Annexure A

A.1 PROOF OF THE THEOREM 4.2.1

$$\tilde{\mathbf{Y}} = \lim_{N \to \infty \atop \text{constant } K} \sqrt{1 + \alpha^2} \{ (\frac{\mathbf{H} + \Delta \mathbf{H}}{\sqrt{1 + \alpha^2}})^H (\frac{\mathbf{H} + \Delta \mathbf{H}}{\sqrt{1 + \alpha^2}}) \}^{-1} (\frac{\mathbf{H} + \Delta \mathbf{H}}{\sqrt{1 + \alpha^2}})^H \mathbf{Y}.$$

Columns of $\frac{\mathbf{H} + \Delta \mathbf{H}}{\sqrt{1 + \alpha^2}}$ are asymptotically orthogonal, consequently

$$\lim_{N\to\infty, \text{ constant } K} \left\{ \left(\frac{\mathbf{H}+\Delta\mathbf{H}}{\sqrt{1+\alpha^2}} \right)^H \left(\frac{\mathbf{H}+\Delta\mathbf{H}}{\sqrt{1+\alpha^2}} \right) \right\} / N \to \mathbf{I}, \text{ therefore,}$$

$$\tilde{\mathbf{Y}} = \lim_{N \to \infty \atop \text{constant } K} \frac{(\mathbf{H} + \Delta \mathbf{H})^H \mathbf{Y}}{N} \text{ or}$$
$$\tilde{\mathbf{Y}} = \lim_{N \to \infty \atop \text{constant } K} \frac{(\mathbf{H} + \Delta \mathbf{H})^H (\mathbf{H} \mathbf{X})}{N} + \frac{(\mathbf{H} + \Delta \mathbf{H})^H \mathbf{W}}{N \sqrt{\rho_u}} \text{ or}$$

$$\tilde{\mathbf{Y}} = \lim_{N \to \infty \atop \text{constant } K} \frac{\mathbf{H}^H \mathbf{H} \mathbf{X}}{N} + \frac{\Delta \mathbf{H}^H \mathbf{H} \mathbf{X}}{N} + \frac{(\mathbf{H} + \Delta \mathbf{H})^H \mathbf{W}}{N \sqrt{\rho_u}}$$

By representing matrix **H** as $[h_{ij}]$ with $1 \le i \le N \& 1 \le j \le K$, $\Delta \mathbf{H}$ as $[\delta h_{ij}]$ with $1 \le i \le N \& 1 \le j \le K$ and **W** as $[w_{ij}]$ with $1 \le i \le N \& 1 \le j \le T$,

$$\tilde{\mathbf{Y}} = \mathbf{X} + \lim_{N \to \infty \atop \text{constant } K} \left[\frac{1}{N} \sum_{n=1}^{N} \delta h_{ni}^* h_{nj} \right] \mathbf{X} + \lim_{N \to \infty \atop \text{constant } K} \left[\frac{1}{N \sqrt{\rho_u}} \sum_{n=1}^{N} (h_{ni}^* + \delta h_{ni}^*) w_{nj} \right].$$

Since, δh_{ni}^* and h_{nj} as well as $(h_{ni}^* + \delta h_{ni}^*)$ and w_{nj} are independent, therefore,

$$\tilde{\mathbf{Y}} = \mathbf{X} + [0]\mathbf{X} + [0]$$
 or

 $\tilde{\mathbf{Y}} = \mathbf{X}.$

A.2 COMPLEXITY CALCULATION FOR PROPOSED CHANNEL ESTIMATION METHOD AND EVD BASED METHOD

Block indexes (t^b and f^b) are omitted to keep the notation simple.

A.2.1 Complexity Calculation for equation 4.29

Table A.1 shows the complexity calculation for equation 4.29.

Operation	No. of multiplications
$\mathbf{\tilde{H}}^{H}\mathbf{\tilde{H}}$	K^2N
$(\mathbf{ ilde{H}}^H\mathbf{ ilde{H}})^{-1}$	$K^2N + K^3$
$(\mathbf{ ilde{H}}^{H}\mathbf{ ilde{H}})^{-1}\mathbf{ ilde{H}}^{H}$	$K^2N + K^3 + K^2N$
$(\mathbf{ ilde{H}}^H\mathbf{ ilde{H}})^{-1}\mathbf{ ilde{H}}^HY$	$K^2N + K^3 + K^2N + NKT$
Complexity per symbol:	$(2KN+K^2+NT)/T$

Table A.1. : Number of multiplications for pseudo inverse operation using channel matrix.

A.2.2 Complexity Calculation for equation 4.30

Table A.2 shows the complexity calculation for equation 4.30.

Table A.2. : Number of multiplications for pseudo inverse operation using data matrix.

Operation	No. of multiplications
$ ilde{\mathbf{X}}_{d} ilde{\mathbf{X}}_{d}^{H}$	K^2T
$(\mathbf{\tilde{X}}_{d}\mathbf{\tilde{X}}_{d}^{H})^{-1}$	$K^2T + K^3$
$\mathbf{ ilde{X}}_{d}^{H}(\mathbf{ ilde{X}}_{d}^{d}\mathbf{ ilde{X}}_{d}^{H})^{-1}$	$K^2T + K^3 + K^2T$
$\mathbf{Y}\mathbf{\tilde{X}}^{d}_{d}(\mathbf{\tilde{X}}^{a}_{d}\mathbf{\tilde{X}}^{a'}_{d})^{-1}$	$K^2T + K^3 + K^2T + NKT$
Complexity per symbol:	$2K + K^2/T + N$

A.2.3 Complexity Calculation for EVD-based Channel estimation

Definitions of variables in Table A.3 follows from [Ngo and Larsson, 2012]. Using Table A.3, the total number of multiplication associated with EVD-based channel estimation are:

$$N^{2}T + N^{2}K + NK^{2} + NKT + K^{2}T + 8T^{3} + 8NT^{2}v + 4NTL + 4T^{2}$$
.

With v = 1 and L = 1, complexity per symbol is:

$$\frac{N^2}{K} + \frac{N^2}{T} + \frac{NK}{T} + N + K + \frac{8T^2}{K} + \frac{8NT}{K}v + \frac{4N}{K} + \frac{4T}{K}.$$

 Table A.3. : Number of multiplications for EVD-based channel estimation algorithm. [Ngo and Larsson, 2012]

Operation	No. of
-	multiplications
$\mathbf{R}_{y} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{y} \mathbf{y}^{H}$	N^2T
$\mathbf{R}_{y}\mathbf{H}_{ll}$	N^2K
$\mathbf{U}_{ll}\mathbf{\Xi}$	NK^2
$\mathbf{A}_n = \sqrt{P_t} \mathbf{U}_{ll} \mathbf{D}^{-1/2} \mathbf{X}_n$	$NKT + K^2T$
$oldsymbol{\hat{\xi}} = (\sum_{n=1}^{ u} oldsymbol{ar{A}}_n^T oldsymbol{ar{A}}_n)^{-1} \sum_{n=1}^L oldsymbol{ar{A}}_n^T oldsymbol{y}_n$	$8T^3 + 8T^2Nv + 4NTL + 4T^2$