
5
Power-allocation and Sum-rate in Massive MIMO Systems

In the previous chapter, the small scale fading channel matrix was explored and an
estimation technique was presented for this matrix. The estimation of large scale fading plus path
loss matrix (D) presented in our system model (2.2) is not a bottleneck due to its slow variation.
However, the large variations in diagonal elements of D, i.e., the variations in average channel
gains over space become crucial for power allocation strategies in the system. In this chapter,
the distinctive nature of average channel gains is exploited to improve the sum-rate, energy
consumption, and control on fairness among MTs.

Power is themost fundamental resource inwireless communication as discussed in chapter
1. The allocation of power becomes a challenge in two cases: themulti-user setting and interference
limited setting. A massive MIMO system has both of these conditions as the viable system is
designed towork inmulti-user non-cooperativemulti-cell settings where the inter-cell interference
is a limiting factor influenced by power-allocation scheme of the system. Under the assumption
of imperfect CSI, the inter-stream interference within a cell is also influenced by power-allocation
scheme. Due to a large variations in average channel gain over MTs, the fairness and the sum-rate
are also influenced by power-allocation strategy. This chapter is dedicated to analysis of sum-rate
by using an average power control at MTs and to propose a power-allocation optimization scheme
for improving the sum-rate, energy consumption, and the control on fairness among MTs.

As discussed in chapter 2, the system models in early literature of massive MIMO systems
[Marzetta, 2010; Rusek et al., 2013; Ngo et al., 2013b,a,c; Kong et al., 2015] consider equal transmit
power at MTs which can be described by a scalar multiplier pu as in (5.1). The use of single scalar
not only limits the applicability of the system model but also raises the issue of fairness due to
large variations of average channel gains across MTs. The analysis of sum-rate under average
power control is not possible using existing system models in the literature resembling with (2.2)
and (5.1).

yl =
√
puGllxl +

√
pu

L

∑
j=1; j �=l

G jlx j + w̃l , (5.1)

where

• G jl is the baseband equivalent complex channel matrix representing the channel gains from
K active MTs of jth cell to N antennas of BS in lth cell,

• yl is the received complex symbol vector across N antennas of BS in lth cell,

• √puxl is the transmitted complex symbol vector from K active MTs of lth cell with pu as
transmit power per MT,

• w̃l is a complex additive white Gaussian noise (AWGN) vector across N antennas of BS in lth

cell, and
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• The elements of w̃l are i.i.d. with zero mean and unit variance leading to the interpretation
of pu as ‘transmit SNR’.

As discussed in chapter 2, a systemmodel needs to be established which has power control
factor for individual MTs to obtain an insight on how the sum-rate of the system is affected by
different transmit powers from MTs. While working with inter-cell interference limited regime
which is expected under the setting of unity frequency reuse factor for massive MIMO systems,
the sum throughput might not be increased by increasing the power of all MTs uniformly. Under
such settings, the common power scaling factor of (5.1) loses its significance. Consequently, a
new systemmodel is required which is free of such a parameter, albeit being analytically tractable
for calculating sum throughput. Moreover, the inter-cell interference power is a function of the
number of active MTs in the cells and the number of interfering cells. Thus, these parameters are
also desired in system model so that the sum-rate analysis is more useful in overall system point
of view.

First, an average power-control based system model is constructed which incorporates
a simplified expression for inter-cell interference statistics. This system model is then used for
theoretical analysis of MF and ZF sum-rates for a simple case of two users by extending the
existing sum-rate expressions to the current systemmodel. The theoretical analysis is followed by a
numerical optimization for multi-user MF and ZF sum-rates with perfect and imperfect CSIR. The
results show a significant improvement in sum-rate and power consumption over the case of equal
full power assignment at MTs. The scheme explores several permutations of power-allocation to
control the fairness among MTs along with keeping the sum-rate close to it’s maximum value. A
low complexity algorithm is proposed for numerical optimization. The performance results show
that the sum-rate along with power consumption improves with increasing inter-cell interference
and number of MTs in different scenarios like macro and micro cells with low and high inter-cell
interference powers.

5.1 SYSTEMMODEL
Based on the Figures 1.5 and 2.1 in earlier chapters, the layout of amulti-cellmassiveMIMO

system havingMTswith power control is presented in Figure 5.1. The system has L number of cells
with K active MTs in each cell at a time. The channel gain from kth MT of jth cell to nth antenna of
BS in lth cell is gn jlk similar to the earlier definition. Since kth MT in jth cell is enabled with power
control by introducing a factor jk, the system model of (5.1) can be modified as follows:

yl =
√
puGllSlxl +

√
pu

L

∑
j=1; j �=l

G jlS jx j + w̃l or

yl = GllSlxl +
L

∑
j=1; j �=l

G jlS jx j +
1
√
pu

w̃l , (5.2)

where yl is N×1 received vector at BS in lth cell. S j is a diagonal matrix ([S j]kk =
√

jk; 0 ≤ jk ≤ 1)
where diagonal element jk is slowly varying power scaling factor at kth MT of jth cell. √puS jx j is
K× 1 transmit symbol vector from K active MTs of jth cell with pu as ‘maximum transmit power’
from each MT such that the elements of x j are zero mean unit variance i.i.d. random Gaussian
complex symbols. w̃l is an N× 1 complex AWGN vector across N antennas of BS in lth cell with
zero mean unit variance elements such that pu can be interpreted as ‘maximum transmit SNR’.
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Figure 5.1. : Non-cooperative multi-cell massive MIMO system layout with average transmit power
control in uplink.

