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Introduction to Conflicts and Thesis Structure

This thesis is about the conflict problems in computa onal geometry. Conflicts are special type of
constraints imposed on solu on such that if an object is part of solu on, it may restrict other objects to be
part of the solu on if they are in conflict with this object. These problems have been extensively studied in
computer science as we will see in upcoming sec ons. Our aim here is to give a systema c framework to
study such type of problems in computa onal geometry.

Computational Geometry Computa onal Geometry is the systema c study of algorithms and data
structures for geometric problems. The subject has wide range of applica ons in areas such as robo cs,
computer graphics, CAD/CAM, and geographic informa on systems etc [32],[48][66],[74],[76].

For example, consider the problem where we are given two curves and want to measure similarity
between them. Fréchet distance is one of tools that measures similarity between two curves by considering
an ordering of the points along the two curves. An intui ve example of Fréchet distance is a dog and its
handler walking on their respec ve curves. Both can control their speed but can only go forward. The
Fréchet distance of these two curves is the minimum length of any leash necessary for the handler and the
dog to move from the star ng points of the two curves to their respec ve endpoints [5].

Eiter and Mannila [29] introduced discrete Fréchet distance. Intui vely, the discrete Fréchet
distance replaces the dog and its owner by a pair of frogs that can only reside on any of the n and m
specific pebbles on the curves A and B respec vely. These frogs hop from one pebble to the next without
backtracking. Formally let A = {a1,a2, . . .an} and B = {b1,b2, . . .bm} be a sequence of points. For any
r ∈ R we define the graph Gr with ver ces A×B and there exists an edge between (ai,b j) and (ai+1,b j)
if d(ai+1,b j) ≤ r and there exists an edge between (ai,b j) and (ai,b j+1) if d(ai,b j+1) ≤ r, where d(,)
represents distance between two points. Discrete Fréchet distance between A and B is the infimum value
of r such that in Gr there is a path between (a1,b1) and (an,bm). This problem is polynomial me solvable
by using dynamic programming.

Another example in a geometric se ng is G S C . It is defined over a set system
Σ = (X ,R)where X is a set of points represen ng universe. The set R is family of subsets X called ranges,
defined by the intersec on of X with geometric objects. Our aim is to pick a minimum number of sets from
R so as to cover the point set X . This problem is special case of the S C problem which is one of the
Karp’s 21 NP-complete problems [53]. In this problem we are given a set of elements called universe U of
size n, a family F of size m of subsets ofU and a posi ve integer d. Our aim is to find whether there exists
a setF ′ ⊆F of size at most d such that union of sets inF ′ isU . The dual of set cover is H S where
given U , F , and d, we need to find if there exits a set U ′ ⊂U of size d such that all sets F ′ ∈F contain
at least one element from U ′. This is one of the most well-studied problems in the area of algorithms and
complexity as many natural problems can be modelled using S C or its dual. Thus, researchers have
considered various variants of S C withmore structural proper es or other constraints that arise from
real life problems so that these can be exploited to give be er results. One of these variants is G
S C .

Although S C generalises many prac cally important problems, but major difficulty is that
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this problem in its general version is hard in both approxima on and parameterized se ngs. The S C
admits a lower bound of (1− o(1)) lnn [30] (under some standard complexity theore c assump ons) in
approxima on and is alsoW[2]-Hard [25],[26].

Given the hardness in both approxima on and parameterized paradigms, researchers started
looking for various restricted versions of S C . Such restric on can be inclusion of structural proper es
as in the case of G S C . For example, if the universe is represented by a set of points and
each set in F is represented by unit squares, the resul ng problem is called D U S C
(DUSC). In contrast to various hardness results in case of S C , in G S C , if the set
system (X ,R) has bounded VC-dimension, say c, then it admits approxima on factor of log(c) [12]. In
addi on to this, for DUSC, we have PTAS [68]. The U S C isW[1]-Hard parameterized by size
of solu on [64].

In this thesis, we will look at Fréchet distance and special case of G S C in conflict
framework in realm of parameterized complexity and approxima on algorithm. Next we show the need of
considering conflicts in geometry and will see few of the previous works done on conflicts.

1.1MOTIVATION FOR CONFLICT
First we consider special case of G S C called W A C problem.

In this problem, we need to place a minimum number of wireless antennas at some predefined loca ons
in order to service a group of clients. For simplicity, we model the loca ons of wireless clients as points
in a plane. Let this point set be P, having n points in R2. The possible loca ons of the antennas are also
represented by points in plane. Let this point set, say S, has m points inR2. Assume, that the coverage area
of each antenna is a unit radius disk centered at posi on of the antenna. An antenna s is said to cover a
client c if the client falls in coverage region of the antenna. We need to select a subset of minimum number
of antennas from S such that the en re set of wireless clients is covered. Here, our universe is the set
of clients and subsets are the clients present in each region. We model this problem as DUDC (D
U D C ). The DUDC is special case of G S C where the covering objects are unit
disks. This problem is known to be NP-hard [51] and admits PTAS [68]. But here we drop many real life
constraints. Now we look into how to alterna vely model this problem such that it also includes some real
life restric ons into the defini on.

Consider the scenario of mobile towers alloca on which can be considered as a special case of
W A C . In this problem, we cover a set of cell phone users by the minimum number of
mobile towers. In the view of the adverse effect of radio waves, it might not be wise to place two towers in
close proximity. That is, the placement of a tower at one point restrains us from placing towers in all nearby
points. For example, consider Figure 1.1 for the intersec on area of two mobile towers. As the mobile
towers have a large intersec on area, we may want to put a restric on that either of the mobile tower can
be chosen but not both. To model this, we need to incorporate these constraints into our previous model.
We call these restric ons as conflicts. Thus twomobile towers are in conflict when at most one of them can
be chosen.

