Annexure B

B.1 PROOF OF LEMMA 5.1.1

Let's find the ρ for which $R|_{\gamma_2=0} = R|_{\gamma_2=1}$,

$$\log_{2}\left\{1 + \frac{(N-1)\beta_{1}}{\rho}\right\} = \log_{2}\left\{\left(1 + \frac{(N-1)\beta_{1}}{\beta_{2} + \rho}\right)\left(1 + \frac{(N-1)\beta_{2}}{\beta_{1} + \rho}\right)\right\}$$

$$\Rightarrow 1 + \frac{(N-1)\beta_{1}}{\rho} = \left(1 + \frac{(N-1)\beta_{1}}{\beta_{2} + \rho}\right)\left(1 + \frac{(N-1)\beta_{2}}{\beta_{1} + \rho}\right)$$

$$\Rightarrow \rho^{2} + \{(N-2)\beta_{1} + \beta_{2}\}\rho - \beta_{1}^{2} = 0.$$
(B.1)

The positive root of above equation ($\rho > 0$) is:

$$\rho_c = \frac{1}{2} \left[\sqrt{\{(N-2)\beta_1 + \beta_2\}^2 + 4\beta_1^2} - (N-2)\beta_1 - \beta_2 \right].$$
(B.2)

The ρ_c is the critical value of ρ where sum-rate is same whether weak user is transmitting full power or not transmitting at all.

B.2 PROOF OF LEMMA 5.1.2

By setting $\frac{d}{d\gamma_2}(R) = 0$,

$$\beta_2^2 \gamma_2^2 + 2\rho_c \beta_2 \gamma_2 + (N-2)\rho_c \beta_1 - \beta_2^2 + \rho_c^2 = 0.$$

Solving the above equation for positive γ_2 ,

$$\gamma_c = \frac{1}{\beta_2} \{ -\rho_c + \sqrt{\beta_1^2 - (N-2)\rho_c \beta_1} \}.$$
(B.3)

Since the γ_c is unique, thus sum-rate has a maxima or minima at $\gamma_2 = \gamma_c$. Numerical results show that for two users it is minima but for multi-user case, there exists a global maxima for $0 < \gamma_k < 1$; $1 \le k \le K$ for certain range of ρ .

B.3 PATH LOSS MODEL USED IN AVERAGE POWER ALLOCATION SCHEME FOR MASSIVE MIMO

Path loss is modeled as follows[Erceg et al., 1999, eq:1-6]:

$$PL = A + 10B \log_{10}(\frac{d}{d_o}) + C; d \ge d_o$$

$$A \triangleq 20 \log_{10}(4\pi d_o/\lambda)$$

$$B \triangleq a - bh_{BS} + \frac{c}{h_{BS}} + x_B \sigma_B; 10m \le h_{BS} \le 80m$$

$$C \triangleq x_C \sigma_C \text{ and } \sigma_C = \mu_\sigma + y_C \sigma_\sigma$$
(B.4)

Path loss equation can be written in terms of fixed and varying components as follows:

$$PL(d) = \left\{ 20\log_{10}(4\pi d_o/\lambda) + 10(a - bh_{BS} + \frac{c}{h_{BS}})\log_{10}(\frac{d}{d_o}) \right\} + \left\{ x_B \sigma_B \log_{10}(\frac{d}{d_o}) + x_C(\mu_\sigma + y_C \sigma_\sigma) \right\},$$
(B.5)

where x_B , x_C and y_C are distributed as $\mathbb{N}(0, 1)$. Values of parameters are selected for flat macro cell with light tree density [Erceg *et al.*, 1999, Table(1)].

Model	Scenario:A	Scenario:B	Scenario:C
parameter	Hilly/Moderate	Hilly/Light or	Flat/Light
	to-Heavy	Flat/Moderate-to	Tree density
	tree density	Heavy Tree density	
a	4.6	4	3.6
b	0.0075	0.0065	0.0050
$(in m^{-1})$			
С	12.6	17.1	20.0
(in <i>m</i>)			
$\sigma_{\!B}$	0.57	0.75	0.59
μ_σ	10.6	9.6	8.2
σ_{σ}	2.3	3.0	1.6

 Table B.1. : Numerical values of parameters for path loss modeling (Source: [Erceg et al., 1999]).