G jl is the overall channel matrix from K active MTs of jth cell to N BS antennas of lth cell. This
matrix represents the small-scale fading, geometric attenuation, and large-scale shadow fading.
As discussed in chapter 2, G jl can be represented as follows:

G jl = H jlD
1/2
jl , (5.3)

where H jl—the CSI at receiver (CSIR) in uplink—is the channel matrix of small-scale fading
coefficients having i.i.d. zero mean unit variance Gaussian random distribution. D jl is a diagonal
matrix where diagonal elements ([D jl ]kk = jlk) vary slowlywith space and time specifying the path
loss plus large scale fading from kth MT in jth cell to BS of lth cell. jlk is assumed to be constant
over a block of communication and calculated using the existing path loss model of [Erceg et al.,
1999, eq:1-6] as follows:

jlk = 10−
PL(d jlk)

10 , (5.4)

where djlk is the distance of kth MT in jth cell from BS of lth cell and PL(d jlk) is corresponding overall
path loss. The details of the path loss model are given in Annexure B.3. The inter-cell interference
signal at any of BS antennas is a sum of a large number ((L− 1)K) of random signals. Therefore,
the inter-cell interference signals at different antennas of BS can be modeled as i.i.d. Gaussian
distributed random variables with an interference power l according to the central limit theorem.
The system model of (5.2) then can be written as:

yl ≈GllSlxl +
√

lwl +
1
√
pu

w̃l , (5.5)
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where

l = E

����
L

∑
j=1; j �=l

K

∑
k=1

hn jlk
)

( jlk)( jk)x jk
���
2
�

⇒ l
(a)
=

L

∑
j=1; j �=l

K

∑
k=1
E
$��hn jlk

��2
%
E
$
( jlk)

%
E
$
( jk)

%
E
$��x jk

��2
%

⇒ l
(b)
=

L

∑
j=1; j �=l

K

∑
k=1
E
�

jlk
�
E
�

jk
�

⇒ l
(c)
= (L−1)KE

�
jlk
�
E
�

jk
�
, (5.6)

where n is the BS antenna index and E is mathematical expectation which corresponds to the
process of sample realization over time. Step (a) follows from the fact that hn jlk, jlk, jk, and x jk all
are independent for j �= l and x jk is zero mean. Step (b) follows from the fact that hn jlk and x jk are
zero mean and unit variance random variables. Step (c) follows from the non-cooperative settings
such that the user scheduling is random and independent across cells. In such settings, jlk and
jk—looking from lth cell, i.e., j �= l—change their values randomly (due to random locations) at
random time which makes them time varying random variables. Therefore, jlk and jk make two
sets of (L−1)K independent and identically distributed random variables. The results on the rates
in massive MIMO systems without average power-control exist in the literature [Ngo et al., 2013a].
However, a brief explanation of the procedure is given in the context of systemmodel with average
power-control and inter-cell interference for the convenience. As discussed in chapter 2, a linear
processor is defined as follows:

Ãl =

�
G̃ll for MF and
G̃ll(G̃H

ll G̃ll)
−1 for ZF.

The processed vector from (5.5) can be written as follows:

rl = ÃH
l {G̃llx+

√
lwl +

1√
pu

w̃l}.

Let ãlk and g̃lk be kth column vector of Ãl and G̃ll respectively. The received symbol corresponding
to kth MT then can be written as:

rlk = ãHlkg̃lkxlk +
K
∑

i=1,i�=k
ãHlkg̃ilxi +

√
l ãHlkwl +

1√
pu

ãHlkw̃l .

For a given realization of channel above equation can be written as follows:

rlk =
(

pslkxlk +
(

palkz1lk +
)

pblkz2lk +
(

pclkz3lk , (5.7)

where

pslk |ãHlkg̃lk|2, palk
K

∑
i=1,i �=k

|ãHlkg̃il |2,

pblk l�ãlk�2, and pclk
1
pu
�ãlk�2.
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The random variables z1lk, z2lk, and z3lk have zero mean, unit variance, and Gaussian distribution.
Bymodeling the interference and noise parts in (5.7) asAWGNand considering the spanof channel
codes over independent realizations of the channel, the ergodic rate can be given by:

RP,lk = E
&
log2

	
1+

pslk
palk + pblk + pclk


'
. (5.8)

The extension of the existing results on rates in massive system for our system model is
straight-forward by replacing llk with llk lk, lli with lli li, and adding the inter-cell interference
power term l to the noise power. The analysis, problem formulation, and solution remain around
the average transmit power-control factors lk.