To further inves gate the nature of such limita ons in various problems in computa onal geometry,
let us consider our next example. In G P , we a empt to pack a set of objects into a container
without any overlapping. Let us formally define the G P problem.

G P
Input: A set of n objects O = {O1, . . . ,On} in Rd a closed container with fixed volume.
Ques on: Does there exist a configura on of objects in O such that objects can fit into the container
without any overlaps?
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Figure 1.1 : W A C with conflicts

This problemhas awide range of applica ons in various disciplines, such as VLSI chip design, loading
vehicle with items, crea ng file backups in media etc. Consider its applica on in VLSI chip packing. In VLSI,
floor planning deals with designing the geometric layout of integrated circuits. In the process of designing
the arrangement of modules on the layout surface, there are various constraints. These include minimizing
the area of placement of given set of geometric modules/ blocks/ shapes of arbitrary sizes without any
overlap. For simplicity, we assume that each module is of rectangular shape. Assume the shape of chip in
which we want to arrange the modules to be rectangular as well.

Wenowdefine the basic underlyingmathema cal problem. Given a closed rectangular regionA and
a set of n closed rectangles R = {r1,r2, . . . ,rn}, not necessarily of same size, find whether all the rectangles
can be packed inside A without any overlap. We call this problem R P . The problem of
packing rectangles in a larger rectangle is NP-hard and there exists a (2+ ε) factor algorithm to solve this
problem [50].

In real life, there are many other prac cal constraints apart from minimizing the area in VLSI
chip design. In order to improve the performance by reducing signal delays, certain modules should
be kept together. There can also be restric ons on placement of certain blocks in certain places of the
circuit. Another major issue of prac cal concern is chip overhea ng. Efforts have been made to address
the overhea ng problem by incorpora ng thermal constraints where the objec ve is to distribute heat
more evenly over the chips and reduce hot spots. Again we need to add this constraint to the R
P problem. Wemodel this constraint using conflicts. For example, in Figure 1.2.(a), let the rectangles
r1,r2 and r3 be the modules that can not be placed alongside each other. Thus, these need to be placed
separately. We can term this restric on as a conflict. Hence we say that rectangles r1,r2 and r3 are in
conflict with each other due to heat constraints. In Figure 1.2.(b), we can see that there exists another
placement of rectangles such that the conflict between r1,r2 and r3 is resolved. No ce that in general
scenario, it might be a case that the conflict can not be resolved.

1.2MODELLING THE RESTRICTIONS/ CONFLICTS
Our main contribu on is to give a framework for modelling the real life restric ons in underlying

problems which we termed as conflicts. Let us give intui on as to how we are trying to model these
restric ons. The formal treatment of our framework is given in later in the chapter.
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Figure 1.2 : Rectangle Cover Problem with conflicts

Let us consider W A C problem. We represent the point set S corresponding
to wireless antenna by vertex set V of graph CG(V,E), called conflict graph. The two wireless antennas
s1,s2 ∈ S are said to be in conflict if there is a restric on that only one of them can be chosen. For any two
wireless antennas s1,s2 ∈ S, we add an edge (s1,s2) ∈ E in G if and only if s1,s2 are in conflict. Now our
goal is to find a minimum number of wireless antennas from S such that the corresponding ver ces in CG
form an independent set.

Similarly, in VLSI chip design problem, let us represent each rectangular module as a vertex in graph
CG(V,E) (conflict graph). If for any two modules r1,r2 ∈ R there is a restric on that both modules can not
be placed with alongside each other, then we say that the the two modules are in conflict. We represent
every such conflict by an edge in CG. Now our aim is to maximize the number of modules that we can fit
into A such that each module and its immediate neighbours in the configura on form an independent set.

We consider conflicts as real life restric ons on some underlying problem. The solu on to
the new problem with conflicts is a feasible solu on to underlying problem that also sa sfies the
conflicts(constraints).

We want to point out that if we model the restric ons/ conflicts by a graph which we call conflict
graph, then our aimmight not necessarily be to find an independent set in conflict graph. It can be anything
like finding a clique, an independent set or a vertex cover etc in the conflict graph. In this thesis, we generally
aim at finding an independent set in conflict graph. We further discuss the model for conflicts used in this
thesis more formally later in this chapter. Let us first see some of the work in literature related to conflicts.

1.3MORE PROBLEMS IN LITERATURE ON CONFLICTS
Here we men on few problems related to conflicts studied in literature. Along with that, we also

give some intui on and mo va on as to how and why we are trying to abstract these restric ons from
problem specific constraints to a generalized conflict model.

1.3.1 Conflicts in Software Engineering
As per our knowledge, the first problem with conflicts was studied by Gabow et al. in [37]. The

problem was automa c path genera on for programs which sa sfies certain restric ons.

Let us divide a program into its basic blocks. A block is a straight-line code sequence with no
branches in it except entry branches and exit branches. Consider the problem of construc ng a path
sa sfying some restric ons and passing through basic blocks of program. Such a problem can be used in
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tes ng.

Wemay fragment a program into small blocks (even single statements) and can construct test cases
for each block. A test case is a set of ac ons executed to verify a par cular feature or func onality of given
code. The goal is to find a path through the program such that each block of program is covered by at least
one test case. But there might be a case where program seman cs do not allow genera on of paths that
are unexecutable. For example, in Figure 1.3, consider i f − else construct in C language. Here if Block 1 in
i f clause is executed then Clause 2 in else won’t be executed and vice versa. This no on of pairs having
conflicts was studied by Kruass et al. in [56]. Hence, we can analyse branching condi ons in programs and
constrain the test path such that every test path contains at most one branch of each pair with conflict.
Work done in [15],[71] and [55] provides insights on automa c genera on of non trivial impossible pairs.

if (x == y && x ≤ 100)

{
printf(”Value of y is %d. \n”, y );

}
else

x++;

y −−;

{

printf(”Value of x is %d. \n”, y );

}

x = x++ + (x− y)%y;

x = x%y;

printf(”Value of x is %d. \n”, x );

Block 1

Block 2

Figure 1.3 : C I P C P (IPP)

Gabow et al. also provided graph theore c insight for this problem in so ware engineering. Here
each program is represented by a digraph where each node represents a basic block in the program and
each edge represents a possible transfer of control. Such a graph is termed as a program flow graph. The
problem can be stated formally as follows,

I P C P (IPP)
Given: A program flow graph G(V,E), single source node s and single sink node t. The set V also contains
n pairs of nodes (ai,bi),1≤ i≤ n. ThusV = {s, t,a1,b1, . . .an,bn}.
Aim: The objec ve is to find a path (with no vertex repe on) in G from s to t such that the path contains
exactly one node from each pair.

