List of Figures

Figures	Title	page
1.1	Global mobile data traffic forecast (Source: Cisco VNI Mobile, 2017).	1
1.2	Revenue and traffic disassociation in an increasing data-dominant world.	2
1.3	Global mobile device share forecast (Source: Cisco VNI Mobile, 2017).	3
1.4	Communication over orthogonal carriers of same frequency (Quadrature modulator	
	demodulator).	5
1.5	Cellular massive MIMO system layout.	8
2.1	Cellular massive MIMO system: base band equivalent system view.	13
2.2	Classification of channel models for massive MIMO systems.	15
3.1	Resource blocks in block fading channel.	22
3.2	Variation in channel argument over ULA.	23
3.3	Effect of clusters direction and angular spread on cross correlation of channel	
	coefficients over space.	25
3.4	Histogram of elements of channel vector with $r_{ijc} = 0.1$ (small angular spread or nearly LOS).	26
3.5	Histogram of elements of channel vector with $r_{ijc} = 0.5$ (large angular spread or nearly NLOS).	27
3.6	Histogram of Cross correlation in channel vectors for different degrees of determinism.	28
3.7	Distribution of eigenvalues of $\frac{1}{N}G^{H}G$ in simulated channel.	29
3.8	Distribution of eigenvalues of $rac{1}{N}G^HG$ in measured channel. (Source:[Payami and	
	Tufvesson, 2012, Sec III(D)])	30
3.9	Received power variation over array in simulated channel; Top:3 LOS MTs; Bottom:3	
	NLOS MTs	30
3.10	Received power variation over array in measured channel; Top:3 LOS MTs; Bottom:3	
	NLOS MTs.	30
4.1	Overview of signal flow	35
4.2	Joint algorithm for channel estimation, data decoding and channel tracking.	37
4.3	Signal flow prospective of proposed channel tracking algorithm.	38
4.4	Data and channel estimation error verses iteration counts for different values of p_u	
	(SNR) with $\alpha_b = 0.8$, $K = 20$, $N = 200$ and $T = 200$.	41
4.5	Complexity verses constellation size with $K = 20$, $N = 200$ and $T = 200$.	44
4.6	Symbol error probability verses iteration counts for different values of p_u (SNR) with	
	$\alpha_b = 0.8, K = 20, N = 200 \text{ and } T = 200.$	46
4.7	Symbol error probability verses iteration counts for different values of α_b with p_u =	
	-11.25 dB, $K = 20$, $N = 200$ and $T = 200$.	46
4.8	Symbol error probability verses p_u (SNR) for different values of K with $\alpha_b = 0.8$, $N = 200$, $T = 200$ and $t^b = 5$. Right: Proposed algorithm and Left: Capacity limited	
	performance (using ZF with perfect CSI)	47
4.9	Symbol error probability verses p_{μ} (SNR) for different values of α_h with $K = 20$, $N = 200$.	
	$T = 200 \text{ and } t^b = 5.$	48
4.10	Symbol error probability versus p_u (SNR) for different values of T with $K = 20$, $N = 200$,	
	$\alpha_b = 0.8$ and $t^b = 5$. Capacity limited performance: same as in Figure 4.8.	49

5.1	Non-cooperative multi-cell massive MIMO system layout with average transmit power	
	control in uplink.	53
5.2	Sum-rate versus transmit power factor (γ_2) for 2 users with MF processor and perfect CSIR.	56
5.3	Sum-rate versus transmit power factor (γ_2) for 2 users with ZF processor and perfect CSIR.	58
5.4	Sorted sum-rate versus index of permutation vector of γ_k ; $1 \le k \le K$ for MF and ZF	
	processors with perfect CSIR; SR:Sum-rate; SP: Sum-power.	64
5.5	sum-rate versus index of permutation vector of $\gamma_k; 1 \leq k \leq K$ for MF and ZF processors	
	with imperfect CSIR; γ_k is transmit power scaling factor for k^{th} MT; $ ho_s$ is a measure of	
	inter-cell interference power; SR: Sum-rate; SP: Sum-power.	65