5.1.1 Sum-Rate with Perfect CSIR
In the case of perfect CSIR, it is considered that the channel matrix is hypothetically known

at BS all the time with full accuracy. By using (5.8) and the results of [Ngo et al., 2013a], lower
bounds on MF and ZF rates for kth MTwith perfect CSIR can be written as follows:

R̃MF
l,k = log2

�
1+

(N−1) llk lk

∑K
i=1,i �=k lli li + l +

1
pu

�
and (5.9)

R̃ZF
l,k = log2

�
1+

(N−K) llk lk

l +
1
pu

�
. (5.10)

First, we put a theoretical analysis on sum-ratewithMFprocessing based simple case of two
users (MT1 and MT2) and high SNR (pu→ ∞) which will be followed by a numerical optimization
for multi-user settings. With simplified notations ( llk→ k, lk→ k, and l → ), the sum-rate in
this case in a given cell is:

RMF = log2

&
1+

(N−1) 1 1

2 2 +

'
+ log2

&
1+

(N−1) 2 2

1 1 +

'
.

Let 1 > 2, i.e.,MT1 has a better channel gain, 1 = 1, i.e., MT1 transmits its full power, and
0≤ 2 ≤ 1, i.e., the power ofMT2 is varied. The sum-rate then becomes:

RMF = log2

&
1+

(N−1) 1

2 2 +

'
+ log2

&
1+

(N−1) 2 2

1 +

'
. (5.11)

Lemma 5.1.1. For two users’ uplink MF sum-rate with perfect CSIR, there exists a unique = c where
the sum-rate is same whether the weak user is transmitting full power or not transmitting at all.

Proof: See Annexure B.1.

In the case of 2-users MF rate, c defines a critical value of inter-cell interference power as
shown in Figure 5.2. The range of is selected on the basis of (5.6). Next, it is analyzed if there
exists a maxima/minima on the sum-rate for some 0< 2 < 1 with = c by solving d

d 2
(RMF) = 0

to produce the following lemma.
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Figure 5.2. : Sum-rate versus transmit power factor ( 2) for 2 userswithMF processor and perfect CSIR.

Lemma 5.1.2. For two users’ uplink with perfect CSIR,MF sum-rate is not flat with 0≤ 2 ≤ 1 for = c.

Proof: See Annexure B.2.

The results corresponding to (5.11) show that 2 = c (solution of d
d 2

(RMF) = 0) for = c
corresponds to a minima in case of 2 users. However, the value of sum-rate at this minima is
approximately same as the sum-rate at 2 = 0 and 2 = 1 as shown in Figure 5.2 (plot with = c).
The behavior of sum-rate with respect to 2 is determined by the value of .

Theorem 5.1.3. The power-allocation optimization for multi-user MF sum-rate with perfect CSIR under
the system model given by (5.5) is possible simultaneously for both sum-rate maximization and reduction of
inter-cell interference by selecting appropriate 0< 2 < 1 for certain range of inter-cell interference.

Proof: Proof of Lemma 5.1.2 in Annexure B.2 leads to a unique solution for = c where
RMF | 2=0 is equal to RMF | 2=1 and the sum-rate in (5.11) is monotonically decreasing function of
which means that there exist two regions of where one corresponds to RMF | 2=0 < RMF | 2=1 (the
region with > c in Figure 5.2) and other corresponds to RMF | 2=0 > RMF | 2=1 (the region with
< c in Figure 5.2). Since the sum-rate for one region ( < c) is RMF | 2=0 > RMF | 2=1, thus there

exists a range of 2 as a subset of [0,1] forwhich the sum-rate is greater than RMF | 2=1. Therefore, the
total transmit power in the cell reduces, consequently, the average inter-cell interference reduces
considering the similar operation in all cells.

In the case of ZF processing with perfect CSIR, there is no intra-cell interference. Therefore,
a few properties of inter-cell interference are exploited in order to draw a useful analysis on the
sum-rate. As the cells are symmetric and homogeneous, the values of total average transmit
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power from different MTs in different cells are equal, i.e., E
�

lk
�

= E
�

jk
�
. Therefore, the inter-cell

interference power l from (5.6) can be approximated as follows:

l ≈ (L−1)E
�

jlk
� K

∑
k=1

lk. (5.12)

With the simplified notations ( llk→ k, lk→ k, and l→ ), by using (5.10) and (5.12), the
two users sum-rate in the case of ZF processor with perfect CSIR for high SNR setting (pu→∞) can
be written as follows:

RZF = log2

�
1+

AZF 1 1

1 + 2

�
+ log2

�
1+

AZF 2 2

1 + 2

�
,

where

AZF =
(N−2)

(L−1)E[ jlk]
with j �= l. (5.13)

However, equation (5.12) is a good approximation for a large K because the term l comes
from the statistics of the channel. For twousers’ case, it can be considered a valid approximation for
analysis with the assumption of symmetry across the cells in terms of channel gains and transmit
power factors.

Let 1 ≥ 2, i.e., MT2 does not have better channel than MT1, 1 = 1, i.e., MT1 transmits its
full power and 0≤ 2 ≤ 1, i.e., the power ofMT2 is varied. The sum-rate then becomes:

RZF = log2

�
1+

AZF 1

1+ 2

�
+ log2

�
1+

AZF 2 2

1+ 2

�
. (5.14)

Theorem 5.1.4. For two users’ uplink with perfect CSIR, the ZF sum-rate for some 0 < 2 < 1 is higher
than the sum-rate for 2 = 1 for certain range of the parameters (i.e. 1, 2, and AZF ) in (5.14). Therefore,
the maximization of sum-rate is possible for 0< 2 < 1 along with a reduction in inter-cell interference.