Consider the example of this problem in Figure 1.4. Here we represent each node as a vertex in the
conflict graph CG(V ′,E ′). We say that the two nodes are in conflict if they belong to same pair in V and
hence restricts us from picking both the nodes in conflict. That is, at most one of them can be picked in our
solu on. A conflict between two nodes is represented as an edge in CG. Our objec ve is to pick a n size
independent set from CG such that the corresponding ver ces form a path from s to t in G. No ce that
CG in this case is simply a matching. See Figure 1.5 for a conflict graph corresponding to the problem in
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Figure 1.4.
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Figure 1.4 : I P C P (IPP)

a1 b1
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Conflict Graph Solution = {a1, b2, a3, b4}
Solution to IPP is independent set

in Conflict Graph
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Figure 1.5 : Conflict graph in I P C P (IPP)

This problem is NP-hard [53] even when the underlying flow graph is acyclic and in-degree and
out-degree of each vertex is at most two.

1.3.2 Conflicts in Some Classical Problems
Itai, Rodeh and Tanimoto [78] studied the conflict version R M P (RCM)

of matching problem. M M in bipar te graph is the problem of finding a set of maximum
number of vertex disjoint edges from the graph. The problem R M P (RCM) can
be defined as follows,
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R M P (RCM)
Given: A bipar te graph G(V,E) where V is par oned into two disjoint sets, L and R, such that all the
edges have one end-point in L and another in R. Also E1,E2, . . .Em are subsets of E, and r1,r2, . . .rm are
posi ve integers.
Aim: The objec ve is to find whether there exists a perfect matching M in G such that it sa sfies the
following restric on:

|M∩E j| ≤ r j for all j = 1,2, . . .k

The authors have proved RCM to be NP-complete when all subsets are disjoint in [78] .

Consider the vertex set in CG(V ′,E ′) to be the edge set in G(V,E) that is, V ′ = E. In the case
when all subsets are disjoint, we say two ver ces u,v ∈ V ′ to be in conflict and add an edge (u,v) ∈ E ′,
if and only if u,v ∈ Ei for some 1 ≤ i ≤ m. Thus, any feasible solu on to R M P
(RCM) consists of disjoint subgraphs S1(V ′1,E

′
1),S2(V ′2,E

′
2) . . .Sm(V ′m,E

′
m) in CG(V ′,E ′) such that for each

Si(V ′i ,E
′
i), 1≤ i≤m,V ′i ∈V ′ corresponds to Ei and |V ′1| ≤ ri. Also the corresponding edges in E must form

a perfect matching in G.

Consider the case when subsets of E are not disjoint. Here, considerE ′ = /0. Assign colour k to each
vertex v ∈ V ′, if and only if corresponding edge v ∈ E is assigned to the subset Ek. The ver ces of V ′ can
be assigned many colors. Our goal is to find a vertex set C in V ′ such that the number of ver ces of each
color p inC are not more than rp. Also, the edges in E corresponding to ver ces inC should form a perfect
matching in G.

K is another important problem which has been studied with conflicts as M -
K problem (MCKP). In K we are given n number of objects in object set O =
{O1,O2, . . . ,On}. Each element Oi ∈ O is associated with weight Wi and value Vi. A bag B with
capacityC is also given. The objec ve is find a set of objects from O such that their total weight is at most
W while maximizing their total value. In M - K problem (MCKP) the set of items is
par oned into classes. The binary choice of picking an item is replaced by the selec on of exactly one
item out of each class of items.

M - K (MCKP)
Given: A set X of n items. The set of items is divided into k non-empty disjoint classes X1,X2, . . .Xk. The jth

item in class Xi,1≤ i≤ k is denoted as xi j,1≤ i+ j ≤ n. Also, Ni = { j|xi j ∈ Xi},1≤ i≤ k. Each item xi j is
associated with profit pi j and weight wi j. We are also given the capacityW of knapsack.
Aim: The objec ve is to select exactly one item from each class such that the profit is maximized and the
total weight of the items is not greater than W . The integer programming formula on for the problem is
as follows.

maximize
k

∑
i=1

∑
j∈Ni

xi j pi j

sub ject to
k

∑
i=1

∑
j∈Ni

wi jxi j ≤W

∑
j∈Ni

xi j = 1 For all 1≤ i≤ k

xi j ∈ {0,1} For all 1≤ i≤ k and all j ∈ Ni

(1.1)

We create a conflict graphCG(V,E) for this problem as follows. We say any two items xiu,xiv ∈ X to
be in conflict if both the items belong to same class Xi. Let us represent each item by a vertex inCG(V,E).
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We add an edge between two ver ces in E if both of them are in conflict. No ce that the conflict graph
here is collec on of cliques and the set of items in any feasible solu on toM - K forms
an independent set inCG.

