in data matrix versus iteration count as shown in Figure 4.4. With this fitting, the
number of iteration counts at the completion of convergence (i.e. C2) is obtained. An empirical
expression for C2 is established using different values of SNR (pu), , and obtained values ofC2 as
follows:

C2 = PF
2(1)+ 2(∞)

pu
, (4.26)

where PF is a proportionality factor which is a measure of capability of error correction
code (here turbo code) used in the algorithm. A few values from empirical study are shown in
Table 4.1. For current setup, the empirically obtained value of PF is approximately 0.5.

pu (1) (∞) C2
2(1)+ 2(∞)

pu
PF

0.08 1.24 0.26 10.23 20.36 0.50
0.13 1.09 0.21 5.08 9.75 0.52
0.13 1.52 0.21 8.95 18.67 0.48

Table 4.1. : Parameters values (rounded) for establishing empirical expression forC2 ( b = 0.8,N = 200,
K = 20, and T = 200).

4.2.5 Improvement in Spectral Efficiency
The pilot training in proposed scheme is required only at the start of communication. The

symbols in subsequent RBs that otherwise are used for training in pilot training based systems,
are free for transmission of user data in current scheme as the channel matrices are tracked
by incremental updates after each block-time. Therefore, there is an improvement in spectral
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efficiency of the system. The spectral efficiency of a multi-user massive MIMO system is given
by following [Marzetta, 2010, eq:(14)]:

SE =
K

∑
k=1

�
B
��

Tslot −Tpilot
Tslot

��
Tu
Tslot

�
log2

	
1+SIRk



, (4.27)

where

• B= total bandwidth,

• = frequency reuse factor,

• Tslot = T = number of symbols in RB,

• Tpilot = K = number of pilot symbols in RB,

• SIRk is signal to interference ratio for kth MT, and

• Tu is the useful OFDM slot.

However, the expression in (4.27) is forMF decoder based system but the pre-log factor, i.e.,
(Tslot −Tpilot)/Tslot is independent of decoder. Using this relation, the proposed scheme provides a
gain in spectral efficiency approximately by a factor of T/(T −K) over pilot-based method.

4.3 COMPLEXITY ANALYSIS
The complexity in blind channel estimation methods for massive MIMO systems is an

essential concern to be cared of. The complexity of proposed scheme is compared with the existing
EVD-ILSP based blind channel estimation method which is closest candidate for comparison in
this class. The number of multiplications (and division) are taken as a measure of complexity for
comparison. The number of multiplications (plus divisions) per bit in the turbo decoding for a
given number of states S and turbo iterations count CT is given by 8SCT [Chatzigeorgiou et al.,
2007, Tab II, Fig 2]. Thus, the number of multiplications in proposed algorithm with C number of
iterations can given by following:

MULTDC = 8SCTC log2(M). (4.28)

The complexity for one symbol associated with linear operation H̃(tb, f b)†Y(tb, f b) is:

MULlop1 =
(2NK+K2 +NT )

T
C. (4.29)

Similarly, the complexity for one symbol associated with linear operation Y(tb, f b)X̃d(tb, f b)† is:

MULlop2 = (2K+K2/T +N)C. (4.30)

In the proposed algorithm, the operations corresponding to (4.28), (4.29), and (4.30), are
the key contributors to the complexity. Therefore, the total number of multiplications can be
approximated as follows:

MULIBE =
&
(2NK+K2 +NT )/T +(2K+K2/T +N)+8SCT log2(M)

'
C. (4.31)
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Next, the complexity of ILSP-based iterative algorithm used in [Ngo and Larsson, 2012]
is calculated. This algorithm requires 2M multiplications where M is the order of modulation.
If the use of turbo decoder is considered after the last iteration in this algorithm (for justified
comparison), the complexity associated with ILSP-based channel estimation can be written as
follows:

MULILSP =
&
(2NK+K2 +NT )/T +(2K+K2/T +N)+2M

'
C+8SCT log2(M). (4.32)

The ILSP based algorithm in [Ngo and Larsson, 2012] uses the EVD-based blind (almost)
method for initial estimation of channel. Therefore, the complexity of EVD-based estimation is also
calculated which can be written as follows:

MULEVD =

�
N2

K
+

N2

T
+

NK
T

+N+K+
8T 2

K
+

8NT
K

+
4N
K

+
4T
K

�
. (4.33)

The details regarding the calculation of the number of multiplications for the mathematical
operations in 4.33 are provided in Annexure A.
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Figure 4.5. : Complexity verses constellation size with K = 20, N = 200 and T = 200.