Proof: By solving d
d 2

(RZF) = 0 for 2, critical value c is obtained as follows:

c =
2 + 1(AZF 2−1)

1 + 2(AZF 1−1)
. (5.15)

The results show that c (solution of d
d 2

(RZF) = 0) corresponds to amaxima on the sum-rate. There
is a range of parameters AZF , 1, and 2 for which this maxima lies within 0 and 1, i.e., c ∈ [0,1].
These ranges can be found as follows:

0≤ 2 + 1(AZF 2−1)

1 + 2(AZF 1−1)
≤ 1

⇒ 0
(a)

≤ 2 + 1(AZF 2−1)
(a)

≤ 1 + 2(AZF 1−1)

⇒ 0
(b)

≤ 2

1
+AZF − 1

2

(b)

≤ 1

2
+AZF − 2

1
,
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where (a) follows from the fact that denominator
�

1 + 2(AZF 1 − 1)
�
is always positive. The

operation (b) follows from the fact that 1 > 0 and 2 > 0. The right-hand side inequality is always
true because it leads to 2 ≤ 1 which is already true. The left-hand side inequality leads to the
following.

	
1

2


2
− 1

2
AZF −1≤ 0. (5.16)

The roots of the quadratic expression in (5.16) are given by the following:

1

2

���
roots

=
AZF ±

)
A2
ZF +4

2
.

The quadratic expression in (5.16) obtains negative values between these roots. Therefore, the
maximization of sum-rate is possible for the following range of parameters.

AZF −
)

A2
ZF +4

2
≤ 1

2
≤

AZF +
)

A2
ZF +4

2
(5.17)
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Figure 5.3. : Sum-rate versus transmit power factor ( 2) for 2 users with ZF processor and perfect CSIR.

The value of AZF depends on E[ jlk] which is calculated using an existing path loss model
[Erceg et al., 1999]. The numerical value of AZF is very high in practice. The lower limit in (5.17)
is negative which is always smaller than 1/ 2 and the upper limit is very high. Therefore, the
maximization is possible for almost all values of parameters. With N = 100, L = 7, and different
values of 1 & 2, the sum-rate versus 2 is plotted in Figure 5.3. There are cases where sum-rate
maximizes when second user’s transmit power is smaller than maximum transmit power (for
2 = 1). Moreover, for the cases with monotonically increasing sum-rate, there is a possibility of a
significant reduction in the transmit power by sacrificing a small fraction of sum-rate as shown in
the figure.
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5.1.2 Impact of the Assumptions of SystemModeling
Themodeling of inter-cell interference power l in (5.6) follows the assumption of the large

number of interfering MTs. This assumption allows the modeling of interference-distribution as
Gaussian and the use of the sample mean instead of expectation. In this way, a tractable analysis
is done for the sum-rate of two users case. Typically, an interference limited multi-cell massive
MIMO system has several MTs per cell. Therefore, this assumption is easy to maintain in a typical
system. Further, the applicability of the results is not limited to 2 users as shown in the performance
results obtained by the simulation.

5.1.3 Sum-Rate with Imperfect CSIR
Sum-rate for perfect CSIR is useful for theoretical analysis as performed in the previous

subsection. However, a practical system has to bear with imperfect CSIR. This imperfect CSIR
affects the performance as shown in various plots for pilot-based and blind channel estimation
methods in previous chapter. In order to use well established sum-rate expressions from the
literature, a pilot based channel training is considered where a time period of length is dedicated
for uplink pilots in every T symbols (an RB). The estimate of the channel is obtained by MMSE
estimation. For such a setting, the sum-rate results of [Ngo et al., 2013a, Sec III] are easily extendible
for average power-control based current system model similar to the case of perfect CSIR. Lower
bounds on MF and ZF rates for kth MTwith imperfect CSIR are given by (5.18) and (5.19).

R̃MF
IP,k =

T −
T

log2

�
1+ (N−1) 2

llk
2
lk

�

&
( llk lk + l +

1
pu

)
K

∑
i=1,i �=k

lli li +( +1) llk llk( l +
1
pu

) + ( l +
1
pu

)2
'�
. (5.18)

R̃ZF
IP,k =

T −
T

log2

�
1+ (N−K) 2

llk
2
lk

�

&
( l +

1
pu

)
�

( llk lk + l +
1
pu

)
K

∑
i=1

lli li

lli li + l +
1
pu

+ llk lk + l +
1
pu

�'
�
. (5.19)