The M - K problem is a well known op miza on problem and was first
formulated by Eilon and Christofides [28] as a cargo loading problem, and can be solved using algorithms
presented by Martello and Toth [62] and Pisinger [73]. It is NP hard as K can be considered special
case of (MCKP) and can be solved exactly with dynamic programming. This problem has been extensively
studied in literature [22],[63],[54],[18],[77] and is shown to admit PTAS by Chekuri and Khanna [14]. It has
further been studied in mul dimensional se ngs. [67],[35],[41],[75],[38]

1.3.3 Conflicts in Geometry
Arkin and Hassin [2] studied same problems with conflicts in geometric se ngs. Consider that

there are m firms and a set of n loca onsV . Consider that each firm fi can choose a possible loca on from
the set of loca ons in Si ⊆ V . Each firm wants to communicate with every other firm and hence wants to
be at close distance with each firm. The objec ve is to minimize the maximum distance between firms.
Mathema cally, let the set V = S1 ∪ S2 ∪ . . .∪ Sm for some m. A cover is subset of V such that it contains
at least one representa ve from each Si,1 ≤ i ≤ m. Let us define a distance measure on elements of V
such that there is finite distance between every element pair of V . Then we define diameter as maximum
distance between any pair of elements in the cover. Using these defini ons, we formally state above
problem as follows.

M C C
Given: A setV of n elements and a collec on of subsets S1,S2, . . .Sm ofV . A real symmetric n×n matrix M
describing distance between every two elements ofV .
Aim: The objec ve is to compute cover of minimum diameter.

Consider the case when all subsets in given collec on of subsets are disjoint. Here, we represent
each element in V as a vertex in CG(V ′,E ′) (conflict graph) and add an edge in E ′ between ver ces
corresponding to two elements if and only if both elements belong to the same subset Si, 1 ≤ i ≤ m. We
call such elements to be in conflict. We can see that the graph CG consists of disjoint cliques. Also, any
feasible solu on to M C C should span all the cliques in CG. That is, the set of elements
in op mal solu on contains at least one element from each disjoint clique inCG such that the diameter of
set is minimum.

Let us construct the conflict graph CG(V ′,E ′) for general case of this problem. Here subsets in
given collec on of subsets are not necessarily disjoint. In this case, we represent each element inV to be a
vertex inCG(V ′,E ′) and E ′ = /0. AssumeC = {1,2, . . .m} be a color set. We assign a color i ∈C to a vertex
v ∈V ′ if and only if v ∈ Si. Thus a vertex may be assigned many colors. Let the set S contain all those sets
consis ng of at least one vertex v ∈ V ′ of each color from C. Our aim is find a set S ∈S with minimum
possible diameter.

Arkin and Hassin [2] showed that the pair-choice cover problem of finding a vertex cover of
minimum diameter is polynomial me solvable. Further, the triple-choice cover problem is NP-complete
even when the sets are disjoint and are represented by points in plane, and can not be approximated
with constant error guarantee, assuming P ̸= NP. With triangle equality on distances, no approxima on
of error-guarantee less than 2 is possible for this problem. With triangle inequality, they give a
2-approxima on algorithm for mul ple choice cover problem. Further if V is a set of points in plane, then
they give a 2√

3
-approxima on algorithm for the M C C problem.

Now let us look at a slightly different problem with conflicts. In M C k P
problem, studied by same authors in [2], it is assumed that each cover can be par oned into k clusters
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and objec ve is to minimize the maximum diameter of a cluster. For example, consider M C
2 P . Here we are given a setV of n elements, a collec on of subsets S1,S2, . . .Sm of V (can be non
disjoint subsets) and a real symmetric n× n matrix M describing distance between each pair of elements
in V . Let C be the cover. Also, assume C1 and C2 to be a 2 partition of C. Then, the diameter is defined
as max

i∈{1,2}
max{d(x,y)|x,y ∈Ci} where d(,) is the distance between two elements given in matrix M. Now

the objec ve is to find a cover OPT and a 2 partition of C of minimum diameter. They proved that the
P C 2 P problem is NP-hard even when we allow the sets Si,1 ≤ i ≤ m to be non-disjoint.
It also holds when we assume triangle inequality. The P C 2-P problem is polynomial
me solvable in plane. Also, the P C 2 P problem can not be approximated with constant

error guarantee and even with triangle equality, no approxima on of error guarantee 2 is possible. Also, 3
P problem is NP-hard even in a 2− d plane [51], [39]. The k P problem in one dimension
where points are on a line, can be solved in polynomial me [13]. The 2−approxima on for k P
with triangle inequality is given in [39], [47].

Arkin and Hassin [2] further considered ℓ C k P problem restric ng the cardinality
of each Si,1 ≤ i ≤ m to be bounded by ℓ. They showed that with triangle equality this problem can be
approximated with a bound of 2, for any fixed ℓ and k. Also, in a plane, it can be approximated with error
bound of 2√

3
. It was showed in [39], [47] that a 2−ε approxima on for S C k P problem

where k is input to the problem, is NP-hard for any ε > 0. It also holds when V is a set of points in 3
dimensional Euclidean plane [39].

Another problem considered in same paper is related to dispersion. Dispersion of a set is the
distance between two closest elements in the set. The problem aims to maximize the dispersion of the
cover. Arkin and Hassin [2] proved that the P C M D problem of finding a vertex
cover ofmaximumdispersion is polynomial me solvable. The T C M D problem
is NP-complete evenwhen sets are disjoint and represented by points in plane and can not be approximated
with constant error guarantee assuming P ̸= NP. Further, the ℓ C k P M D
problem cannot be solved or approximated in polynomial me, even if ℓ= k = 2 assuming P ̸= NP.

Now we look at some p-C problems in conflict se ng. We define the problem as follows:

p-C
Given: A complete graph G(V,E). Also, the non-nega ve integer w(u,v) is assigned to every edge (u,v)
which is termed as distance between ver ces u and v.
Aim: Choose a set C ⊂ V of p ver ces such that the maximum distance of any vertex to the nearest vetex
inC is minimized.

