Annexure B

B. 1 PROOF OF LEMMA 5.1.1

Let's find the ρ for which $\left.R\right|_{\gamma_{2}=0}=\left.R\right|_{\gamma_{2}=1}$,

$$
\begin{align*}
& \log _{2}\left\{1+\frac{(N-1) \beta_{1}}{\rho}\right\}=\log _{2}\left\{\left(1+\frac{(N-1) \beta_{1}}{\beta_{2}+\rho}\right)\left(1+\frac{(N-1) \beta_{2}}{\beta_{1}+\rho}\right)\right\} \\
& \Rightarrow 1+\frac{(N-1) \beta_{1}}{\rho}=\left(1+\frac{(N-1) \beta_{1}}{\beta_{2}+\rho}\right)\left(1+\frac{(N-1) \beta_{2}}{\beta_{1}+\rho}\right) \\
& \Rightarrow \rho^{2}+\left\{(N-2) \beta_{1}+\beta_{2}\right\} \rho-\beta_{1}^{2}=0 . \tag{B.1}
\end{align*}
$$

The positive root of above equation $(\rho>0)$ is:

$$
\begin{equation*}
\rho_{c}=\frac{1}{2}\left[\sqrt{\left\{(N-2) \beta_{1}+\beta_{2}\right\}^{2}+4 \beta_{1}^{2}}-(N-2) \beta_{1}-\beta_{2}\right] . \tag{B.2}
\end{equation*}
$$

The ρ_{c} is the critical value of ρ where sum-rate is same whether weak user is transmitting full power or not transmitting at all.

B. 2 PROOF OF LEMMA 5.1.2

By setting $\frac{d}{d \gamma_{2}}(R)=0$,

$$
\beta_{2}^{2} \gamma_{2}^{2}+2 \rho_{c} \beta_{2} \gamma_{2}+(N-2) \rho_{c} \beta_{1}-\beta_{2}^{2}+\rho_{c}^{2}=0
$$

Solving the above equation for positive γ_{2},

$$
\begin{equation*}
\gamma_{c}=\frac{1}{\beta_{2}}\left\{-\rho_{c}+\sqrt{\beta_{1}^{2}-(N-2) \rho_{c} \beta_{1}}\right\} . \tag{B.3}
\end{equation*}
$$

Since the γ_{c} is unique, thus sum-rate has a maxima or minima at $\gamma_{2}=\gamma_{c}$. Numerical results show that for two users it is minima but for multi-user case, there exists a global maxima for $0<\gamma_{k}<1$; $1 \leq k \leq K$ for certain range of ρ.

B. 3 PATH LOSS MODEL USED IN AVERAGE POWER ALLOCATION SCHEME FOR MASSIVE MIMO

Path loss is modeled as follows[Erceg et al., 1999, eq:1-6]:

$$
\begin{align*}
P L & =A+10 B \log _{10}\left(\frac{d}{d_{o}}\right)+C ; d \geq d_{o} \tag{B.4}\\
A & \triangleq 20 \log _{10}\left(4 \pi d_{o} / \lambda\right) \\
B & \triangleq a-b h_{B S}+\frac{c}{h_{B S}}+x_{B} \sigma_{B} ; 10 m \leq h_{B S} \leq 80 m \\
C & \triangleq x_{C} \sigma_{C} \text { and } \sigma_{C}=\mu_{\sigma}+y_{C} \sigma_{\sigma}
\end{align*}
$$

Path loss equation can be written in terms of fixed and varying components as follows:

$$
\begin{align*}
& P L(d)=\left\{20 \log _{10}\left(4 \pi d_{o} / \lambda\right)+10\left(a-b h_{B S}+\frac{c}{h_{B S}}\right) \log _{10}\left(\frac{d}{d_{o}}\right)\right\} \\
& +\left\{x_{B} \sigma_{B} \log _{10}\left(\frac{d}{d_{o}}\right)+x_{C}\left(\mu_{\sigma}+y_{C} \sigma_{\sigma}\right)\right\}, \tag{B.5}
\end{align*}
$$

where x_{B}, x_{C} and y_{C} are distributed as $\mathbb{N}(0,1)$. Values of parameters are selected for flat macro cell with light tree density [Erceg et al., 1999, Table(1)].

Table B.1. : Numerical values of parameters for path loss modeling (Source: [Erceg et al., 1999]).

Model parameter	Scenario:A Hilly/Moderate to-Heavy tree density	Scenario:B Hilly/Light or Flat/Moderate-to Heavy Tree density	Scenario:C Flat/Light Tree density
a	4.6	4	3.6
b	0.0075	0.0065	0.0050
$\left(\right.$ in $\left.m^{-1}\right)$	12.6	17.1	20.0
c			
$($ in $m)$	0.57	0.75	0.59
σ_{B}	10.6	9.6	8.2
μ_{σ}	2.3	3.0	1.6
σ_{σ}			