The lower bounds in (5.18) and (5.19) follow the convexity of log2(1 + 1/x), Jensen’s
inequality, and channel hardening in massive MIMO systems [Ngo et al., 2013a]. The deviation
of these bounds vary from around 12% to 3% for MF and 5% to 1% for ZF as the number of base
station antennas grows from 100 to 250 (cf. [Ngo et al., 2013a, Fig. 1]). The training phase is
considered to be non-synchronous across cells so that the average inter-cell interference is equal
in the training phase and the data phase. Consequently, the transmit power in training phase and
data phase is considered to be equal. The theoretical analysis is not tractable for sum-rate in the
case of imperfect CSIR. Therefore, the numerical optimization is preferred directly in this case.
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5.2 POWER-ALLOCATION OPTIMIZATION FOR K-USERS
The transmit power factor affects both the numerator and denominator parts in sum-rate

expression. Therefore, it is sensible to formulate an optimization problem on the sum-rate for all
four cases (MF & ZF with perfect CSIR and MF & ZF with imperfect CSIR) as follows:

Ropt = max
lk, li

& L

∑
l=1

K

∑
k=1

Rlk

'
(5.20)

with 0≤ lk ≤ 1 ∀ 1≤ l ≤ L and 1≤ k ≤ K ,

where Rlk is the uplink rate of kth MT in lth cell.

The optimization problem in (5.20) deals with the optimization of average power-allocation
based on the statistics of the channel leading to the infrequent execution of optimization algorithm
where the impact of the complexity is not severe. A combinatorial optimizationwith discrete levels
of power scaling factors ( ) is considered here. Under the non-cooperative settings, similar nature
of the channel, and same optimization process across the cells, the optimization over individual
cells is approximately equivalent to the joint optimization over all cells. Considering the inter-cell
interference limited (or high SNR, i.e., pu → ∞) regime, the optimization problem (5.20) can be
re-defined for MF and ZF with perfect CSIR as follows:

RMF
l,P,opt = max

lk , li

�
K

∑
k=1

log2

�
1+

(N−1) llk lk

∑K
i=1,i �=k lli li + l

��
(5.21)

0≤ lk ≤ 1 ∀ 1≤ k ≤ K and

RZF
l,P,opt = max

lk , li

�
K

∑
k=1

log2

�
1+

(N−K) llk lk

l

��
(5.22)

0≤ lk ≤ 1 ∀ 1≤ k ≤ K.

The value of l follows from (5.12). Similar to the case of perfect CSIR, the optimization
problem can be formulated for the case of imperfect CSIR using (5.18) and (5.19).

RMF
l,IP,opt = max

lk, li

�
K

∑
k=1

R̃MF
IP,k

�
(5.23)

0≤ lk ≤ 1 ∀ 1≤ k ≤ K and

RZF
l,IP,opt = max

lk, li

�
K

∑
k=1

R̃ZF
IP,k

�
(5.24)

0≤ lk ≤ 1 ∀ 1≤ k ≤ K.

To proceed with discrete level combinatorial optimization, -space is divided into Ns
partitions such that lk can get a value from a set of discrete values between 0 and 1 as following
example.

lk ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. (5.25)
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An array AR1 (length = (Ns )K) of diagonal matrices S2
l with diagonal entries coming from

the set (5.25) is constructed by using all possible permutations of lk with repetition allowed as
follows:

S2
l =





l1 0 ... 0

0 l2 ... 0
...

... ...
...

0 0 ... lK




and

AR1 =
�
S2
l (1),S2

l (2), ...,S2
l ((Ns )K)

�
. (5.26)

An other array AR2 of length (Ns )K is created with entries tr
�
S2
l

�
corresponding to each S2

l
of AR1 as follows:

AR2 =
�
tr{S2

l (1)}, tr{S2
l (2)}, ..., tr{S2

l ((Ns )K)}
�
, (5.27)

where tr
�
S2
l

�
= ∑K

k=1 lk.

Corresponding to each value of S2
l , MF and ZF sum-rates with perfect CSIR are calculated

with help of (5.9), (5.10), and (5.12) with 1/pu = 0. Similarly, MF and ZF sum-rates with imperfect
CSIR are calculated with help of (5.18), (5.19), and (5.12) with 1/pu = 0. The calculated values of
sum-rate arraysURMF for MF andURZF for ZF are sorted in ascending order to obtain the arrays
SRMF and SRZF respectively.

SRMF = Sort AscendingURMF and
SRZF = Sort AscendingURZF .

The array AR1 is aligned with sorted sum-rate array SRMF and SRZF to produces arrays of
-matrices GMMF and GMZF respectively as follows:

GMMF = AR1 Index aligned w.r.t. SRMF and
GMZF = AR1 Index aligned w.r.t. SRZF .

The array AR2 is aligned with sorted sum-rate array SRMF and SRZF to produces arrays of
sum-power factors SPMF and SPZF respectively as follows:

SPMF = AR2 Index aligned w.r.t. SRMF and
SPZF = AR2 Index aligned w.r.t. SRZF .