We call each vertex v ∈ C as center. This problem has been proved to be NP-hard [52]. Further,
Hudec [49], introduced p-C problem with more restric ons. In this version, p nodes in the center
must be chosen from p prespecified disjoint pairs of nodes, with exactly one node from each pair selected.
Let us take nodes in disjoint pairs of nodes as ver ces of graphCG(V,E) and add an edge in E between two
nodes if and only if these nodes belong to same pair. We call the nodes in same pair to be in conflict and
CG(V,E) as conflict graph. Observe thatCG is a matching. Also, any solu on to the problemmust form an
independent set inCG.

In [46], Hochbaum and Pathria generalized these problems and studied in approxima on se ngs.
Formally, generalized version is defined as follows :

G p-C
Given: Given a complete weighted graph, G = (V ∪W,E), whereV andW are disjoints sets of nodes such
that |W |= n andV =V1∪ . . .∪Vk whereVi∩Vj = /0, i ̸= j, 1≤ i, j ≤ k. where differentVi, 1≤ i≤ k forms
a par on of V. For each edge (u,v) ∈ E, u,v ∈ V ∪W , w(u,v) denotes the non nega ve integer weight
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assigned to the edge.
Aim: Choose a set C of p nodes from V with at most one node from each Vi,1 ≤ i ≤ k such that the
maximum distance of any node inV ∪W to its nearest neighbour inC is minimized.

Again these addi onal restric ons to p-C in G p-C can bemodelled as conflict
in the same way as done in M C C .

Consuegra, Narasimhan and Tanigawa [17] also considered various geometric problems with such
addi onal restric ons. Two of these problems are M G problem and M G
problem. For a set of n points on a line, the G is the smallest gap between consecu ve points in
sorted order. Similarly, M G is the largest gap between consecu ve points in sorted order.
The problems are defined as follows,

M G
Given: A set P of n k-point sets.
Aim: The objec ve is to choose exactly one point from each k-element set so as to maximize the G .

M G
Given: A set P of n k-point sets.
Aim: The objec ve is to choose exactly one point from each k-element set so as to minimize the G .

Here, consider the points to be ver ces inCG(V,E) and add an edge between two points if and only
if these points belong to same point set in P . The points in same point set in P are said to be in conflict
with each other. No ce thatCG is a collec on of n k-sized cliques. Also, the solu on to the problems must
form a maximum sized independent set inCG.

The authors give polynomial me algorithm for M G problem when k = 2 for points
given in Rd . Also, for k > 2, this problem is NP-hard. The authors also give a 2-approxima on algorithm for
M G problem when k is a constant and points are given on a line. They further considered
convex hull, geometric minimum spanning Euclidean tree and many other such problems with such
addi onal restric ons (conflicts) from the perspec ve of approxima on algorithms.

These are few among several problems studied in literature where conflict comes into picture. The
conflict is introduced on some underlying problem. For example, in the problem R M ,
the conflict is introduced on matching problem. But most of these problems that have been studied in
literature consist of mul ple copies of an element/item/node which we call a class. These aliases in a class
are in conflict with each other. Hence the objec ve is to choose at most one or exactly one of these aliases
from each class. If we represent these elements by ver ces of a graph and the conflicts by the edges, then
such graph for conflict belongs to some special graph classes such as bipar te graphs or cliques graphs
(graph consists of disjoint cliques).

In this thesis we focus on problems where we want to remove such restric ons and consider more
complex conflict rela onships. To do so, as our main contribu on we need to first formally propose the
framework to model the conflicts. Furthermore, this helps in abstrac ng conflicts from problem specific
restric ons, to more general class of restric ons. Next, we propose the models for capturing conflicts
regardless of the underlying problem on which conflict has been introduced.

1.4 OUR FRAMEWORK FOR CONFLICTS
To handle the conflicts, we propose following two models.

1. Graphical Model

10



2. Matroidal Model

1.4.1 Graphical Model
A natural way to model conflict is by using graphs. The intui on and examples to this have been

provided previously. Here we use graphs to represent conflicts. Consider the graph G(V,E)whereV is a set
of elements andE is the edge set. We callG to be a conflict graph if and only if each edge (u,v)∈ E; u,v∈V
represents a conflict between elements u and v. Hence any feasible solu on to the underlying problem
should be a independent set in the conflict graph.

We illustrate this using S C . Here, we are given A universeU of size n, a familyF of size m of
subsets ofU and a posi ve integer d. We are also given a graphCGF , on the vertex set F and there is an
edge between two sets Fi,Fj ∈F if Fi and Fj are in conflict. We call CGF a conflict graph. Let CGF [F ′]
be the graph induced on F ′. The set cover F ′ such thatCGF [F ′] is an independent set is called a conflict
free set cover. Our aim in C -F S C is to find whether there exist a set cover F ′ ⊆F of size
at most d such that CGF [F ′] is an independent set. An example of C -F S C is shown in
the figure 1.6.

U = {a, b, c, d, e, f}

F1 = {a, b}

F2 = {b, d, f}

F = {F1, F2, F3, F4, F5, F6}

F3 = {b, c, f} F5 = {a, c}

F4 = {b, e, d, f} F6 = {a, e, f}

F1 F2 F3

F4 F5

F6

Conflict Free Set Cover F ′ = {F4, F6}

d = 2

CFF

Figure 1.6 : An example of C -F S C

We define the parametrized version of S C as follows,

G C F S C (G CF-SC) Parameter: k
Input: A universeU of size n, a family F of size m of subsets ofU , a conflict graphCGF and a posi ve
integer k,
Ques on: Does there exist a set coverF ′ ⊆F of size at most k such thatCGF [F ′] is an independent
set?

Let us observe some proper es of C -F S C .

