Annexure A

A. 1 PROOF OF THE THEOREM 4.2.1

Let,

$\tilde{\mathbf{Y}}=\lim _{\substack{\rightarrow \infty \\ \text { constant } K}} \sqrt{1+\alpha^{2}}\left\{\left(\frac{\mathbf{H}+\Delta \mathbf{H}}{\sqrt{1+\alpha^{2}}}\right)^{H}\left(\frac{\mathbf{H}+\Delta \mathbf{H}}{\sqrt{1+\alpha^{2}}}\right)\right\}^{-1}\left(\frac{\mathbf{H}+\Delta \mathbf{H}}{\sqrt{1+\alpha^{2}}}\right)^{H} \mathbf{Y}$.
Columns of $\frac{\mathbf{H}+\Delta \mathbf{H}}{\sqrt{1+\alpha^{2}}}$ are asymptotically orthogonal, consequently
$\lim _{N \rightarrow \infty, \text { constant } K}\left\{\left(\frac{\mathbf{H}+\Delta \mathbf{H}}{\sqrt{1+\alpha^{2}}}\right)^{H}\left(\frac{\mathbf{H}+\Delta \mathbf{H}}{\sqrt{1+\alpha^{2}}}\right)\right\} / N \rightarrow \mathbf{I}$, therefore,
$\tilde{\mathbf{Y}}=\lim _{\substack{\infty \rightarrow \infty \\ \text { constant } K}} \frac{(\mathbf{H}+\Delta \mathbf{H})^{H} \mathbf{Y}}{N}$ or
$\tilde{\mathbf{Y}}=\lim _{\text {constant }^{\rightarrow} K} \frac{(\mathbf{H}+\Delta \mathbf{H})^{H}(\mathbf{H X})}{N}+\frac{(\mathbf{H}+\Delta \mathbf{H})^{H} \mathbf{W}}{N \sqrt{\rho_{u}}}$ or
$\tilde{\mathbf{Y}}=\lim _{\substack{N \rightarrow \infty \\ \text { constant } K}} \frac{\mathbf{H}^{H} \mathbf{H} \mathbf{X}}{N}+\frac{\Delta \mathbf{H}^{H} \mathbf{H X}}{N}+\frac{(\mathbf{H}+\Delta \mathbf{H})^{H} \mathbf{W}}{N \sqrt{\rho_{u}}}$.
By representing matrix \mathbf{H} as $\left[h_{i j}\right]$ with $1 \leq i \leq N \& 1 \leq j \leq K, \Delta \mathbf{H}$ as $\left[\delta h_{i j}\right]$ with $1 \leq i \leq N \&$ $1 \leq j \leq K$ and \mathbf{W} as $\left[w_{i j}\right]$ with $1 \leq i \leq N \& 1 \leq j \leq T$,
$\tilde{\mathbf{Y}}=\mathbf{X}+\lim _{\substack{n \rightarrow \infty \\ \text { constant } K}}\left[\frac{1}{N} \sum_{n=1}^{N} \delta h_{n i}^{*} h_{n j}\right] \mathbf{X}+\lim _{\substack{N \rightarrow \infty \\ \text { constant } K}}\left[\frac{1}{N \sqrt{\rho_{u}}} \sum_{n=1}^{N}\left(h_{n i}^{*}+\delta h_{n i}^{*}\right) w_{n j}\right]$.
Since, $\delta h_{n i}^{*}$ and $h_{n j}$ as well as $\left(h_{n i}^{*}+\delta h_{n i}^{*}\right)$ and $w_{n j}$ are independent, therefore,
$\tilde{\mathbf{Y}}=\mathbf{X}+[0] \mathbf{X}+[0]$ or
$\tilde{\mathbf{Y}}=\mathbf{X}$.

A. 2 COMPLEXITY CALCULATION FOR PROPOSED CHANNEL ESTIMATION METHOD AND EVD BASED METHOD

Block indexes $\left(t^{b}\right.$ and f^{b}) are omitted to keep the notation simple.