The results on numerical analysis of this power-allocation optimization scheme are given
in Section 5.4.1.
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5.3 LOW COMPLEXITY ALGORITHM FOR POWER-ALLOCATION OPTIMIZATION
However, the proposed power-allocation optimization is based on the statistics of channel

where the need for an optimization operation is infrequent. Still, a low complexity algorithm
in contrast to exhaustive search based optimization will be useful in the point-of-view of a
large number of MTs and the operational cost. The complexity of combinatorial optimization
process presented in previous section is exponential in the number of users. In this section, a
low complexity optimization scheme is presented as outlined in Algorithm 1. The core of the
algorithm is same as the process described in the previous section but the iterative architecture
of the algorithm reduces the computational complexity by several orders. The details of steps are
given as follows:

Algorithm 1: Power-allocation optimization algorithm
Data: k = {1,2, ...,K};
k ∈
�

k
st ,(

k
st +

k
mx

Nst p−1 ),( k
st + 2 k

mx
Nst p−1), ...,( k

st +
k
mx)
�

S2
l [i] := ith permutation of power scaling matrix

IMF/ZF := Index array of sorted MF/ZF sum-rate array
sum[i] := ∑K

k=1( k)[i] (ith permutation)
Result: 1, 2,..., K
initialization: k

st ; k
mx; Nstp; C; k;

while C <Cmax do
Construct permutations:
AR1 ← S2

l [1],S2
l [2], ...,S2

l [(Nstp)
K ];

Calculate:
AR2 ← sum[1], sum[2], ..., sum[(Nstp)

K ];
CalculateURMF/ZF ;
[SRMF/ZF , IMF/ZF ]← Sort(URMF/ZF);
GMMF/ZF ← AR1 indexed by IMF/ZF ;
SPMF/ZF ← AR2 indexed by IMF/ZF ;
Desired set← Select∗[GMMF/ZF , SPMF/ZF , and SRMF/ZF ];
C←C+1;
Adjust ( k

st and k
mx);

end
* Selection Criteria: Close to maximum rate, lowest sum, and desired fairness.

1. Use the following values of lk for the algorithm:

lk ∈
�

lk
st ,(

lk
st +

lk
mx

Nst p−1), ( lk
st + 2 lk

mx
Nst p−1), ...,( lk

st + lk
mx)
�
,

where lk
st is the starting value of lk, ( lk

st + lk
mx) is the last value of lk, and Nstp defines

the number of partitions in this range of -space. Nstp depends on the capability of signal
processor and vary from 2 to 5. There are K(Nstp)

K calculations of the rate expression. The
values of lk are selected in such a way so that they divide the -space in equal partitions.

2. Create a permutation of power scaling matrix S2
l by selecting values of lk from the set given

in step (1) for all 1≤ k≤ K. Calculate the rate expression for all K users and add up to get the
sum-rate. Also calculate the sum of power scaling factors (∑K

k=1 lk).

3. Repeat the calculation of step (2) for different S2
l matrix permutations to obtain the array of

S2
l matrices (AR1), the array of sum-power scaling factors (AR2), and the sum-rate array. Sort
the sum-rate array in ascending order (to get SRMF or SRZF ) and align the original indexes of
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the unsorted array with the sorted array to get an index array.

4. Align AR1 and AR2 with sorted array of sum-rate (SRMF or SRZF ) using the index array
mentioned in step (3) to obtain the aligned array of S2

l (GMMF or GMZF ) and the aligned
sum-power factor array (SPMF or SPZF ) respectively.

5. Select one set of S2
l matrix permutation to optimize the power-allocation for a better sum-rate

(i.e. close to maximum sum-rate) and an improved energy consumption (i.e. smaller ∑K
k=1 k)

for controlled fairness (i.e. relative values of lk for 1≤ k≤K). There are several permutations
of k for improving the energy consumption by sacrificing a small fraction of sum-rate.

6. Re-run the above process after adjusting the k
st and k

mx close to selected permutation of k to
achieve a fine optimization. Run Cmax number of iterations.

The selection of a permutation in step (5) of the algorithm depends on the amount of
inter-cell interference, the desired fairness, the cost of the transmit power, and the cost of spectral
efficiency.

5.4 RESULTS
This section presents the results corresponding to numerical analysis of presented scheme,

the performance results of proposed low complexity algorithm for the scheme, and the complexity
analysis of proposed low complexity algorithm.

5.4.1 Numerical Analysis of Sum-Rate for the K-Users Case
For numerical analysis of sum-rate for the K-users case, the path loss is simulated for a

flat macro cell with light tree density [Erceg et al., 1999, Table(1)] with BS height 25m and uniform
random user locations in 7 cells with 1km of radius measured from center to vertex. Using these
simulated path loss values, the obtained average of large scale fading coefficients (E

�
jlk
�
) for

interfering links (i.e. j �= l) is approximately 5× 10−13. The average channel gains for desired
links (i.e. jlk for j = l) vary approximately from 10−13 to 10−10. Other settings include the number
of BS antennas: N = 100, the number of MTs per cell: K = 6, and the number of cells in the system:
L = 7. For the combinatorial optimization, a set of the values of lk is constructed with 5 values
between 0 and 1 as given in (5.25). The values of the large scale fading coefficients for 6 MTs are
chosen as follows:

llk ∈
�
{0.5,1,5,10,50,100}×10−12�. (5.28)

The last few values of SRMF and SPMF with perfect CSIR and the last few values of SRZF and
SPZF with perfect CSIR are plotted in Figure 5.4. Similarly, the last few values of SRMF and SPMF

with imperfect CSIR and the last few values of SRZF and SPZF with imperfect CSIR are plotted in
Figure 5.5. The summary of results from Figures 5.4 and 5.5 is given as follows:

• The maximum sum-rate is obtained at significantly lower sum-power in all cases compared
to the case of full sum-power

�
∑K
k=1 lk = 6

�
which is obtained by using full power at each

MT, i.e., by putting lk = 1 ∀ 1≤ k ≤ K.