Observa on 1.4.1. The C -F S C sa sfies following proper es:

1. It is NP-hard.

2. It can be trivially solved ifCGF is a complete graph.

11



3. There does not exist be er than polynomial factor approxima on for C -F S C .

The first property can be seen as S C is a special case of C -F S C whenCGF

is an edgeless graph. The second property follows from the fact that any feasible solu on to C -F
S C consists of a single element F ∈F . In the op miza on version of C -F S C , we
want to maximize the number of elements of universe covered using conflict free subset of F . To observe
the third property, consider the following scenario. Let every subset F ∈ F contains a single element
from universe U . Let CGF be any conflict graph on F . Then C -F S C is equivalent to
finding a M I S in CGF . As there is no be er than polynomial factor approxima on
for M I S , same holds for C -F S C .

Conflict-free set other than independent set Above we consider the conflicits as edges in conflict graph
C G (V,E). We also assumed the conflict-free set to be an independent set. Thus it is a graph induced on
C G (V,E) such that the graph consists of disjoint ver ces. But we may not model every conflict problem
using this approach. For example, consider R M P (RCM) men oned above which
was introduced by Itai, Rodeh and Tanimoto [78]. Let us recall the problem,

R M P (RCM)
Given: A bipar te graphG(V,E)whereV is par oned into two disjoint sets, L andR such that all the edges
have one end-point in L and another in R. Also El,E2, . . .Em are subsets of E and r1,r2, . . .rm be posi ve
integers.
Aim: The objec ve is to find whether there exists a perfect matching M in G such that it sa sfies following
restric on:

|M∩E j| ≤ r j for all j = 1,2, . . .k

.

If we consider the vertex set inC G (V ′,E ′) to be the edge set for G(V,E) that isV ′ = E. Also, there
is an edge (u,v) ∈ E ′, u,v ∈ E if and only if u,v ∈ Ei for some 1 ≤ i ≤ m. Thus, the conflict-free set for
R M P (RCM) consists of disjoint subgraphs S1(V ′1,E

′
1),S2(V ′2,E

′
2) . . .Sm(V ′m,E

′
m) in

C G (V ′,E ′) such that for each Si(V ′i ,E
′
i), 1≤ i≤ m, V ′i ∈V ′ corresponding to E and |V ′| ≤ ri. In RCM, we

want a conflict-free set that forms a perfect matching in G.

1.4.2 Matroidal Model
Let (U,F ,k) be an instance of S C . In the matroidal model of represen ng conflicts, we are

given a matroid M = (E,J ), where the ground set E = F , and J is a family of subsets of F sa sfying
all the three proper es of a matroid which are as follows :

1. The emptyset /0 is in J .

2. If A ∈J where A⊂ E, then every subset A
′ ⊂ A also belongs to J .

3. If there are two subsets A,B ∈J and A has more elements than B, then there exist an element
a ∈ A−B such that B∪{a} also belongs to J .

Let A be a matrix over an arbitrary field F and let E be the set of columns of A. For A, we define
matroid M = (E,J ) as follows. A set X ⊆ E is independent (that is X ∈J ) if the corresponding columns
are linearly independent over F. The matroids that can be defined by such a construc on are called linear
matroids, and if a matroid can be defined by a matrix A over a field F, then we say that the matroid is
representable over F. That is, a matroid M = (E,J ) of rank d is representable over a field F if there exist
vectors in Fd corresponding to the elements such that linearly independent sets of vectors correspond to
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independent sets of the matroid. In this thesis we assume that M = (E,J ) is a linear or representable
matroid, and the corresponding linear representa on is given as part of the input.

Similarly, a par on matroid M = (E,J ) is defined by a ground set E being par oned into
(disjoint) sets E1, . . . ,Eℓ and by ℓ non-nega ve integers k1, . . . ,kℓ. A set X ⊆ E is independent if and only
if |X ∩Ei| ≤ ki for all i ∈ {1, . . . , ℓ}. In C -F S C let Q denotes the family of conflict free
subsets of F . One can define a par on matroid on F such that J = Q. Thus, the ques on of finding
a conflict free subset of F covering the universe U becomes a problem of finding an independent set in
J that covers all the points in P. We see in Chapter 4 how matroids can be used to give algorithms for
problems in conflict se ngs.

1.5 PROBLEMS CONSIDERED IN THESIS
We define the problems with conflicts using the above framework. Most of the problems

we considered are NP-hard. We study these problems from either the parameterized perspec ve or
approxima on perspec ve. Now we define the problems that we consider in this thesis.

We first consider R C , introduced in [3, 4, 58]. To define the problem formally we
first give some defini ons. LetP be a set of points on the X-axis, and letI = {I1, . . . , Im} be a set of intervals
on the X-axis. Furthermore, let C = {C1,C2, . . . ,Cℓ} denote a set of pair of intervals from I . Moreover,
for any pair of integers i, j (1 ≤ i ≤ j ≤ ℓ), Ci∩C j = /0. Thus, there is a conflict between interval I1 and I2
if {I1, I2} = Ci for some Ci ∈C. We term C a matching family. For a set of intervals Q ⊆ I , Q is conflict
free if Q contains at most one interval from each each pair, i.e. ∀1≤i≤ℓ|Q∩Ci| ≤ 1. Finally, for an interval
I = [a,b] and a point p on X-axis, we say I covers p if and only if a≤ p≤ b. Now we are ready to define the
problem formally.

R C
Input: A set of points P on the X-axis, a set of intervals I = {I1, . . . , Im} on the X-axis and a matching
family C = {C1,C2, . . . ,Cℓ}.
Ques on: Does there exist a conflict free subset Q of intervals that covers all the points in P?

That is, in any family of intervals that covers all the points, we are allowed to select atmost one interval from
each pair in C . Thus, the set C represents conflicts between pairs of intervals. If C is an empty set, that is,
if there are no conflicts among the intervals, then the problem (known as C P I ) is
polynomial me solvable [27, pg 240]. On the other hand ifC is non-empty then Arkin et al. [3] showed that
R C is NP-complete. Observe that in the R C problem, the family C would
correspond toCGC with degree at most one. That is, edges ofCGC form a matching. And the ques on of
finding a conflict free subset Q of intervals covering all the points in P becomes a problem of finding a set
Q of intervals that covers all the points in P andCGC [Q] is an independent set. For an example, see Figure
1.7.