A.2.1 Complexity Calculation for equation 4.29

Table A. 1 shows the complexity calculation for equation 4.29.

Table A.1. : Number of multiplications for pseudo inverse operation using channel matrix.

Operation	No. of multiplications
$\tilde{\mathbf{H}}^{H} \tilde{\mathbf{H}}$	$K^{2} N$
$\left(\tilde{\mathbf{H}}^{H} \tilde{\mathbf{H}}\right)^{-1}$	$K^{2} N+K^{3}$
$\left(\tilde{\mathbf{H}}^{H} \tilde{\mathbf{H}}\right)^{-1} \tilde{\mathbf{H}}^{H}$	$K^{2} N+K^{3}+K^{2} N$
$\left(\tilde{\mathbf{H}}^{H} \tilde{\mathbf{H}}\right)^{-1} \tilde{\mathbf{H}}^{H} Y$	$K^{2} N+K^{3}+K^{2} N+N K T$
Complexity per symbol:	$\left(2 K N+K^{2}+N T\right) / T$

A.2.2 Complexity Calculation for equation 4.30

Table A. 2 shows the complexity calculation for equation 4.30.

Table A.2. : Number of multiplications for pseudo inverse operation using data matrix.

Operation	No. of multiplications
$\tilde{\mathbf{X}}_{d} \tilde{\mathbf{X}}_{d}^{H}$	$K^{2} T$
$\left(\tilde{\mathbf{X}}_{d} \mathbf{त}_{d}^{H}\right)^{-1}$	$K^{2} T+K^{3}$
$\tilde{\mathbf{X}}_{d}^{H}\left(\tilde{\mathbf{X}}_{d} \tilde{\mathbf{X}}_{d}^{H}\right)^{-1}$	$K^{2} T+K^{3}+K^{2} T$
$\mathbf{Y} \tilde{\mathbf{X}}_{d}^{H}\left(\tilde{\mathbf{X}}_{d} \tilde{\mathbf{X}}_{d}^{H}\right)^{-1}$	$K^{2} T+K^{3}+K^{2} T+N K T$
Complexity per symbol:	$2 K+K^{2} / T+N$

A.2.3 Complexity Calculation for EVD-based Channel estimation

Definitions of variables in Table A. 3 follows from [Ngo and Larsson, 2012]. Using Table A.3, the total number of multiplication associated with EVD-based channel estimation are:

$$
N^{2} T+N^{2} K+N K^{2}+N K T+K^{2} T+8 T^{3}+8 N T^{2} v+4 N T L+4 T^{2} .
$$

With $v=1$ and $L=1$, complexity per symbol is:

$$
\frac{N^{2}}{K}+\frac{N^{2}}{T}+\frac{N K}{T}+N+K+\frac{8 T^{2}}{K}+\frac{8 N T}{K} v+\frac{4 N}{K}+\frac{4 T}{K} .
$$

Table A.3. : Number of multiplications for EVD-based channel estimation algorithm. [Ngo and Larsson, 2012]

Operation	No. of multiplications
$\mathbf{R}_{y}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{y y}^{H}$	$N^{2} T$
$\mathbf{R}_{y} \mathbf{H}_{l l}$	$N^{2} K$
$\mathbf{U}_{l l} \mathbf{\Xi}$	$N K^{2}$
$\mathbf{A}_{n}=\sqrt{P_{t}} \mathbf{U}_{l l} \mathbf{D}^{-1 / 2} \mathbf{X}_{n}$	$N K T+K^{2} T$
$\hat{\xi}=\left(\sum_{n=1}^{v} \overline{\mathbf{A}}_{n}^{T} \overline{\mathbf{A}}_{n}\right)^{-1} \sum_{n=1}^{L} \overline{\mathbf{A}}_{n}^{T} \mathbf{y}_{n}$	$8 T^{3}+8 T^{2} N v+4 N T L+4 T^{2}$