• There are several permutations of power scaling factors close to maximum sum-rate which
can be used to reduce average transmit power by sacrificing a small fraction of sum-rate.

• Due to the large number of permutations of power scaling factors close to maximum
sum-rate, the fairness among MTs can be controlled by using an appropriate scheduler.
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Figure 5.4. : Sorted sum-rate versus index of permutation vector of k;1 ≤ k ≤ K for MF and ZF
processors with perfect CSIR; SR:Sum-rate; SP: Sum-power.
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Figure 5.5. : sum-rate versus index of permutation vector of k; 1≤ k≤K forMF and ZF processors with
imperfect CSIR; k is transmit power scaling factor for kth MT; s is a measure of inter-cell
interference power; SR: Sum-rate; SP: Sum-power.
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5.4.2 Performance Results of Algorithm
The results on the sum-rate improvement and transmit power reduction by the proposed

scheme are quantified in Tables 5.1 and 5.2. In these results, the criterion for the selection of
permutation in Algorithm 1 is kept to maximize the sum-rate. For averaging the results, uniform
random user locations are simulated. The channel gains llk (for cell under consideration) and jlk
(for neighboring cells) are simulated using the path loss model referenced in Annexure B.3. The
obtained values of per-user average inter-cell interference power (E[ jlk]) are 5×10−13 and 1×10−10

for macro andmicro cells respectively. The iteration count for the algorithm is kept at 4. The range
of -space in first iteration is 0 to 1 which becomes half after each iteration in 2-partitions setting
and becomes one third in 3-partitions setting, and so on.

Table 5.1. : Comparison of sum-rate (bpcu per cell) for different number of the partition of -space.
(MAC: Macro cell; MIC: Micro cell; HI, LI: High, Low Inter-cell interference power; 2P, 3P,
5P: two, three, and five partitions of -space, ∗∗: Not calculated due to high simulation
complexity).

Setting K=5,HI K=10,HI K=5,LI K=10,LI
MF,MAC,2P 14.99 21.25 17.23 24.82
MF,MAC,3P 15.02 21.33 17.26 24.89
MF,MAC,5P 15.03 ** 17.26 **
ZF,MAC,2P 18.88 28.11 23.43 35.84
ZF,MAC,3P 18.91 28.23 23.44 35.91
ZF,MAC,5P 18.92 ** 23.45 **
MF,MIC,2P 9.25 11.52 11.56 14.50
MF,MIC,3P 9.30 11.69 11.59 14.62
MF,MIC,5P 9.32 ** 11.60 **
ZF,MIC,2P 9.90 12.28 12.83 16.14
ZF,MIC,3P 9.96 12.50 12.86 16.31
ZF,MIC,5P 9.98 ** 12.87 **

The summary of the simulation results of proposed low complexity algorithm is given as
follows:

• The algorithm provides a significant improvement in sum-rate and power consumption over
the full power assignment scheme.

• The sum-rate as well as the percentage improvement in sum-rate over the case of full power
assignment to each MT increases with the number of MTs.

• The percentage power reduction over full power assignment scheme increases with number
of MTs.

• The maximized sum-rate by two partitions of -space is a lower bound on the global
maximum sum-rate. However, the improvement in sum-rate by increasing the number of
partitions of -space is small. The higher number of partitions of -space brings the scheme
closer to the straightforward combinatorial optimization.

Along with these results, following can be concluded regarding the proposed scheme in
comparison to existing results in the literature.

• The proposed algorithm is based on combinatorial optimization such that the selection
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Table 5.2. : Summary of % increment in sum-rate and % decrement in total transmit power over the case
of full power assignment under imperfect CSIR and two partitions of -space. (RI: Rate
improvement; PD: Power decrement; MAC: Macro cell; MIC: Micro cell; HI, LI: High, Low
inter-cell interference power; Inter-cell interference descending order: MIC HI, MIC LI, MAC
HI, MAC LI).

Setting K=5 K=10 K=15 K=20
RI-MF,MIC,HI 8.51 32.85 51.49 73.37
RI-MF,MIC,LI 1.87 14.20 25.56 38.20
RI-MF,MAC,HI 6.77 10.08 14.78 14.70
RI-MF,MAC,LI 7.44 10.47 12.94 12.54
RI-ZF,MIC,HI 9.68 39.90 64.85 95.35
RI-ZF,MIC,LI 2.10 18.96 35.27 54.53
RI-ZF,MAC,HI 4.48 10.11 19.57 22.50
RI-ZF,MAC,LI 1.57 4.68 10.37 12.93
PD-MF,MIC,HI 40.17 52.90 57.51 63.63
PD-MF,MIC,LI 42.61 43.45 50.01 55.25
PD-MF,MAC,HI 45.77 44.41 50.29 53.06
PD-MF,MAC,LI 43.51 42.35 46.38 47.63
PD-ZF,MIC,HI 38.39 54.75 59.96 65.38
PD-ZF,MIC,LI 39.19 44.98 51.40 57.88
PD-ZF,MAC,HI 47.65 31.82 43.68 45.06
PD-ZF,MAC,LI 55.68 24.91 32.07 37.38

step (function with superscript ∗ in Algorithm 1) can be modified to improve any one or
the combination of sum-rate, sum-power and individual user-specific rates. Consequently,
the scheme can be modified to match its performance with existing other power-allocation
schemes that maximize one of the parameters like minimum achievable rate, EE, and
sum-rate [Zhang et al., 2016; Zarei et al., 2017; Dai and Dong, 2016].