Another problemwe define is generalized conflict-free interval covering problem. HereCGI is any
graph and not restricted to some graph classes.

G C -F I C
Input: A set of points P on the X-axis, a set of intervalsI = {I1, . . . , Im} on the X-axis and conflict graph
CGI .
Ques on: Does there exist a conflict free subset Q of intervals that covers all the points in P?

Recall that a conflict free subset is an independent set in CGI . We can show that this problem is
NP-complete using R C . Now we define the parametrized version of this problem.
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I6
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I9
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I3I4
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I6I7

I8

I9

I1 I2

I10

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

COV

CG

Figure 1.7 : R C

P G C -F I C Parameter: k
Input: A set of points P on the X-axis, a set of intervalsI = {I1, . . . , Im} on the X-axis and conflict graph
CGI .
Ques on: Does there exist a conflict free subset Q of intervals with size at most k such that it covers all
the points in P?

For general class of graphs to which conflict graph belongs, we prove later that P
G C -F I C is W[1]-hard. So we try to find the family of graph classes for
which P G C -F I C is tractable. In order to restrict the family
of graphs to which a conflict graph belongs, we need to define the no on of arboricity. The arboricity of an
undirected graph is the minimum number of forests into which its edges can be par oned. A graph G is
said to have arboricity d if the edges of G can be par oned into at most d forests. Let Gd denote the family
of graphs of arboricity d. This family includes the family of intersec on graphs of low density objects in low
dimensional Euclidean space as explained in [42, 43].

Specifically, this includes planar graphs, graphs excluding a fixed graph as a minor, graphs of
bounded expansion, and graphs of bounded degeneracy. In most applica ons, conflict graphs themselves
belong to a family of geometric graphs. Har-Peled and Quanrud [42, 43] showed that low-density geometric
objects form a subclass of the class of graphs that have polynomial expansion, which in turn, is contained
in the class of graphs of bounded arboricity. Thus, our restric on of the family of conflict graphs to a family
of graphs of bounded arboricity covers a large class of low-density geometric objects.

Now, we consider problems with conflictswhich we analyse from the perspec ve of approxima on
algorithms in the thesis. For this, we first talk about Fréchet distance. As we men oned earlier Fréchet
distance measures similarity between two curves by considering an ordering of the points along the two
curves. We gave an intui ve example of the Fréchet distance which is to imagine that a dog and its handler
are walking on their respec ve curves. Both can control their speed but can only go forward. The Fréchet
distance of these two curves is the minimum length of any leash necessary for the handler and the dog to
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move from the star ng points of the two curves to their respec ve endpoints [5]. While for the discrete
Fréchet distance, we replace the dog and its owner by a pair of frogs that can only reside on any of the
n and m specific pebbles on the curves A and B respec vely. These frogs hop from a pebble to the next
without backtracking. Formally let A = {a1,a2, . . .an} and B = {b1,b2, . . .bm} be a sequence of points.
For any r ∈ R we define the graph Gr with ver ces A×B and there exists an edge between (ai,b j) and
(ai+1,b j) if d(ai+1,b j)≤ r and there exists an edge between (ai,b j) and (ai,b j+1) if d(ai,b j+1)≤ r, where
d(,) represents distance between two points. Discrete Fréchet distance between A and B is the infimum
value of r such that in Gr there is a path between (a1,b1) and (an,bm).

Here, we consider semi-discrete Fréchet distance which is, given a con nuous curve S and a set of
points P, the minimum length of a leash that simultaneously allows the owner to walk on S con nuously
and the frog to have discrete jumps from one point to another in P without backtracking. Hence the leash
is allowed to switch discretely when frog jumps from one point to another. In this thesis, we consider the
case when S is a line segment. We denote it by ℓ. We take the cardinality of P to be n. Let α is a con nuous,
non-decreasing, surjec on from [0,1] to ℓ. Suppose β be any func on from [0,1] to P such that there exists
disjoint subdivisions of [0,1] into a set of intervals λ1,λ2, ..λk for some k ∈N,k≤ n. We have

∪k
i=1 λi = [0,1].

From any two points t1, t2 ∈ [0,1], β (t1) = β (t2) iff t1 and t2 belong to the same interval. Let d(a,b) for two
points a and b is the Euclidean distance between a and b. Semi- discrete Fréchet distance between ℓ and P
is defined as:

dF(ℓ,P) = in f
α,β

max
t∈[0,1]

{d(α(t),β (t))}

For an illustra on, see Figure 1.8.

`

p1 = (1, 1)

p2 = (2, 3)

p3 = (3, 1)

p4 = (3.2, 4)

p5 = (5, 1)

P = {p1, p2, p3, p4, p5}

dF (P, `) =
√
5

(1, 0) (7, 0)

Points in solution = {p1, p3, p5}

Figure 1.8 : Semi-discrete Fréchet distance

Ourmain point of considera on is introducing conflicts in this se ng. Here instead of a set of points
P, we are given a set of pairs of points Q = {Q1,Q2, . . .Qn} in R2. We call Q a choice set. Our objec ve is
to choose at most one point from each pair so that the length of leash needed is minimized. We call such a
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choice of points “conflict-free” with respect to the choice setQ. Formally we define the problem as follows,

S - F D
Input: A set of points P = {p1, p2, . . . , pn} and a line segment ℓ in R2.
Ques on: Find dF(P, ℓ).

Next we consider the following problems involving choices.

C - F D
Input: A set Q = {Q1,Q2, . . .Qn} of pairs of points, and a line segment ℓ in R2.