The comparison of the complexities associated with the proposed algorithm, the
EVD-based algorithm, and the ILSP-based algorithm is shown in Figure 4.5. The value of turbo
iteration count (CT ) and the number of states in turbo-encoder (S) are 4 and 16 respectively. The
value of iteration count (C) in ILSP based and proposed algorithm is 8. The complexity plot
shows that the ILSP-based algorithm is not suitable above 4-QAM because complexity increases
exponentially. The complexity of proposed algorithm is also lesser than the complexity of
EVD-based algorithm.
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4.4 SIMULATION RESULTS AND DISCUSSION
The simulation results include the comparison of symbol error probability (SEP) in

proposed schemewith that of pilot-based estimation. SEP is regarded same as bit error rate (BER).
There is a slight variation in the convention that a bit can be correct or erroneous while a symbol
can be partially erroneous depending on the number of erroneous bits in it. Numerically, SEP
calculated here is same as BER. The pilot-based estimation is an extensively explored technique in
the non-blind class of channel estimationmethods. Thus, the comparison of proposed schemewith
pilot-based estimation is considered to be useful. However, there are some other methods of blind
class as described in chapter 2 which might be considered for comparison but there is a significant
variation in the settings on system parameters in these methods from the proposed method. As
described in chapter 2, they are mostly dependent on asymptotic settings. The comparison with
these schemes is avoided because of their one or some of the specific settings like large N/K
ratio (i.e. for better orthogonality of channel vectors), very small size of RB (to keep manageable
complexity), large RB (due to dependency on estimated covariance matrix), and smaller size of
symbol constellation. Table 4.2 summarizes the settings used in the simulation.

Table 4.2. : Summary of simulation parameters for comparison of pilot-based and proposed iterative
channel estimation method.

Parameters Values Details
N 100 to 300 Number of BS antennas
K 18 to 24 Number of active MTs
T 150 to 300 Number of symbols in RB
Fb 8 to 15 Number of RBs on frequency axis
Tb 5 Number of RBs considered on time axis
M 64 QAM-order
b 0.6 to 0.9 Time correlation in RBs

4.4.1 SEP Verses Iteration Count
This section presents the simulation results in the support of the working of algorithm

and the subsection ‘Theory behind algorithm’ (4.2.3). Figure 4.6 and Figure 4.7 show SEP versus
iteration count plots with different values of SNR and channel correlation respectively. When SNR
is high (here−9.5dB), SEP plot falls quickly with iteration count as shown in Figure 4.6. However,
by increasing the iteration count (from 5 to 12 in the figure), the system can support further 2dB
lower SNR (plot for pu = −11.5dB). As SNR is further lowered, the settings reaches to boundary
values which results into the requirement of an exponential increase in iteration counts which is
also observed from the plots corresponding to different values of SNR.
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Figure 4.6. : Symbol error probability verses iteration counts for different values of pu (SNR) with b =
0.8, K = 20, N = 200 and T = 200.
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Figure 4.7. : Symbol error probability verses iteration counts for different values of b with pu =
−11.25dB, K = 20, N = 200 and T = 200.
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The ability of the algorithm to deal with different values of temporal correlation between
channel elements of consecutive RBs is shown in Figure 4.7. The decreasing correlation can be
managed by increasing the iteration counts upto an extent. After that, SEP plot displays an error
floor. This difference in the behavior of SEP with channel correlation compared to the behavior
of SEP with SNR is caused by the different dependency of error components on SNR and b.
pu is connected to second error component in (4.14) while b is connected to both of the error
components.

To keep the performance comparison unbiased, the first set of RBs, i.e., tb = 1 ∀ 1≤ f b ≤Fb is
used for evaluating SEP in proposed schemewhere the channel matrices in the previous set of RBs
are obtained by pilot-based estimation. The parameter in analysis comprises of two parameters
e and b where e is dependent on the accuracy of channel estimate in previous set of RBs. The

settings in which performance of proposed scheme is better than pilot-based estimation, e will
further reduce for next set of RBs (i.e. tb ← tb+1). After few block times, the steady state is obtained
where the performance of proposed scheme is even better. Consequently, the settings on system
parameters further can be tightened.