• The performance of proposed scheme is better than that of an existing scheme with
similar approach [Dai and Dong, 2016]. The last column of Table 5.2 (i.e. K=20) can be
compared with the results (Table 5.3) of the existing power-allocation scheme [Dai and
Dong, 2016]. However, the existing scheme allocates half of the full power at MTs for equal
power-allocation scheme in contrast to proposed scheme where improvement is shown over
full power assignment. Moreover, the current work considers inter-cell interference limited
multi-cell setting in contrast to [Dai and Dong, 2016].

• The results corresponding to MF in micro-cell (proposed scheme) are also compared with
the results of existing SIF based power-allocation scheme [Zhang et al., 2016, Algorithm 1]
reproduced in Table 5.4. Due to the fairness as a priority, the aforementioned existing scheme
shows negative improvements in sum-rate. Similarly, due to the sum-rate as a priority in
the current setup of proposed scheme, the power saving is smaller than that of SIF based
power-allocation scheme.
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Table 5.3. : Summary of % increment in sum-rate of an existing scheme [Dai and Dong, 2016, Fig. 6]
over equal power-allocation scheme (Notation and parameters follow from [Dai and Dong,
2016]). Pp : Pilot power; K= 20; Equal Power per user = P0/2 (P0: full power per user).

Setting Pp=-8dB Pp=-4dB Pp=0dB Pp=4dB
MF 24.1 23.7 22.2 20.4
ZF 50.0 48.6 39.0 22.0
Setting Pp=8dB Pp=12dB Pp=16dB
MF 14.6 11.8 10.0
ZF 19.6 19.2 18.9

Table 5.4. : Summary of % improvement of an existing scheme [Zarei et al., 2017] over full power
assignment scheme for MF processor in micro cell; HI/LI: High/Low inter-cell interference;
RI: rate increment; PD: power decrement.

Setting K = 5 K = 10 K = 15 K = 20
RI-MF,HI -48.25 -41.98 -45.13 -50.18
PD-MF,HI 95.76 93.96 94.16 94.61
Setting K = 5 K = 10 K = 15 K = 20

RI-MF,LI -33.93 -36.22 -46.48 -52.68
PD-MF,LI 90.36 90.27 90.04 93.40

5.4.3 Complexity Analysis of Algorithm
If -space (i.e. 0 to 1) is divided into Ns partitions in the straightforward combinatorial

optimization process, the number of the operations of sum-rate calculation will be K(Ns )K .
Whereas the proposed algorithm takes the advantage of the fact that the most of the combinations
are far from the maximum achievable rate by optimization. Therefore, the search space can be
reduced iteratively. In each iteration, -space is divided into Nstp (< Ns ) partitions. Based on the
selected sum-rate permutation, the new boundaries for -space are defined for next iteration.

The resolution of exhaustive search over -space is 1/Ns . If the search space in each
iteration is reduced to < 1 times the search space in previous iteration and algorithm runs for
Cmax number of iterations, the resolution of iterative search over -space then will be:

(Cmax−1)

Nstp
. (5.29)

For equal performance of the exhaustive search and the iterative search schemes, the
resolutions of both schemes should be equal, i.e.,

(Cmax−1)

Nstp
=

1
Ns
. (5.30)
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The required number of iterations, calculated from (5.30), is:

Cmax =

�
log

�Nstp

Ns

��
+1, (5.31)

where �.� is integer ceiling function. The complexity for proposed algorithm is CmaxK(Nstp)
K . By

taking a few typical values like K = 15, Ns = 5, Nstp = 2, and = 0.5, the calculated Cmax is 3 which
reduces the complexity by the following factor:

K(Ns )K

CmaxK(Nstp)K
= 3.1×105. (5.32)

By using the above low complexity algorithm with slowly varying channel statistics
(inherent), the proposed scheme imposes an insignificant computation burden on the system.

In this chapter, the average channel gains are exploited for their distinct values over space
caused by the large scale fading and path loss. A multi-cell system model with power control
at MTs was constructed and simplified to obtain an insightful inter-cell interference expression.
An analysis on the sum-rate was presented to find out the possibilities for exploitation of average
channel gains in average power control for improving the sum-rate and energy consumption. The
improvement in the sum-rate varied from 1% to 100% and in the energy consumption from 40%
to 60% for different scenarios. The scheme also enabled the control of fairness among MTs by
switching among several permutations of transmit power close to maximum sum-rate. Finally, a
low complexity optimization algorithm for the scheme was proposed having 3 to 6 orders lower
complexity compared to exhaustive search algorithm for typical values of the parameters.

…
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