Ques on: Find a conflict free subset of points P∗ ⊂
n∪

i=1
Qi which minimizes dF(P∗, ℓ)

The natural decision versions of these problems are as follows.

C - F D (D V )
Input: A set Q = {Q1,Q2, . . .Qn} of pairs of points, a line segment ℓ in R2, and d ∈ R.
Ques on: Is there a conflict free set of points P∗ ⊂

n∪
i=1

Qi such that dF(P∗, ℓ)≤ d.

These problems are mo vated by 2D curve fi ng and object construc on from noisy data which
can be used in computer vision for data comparison and biomolecules structure comparison. Here the
“resemblance” corresponds to minimizing the semi-discrete Fréchet distance. For example, given a noisy
data with/without mul ple choice constraints, we may construct a curve/object resembling the standard
curve/object and may find the resemblance parameter (specified by semi-discrete Fréchet distance). To
illustrate this, consider the scenario where we receive a discrete set of points from a curve. But due to
errors in the channel, we get a bag of possible data points for each actual data point. At the end of the
transmission, we have a set of bags where each bag contains a few points. We also have possible shapes
of transmi ed data in our database. Our objec ve is to choose one point from each bag such that the
curve from the set of chosen points resembles most with one of the known shapes. If we know that the
transmi ed data is an alphabet from English language, then possible choices of curve for transmi ed data
can be the set of 26 alphabets.

We study approxima on algorithm for C - F D (minimiza on version) in
this thesis. We also analyse the approxima on results for G C -F I C where
conflict graph has constant arboricity. We consider another case where both conflict graph and covering
problem is represented by a unit interval graph. We define the problem as follows.

U I CF-SC
Input: A set of points P, a set of unit intervals I = {I1, . . . , Im}, a unit interval graph as conflict graph
CGI and a posi ve integer k.
Ques on: Does there exist a conflict free set cover covering atleast k points?

M U I CF-SC
Input: A set of points P, a set of unit intervals I = {I1, . . . , Im}, a unit interval graph as conflict graph
CGI .
Ques on: Maximize the number of points covered using conflict free unit intervals?

For an example, see Figure 1.9.

Another problem we consider from approxima on perspec ve is U D - U I CF-SC.
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Figure 1.9 : U I CF-SC

We define the problem and its op misa on version as follows:

U D - U I CF-SC
Input: A set of points P in R2, a set of unit intervals I = {I1, . . . , Im} covering P, a unit disk graph as
conflict graphCGD on a set of unit disks D = {D1,D2, . . . ,Dm} and a posi ve integer k.
Ques on: Does there exist a conflict free set cover covering atleast k points?

M U D - U I CF-SC
Input: A set of points P in R2, a set of unit intervals I = {I1, . . . , Im} covering P, a unit disk graph as
conflict graphCGD on a set of unit disks D = {D1,D2, . . . ,Dm}.
Ques on: Maximize the number of points covered using conflict free unit intervals?

Here, two intervals Ii, I j ∈I are in conflict if the corresponding disks Di,D j ∈D intersects.

1.6 OVERVIEW OF RESULTS AND STRUCTURE OF THESIS
We give some preliminaries related to parameterized complexity and approxima on algorithms in

Chapter 2.

We first study the conflicts in parameterized paradigm. In Chapter 3 this chapter, we study the
problems where the conflict graph is either a matching or a collec on of vertex disjoint cliques. We
start by proving that C - F D (D V ) is NP-Complete. Next we show
that S - F D is solvable in O(n logn) me. Next we consider the parameterized
complexity of the problem, i.e, P C - F D and show that it admits
FPT. We give FPT algorithms based on randomiza on and branching for the problem. We further show
that under standard complexity theore c assump ons, the problem does not admit polynomial kernel.
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In Chapter 4, we consider the conflicts in graphswithmore complex se ngs. We restrict the conflict
graphs to be belonging to the class of bounded arboricity graphs. As our first contribu on, we propose two
natural models in which the conflict rela ons are given:
(a) by a graph on the covering objects, and
(b) by a representable matroid on the covering objects. Our main result in this chapter is that as long as
the conflict graph has bounded arboricity (that includes all the families of intersec on graphs of low density
objects in low dimensional Euclidean space), there is a parameterized reduc on to the conflict-free version.
This is achieved through a randomiza on-derandomiza on trick. As a consequence, we have the following
results when the conflict graph has bounded arboricity.

• If the G C problem is fixed parameter tractable (FPT), then so does the conflict free
version.

• If the G C problem admits a factor α-approxima on, then the conflict free version
admits a factor α-approxima on algorithm running in FPT me.

As a corollary to our main result we get a plethora of approxima on algorithms running in FPT me. Our
other results include an FPT algorithm and a W[1]-hardness proof for the conflict-free version of C
P I . The FPT algorithm is for the case when the conflicts are given by a representable
matroid, and the W[1]-hardness result is for all the family of conflict graphs for which the I S
problem is W[1]-hard.

Next we study conflicts in approxima on paradigm. We study the case where conflict graph
is a matching in Chapter 5. We present a 3-factor approxima on algorithm to op miza on version of
C - F D .

Next, in Chapter 6, we propose a general framework where if the geometric graphs C OV and C G
sa sfy some proper es, then G C F S C admits constant factor approxima on
where the constant is based on those proper es. As an applica on to this, we give an 8-factor approxima on
algorithm for M U I CF-SC. We also present a 36-factor approxima on algorithm for M U
D - U I CF-SC. We also prove the APX-hardness of various geometric problems. In this regard,
we show thatM U I CF-SC and M U D - U I CF-SC does not admit PTAS under
standard computer theore c assump ons. We prove APX-hardness for more general case where conflict
graph is tree or 1-arboricity graph (thus holds for higher arboricity graphs too) in point interval covering.
We also show problem is APX-hard when both C G and C OV are unit coin graphs.
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