4.4.2 Impact of the Number of MTs
The study on the impact of increasing number of MTs in the system is important because

the promise of massiveMIMO technology is to provide parallel spatial channels to a large number
of MTs in the cells. Against the assumption of infinitely large number of antennas at BS in theory,
a practical system must serve the number of MTs as large as possible for a given number of BS
antennas and other settings. SEP versus SNR performances of proposed scheme and pilot-based
scheme are compared in Figure 4.8 for different number of the active MTs in the cell. The number
of iterations in the algorithm is set to 10.
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Figure 4.8. : Symbol error probability verses pu (SNR) for different values of K with b = 0.8, N = 200,
T = 200 and tb = 5. Right: Proposed algorithm and Left: Capacity limited performance
(using ZF with perfect CSI)

SEP in proposed scheme falls significantly earlier than SEP in pilot-based estimation for
decreasing number of MTs. The supported ratio of N and K is as small as 10 where the proposed
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algorithm performs better than the pilot-based estimation. The impact of the number of BS
antennas for a given number of MTs is similar but opposite to the impact of the number of MTs
for a given number of BS antennas. This is also supported by the theory as the error expression
in 4.14 has N and K coupled together such that they should impose similar but opposite impacts.
There is a 3dB to 4dB SNR margin with respect to the SEP plots for perfect CSI at BS. The impact
of number of MTs on the performance of proposed scheme compared to the case of perfect CSI is
more because the accuracy of channel estimate varies significantly (cf. sec. (4.2.3) ) with number
of MTs in the proposed scheme.

4.4.3 Impact of the Mobility
The requirement of the channel matrix and the variations in the channel make the limited

coherence time a critical parameter against the performance of massive MIMO systems. The
limited coherence time is directly linked to themobility of MTs. As the coherence time reduces, the
correlation between the channels of consecutive RBs reduces which also results into the variations
of channel inside the RB. Consequently, the assumptions of time invariant channel inside the RB
become difficult to maintain which needs for a reduction in T . In pilot-based estimation, T is
directly related to the spectral efficiency of the system. In the blind channel estimation methods,
it is directly related to the error performance. The error performance in proposed algorithm is
connected to two parameters in this context: b and T . Therefore, the study of the impact of
mobility includes both b and T .
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Figure 4.9. : Symbol error probability verses pu (SNR) for different values of b with K = 20, N = 200,
T = 200 and tb = 5.

SEP versus SNR performances of the proposed scheme and pilot-based estimation are
compared in Figure 4.9 for different values of temporal correlation in the channel of consecutive
RBs. The performance of proposed scheme is better than that of pilot-based estimation for temporal
correlation values more than approximately 0.75. The smaller value of temporal correlation leads
to larger estimation error components in (4.14) resulting into reduced performance. The simulation
is done for first set of RBs after pilot-based initial estimation. As the block time index (tb) increases,
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the estimation accuracy measured by e increases which results into even better performance in
steady state.

The higher mobility scenario needs a smaller number of symbols in an RB (T ). Figure 4.10
compares the proposed algorithmwith pilot-based estimation for its SEP versus SNR performance
with varying T . The estimation error components in proposed algorithm depend on T as shown in
(4.18). Therefore, reducing T amplifies the error components resulting into reduced performance.
There is one favorable effect of reduced T , i.e., the sharp fall in SEP with SNR. This sharp fall is
caused by the dominance of error component ∆HA which does not have a direct dependence on
SNR. This component reduces effectively and quickly with iterations of algorithm. Therefore, as
soon as the SNR value is obtained within the supported boundary, the algorithm shows its ability
to minimize SEP.

-13.5 -13 -12.5 -12 -11.5 -11 -10.5 -10

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 4.10. : Symbol error probability versus pu (SNR) for different values of T with K = 20, N = 200,
b = 0.8 and tb = 5. Capacity limited performance: same as in Figure 4.8.

The proposed scheme works under the combined effects of different system parameters
which makes it powerful against the ill-conditioning of one parameter. The performance
can be maintained by adjusting the controllable parameters to compensate an ill conditioned
uncontrollable parameter. This approach makes the proposed algorithm robust against the
scenario of higher mobility (i.e. lower coherence time or smaller T ) where this case can be handled
up to an extent by adjusting Cmax, N, K, and pu as shown in different SEP versus SNR plots.
There are other mobile networking based techniques to deal with higher mobility where the
processing at MTs is also considered which is however, beyond the scope of proposed scheme.
The opportunistic communication is a good candidate for such cases as advocated in the literature
for mobile networks [Liu et al., 2016b; Zirwas, 2015; Liu et al., 2014].

In this chapter, a blind channel estimation and tracking scheme is presented for massive
MIMO systems by exploiting the temporal correlation in the channel and the error correction
capability of turbo code. An insightful study of convergence and estimation error for the algorithm
was presented. The simulation study revealed an improvement in the performance by the
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proposed scheme over pilot-based channel estimation for a range of system parameters supporting
a practical N/K value (≈ 10). The ranges of different system parameters (N, K, T , pu, and b)
are identified for the required performance of the system. The complexity analysis revealed the
lower complexity of proposed algorithm than that of EVD and ILSP based similar schemes. After
exploring the small scale fading channel matrix (H) in this chapter, the large scale fading plus path
loss matrix (D) will be exploited in next chapter for an improvement in the system.

…
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