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Preliminaries

In this chapter, we discuss some preliminaries we use in this thesis. We start our discussion with
terms related to parameterized complexity. Next we elaborate some graph theore c terms. Later, we look
for some concepts related to matroids. In the end, we discuss about approxima on algorithms and related
terminology.

2.1 PARAMETERIZED COMPLEXITY
Consider a NP-complete language L′. As the problem whether NP=P or not is s ll unsolved, we

don’t know of any polynomial me algorithm for general instance of L′. Thus, all the known algorithms take
exponen al me in input length. The goal of Parameterized Complexity is to find ways of solving NP-hard
problems more efficiently than brute force. Here, we assign a parameter to each instance of the language
that is hopefullymuch smaller than the input size. Our goal is to restrict the me complexity to combinatorial
explosion to the parameter instead of input length. Formally,

Defini on 2.1.1. A parameterized problem is a language L ⊆ Σ∗×N, where Σ is finite alphabet set. The
second component is called the parameter of the problem.

For example, consider the following problem men oned in Chapter 1 Sec on 1.3.

I P C P (IPP)
Input: AprogramflowgraphG(V,E), single source node s and single sink node t. The setV also contains
n pairs of nodes (ai,bi),1≤ i≤ n. ThusV = {s, t,a1,b1, . . .an,bn}
Ques on: Does there exist a path (with no vertex repe on) inG from s to t such that the path contains
exactly one node from each pair.

We may define the parameterized version of the problem as follows.

P I P C P (LIPP)
Input: AprogramflowgraphG(V,E), single source node s and single sink node t. The setV also contains
n pairs of nodes (ai,bi),1≤ i≤ n. ThusV = {s, t,a1,b1, . . .an,bn}. A posi ve integer k.
Ques on: Does there exist a k length path (with no vertex repe on) in G from s to t such that the path
contains at most one node from each pair.

Here, the path length k is the parameter. We would like to point that most of the defini ons in this
sec on can be found in book [21] unless otherwise stated.

Now we discuss the proper es of parameterized problem that is fixed-parameter tractable (FPT).

Defini on 2.1.2. A parameterized problem L is fixed-parameter tractable (FPT) if there is an algorithm that
solves the problem in me f (k) · |I|O(1), where |I| is the size of the input instance, k is parameter associated
with input instance and f is an arbitrary computable func on depending only on the parameter k. Such an
algorithm is called an FPT algorithm and such a running me is called FPT running me. The complexity
class containing all fixed parameter tractable problems is called FPT.
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Now let us introduce the no on of parameterized reduc ons.

Defini on 2.1.3. Let A,B ⊆ Σ∗×N be two parameterized problems. A parameterized reduc on from A to
B is an algorithm that, given an instance (x,k) of A, outputs an instance (x′,k′) of B such that

1. (x,k) is a Yes-instance of A if and only if (x′,k′) is Yes-instance of B.

2. k′ ≤ g(k) for some computable func on g.

3. the running me of algorithm is f (k).|x|O(1) for some computable func on f .

We have the following theorem based on parameterized reduc ons.

Lemma 2.1.1 ([21]). If there is a parameterized reduc on from A to B and B is FPT, then A is FPT as well.

We next discussW hierarchy. For this, first we define mixed Boolean circuits.

Defini on 2.1.4. A Boolean circuit is of mixed type if it consists of circuits having gates of the following
kinds.

1. Small gates: NOT gates, AND gates and OR gates with bounded fan-in. We will usually assume that
the bound on fan-in is 2 for AND gates and OR gates, and 1 for NOT gates.

2. Large gates: AND gates and OR gates with unrestricted fan-in.

We assume the circuits considered here has single output node which has outdegree 0. Next we
define height, weight and we f t of a circuit.

Defini on 2.1.5. The depth of a circuit C is defined to be the maximum number of gates (small or large),
not coun ng NOT gates, on an input-output path in C. The we f t of a circuit C is the maximum number of
large gates on an input-output path inC. The weight of an assignment to the circuit is the number of input
gates that receives value 1.

Now we define W C S (WCS) problem.

Defini on 2.1.6. In the W C S (WCS) problem, we are given a circuit C and an
integer k, the task is to decide ifC has a sa sfying assignment of weight exactly k.

Let C is a class of circuits. Assume Ct,d to be the class of circuits with we at most t and depth at
most d. We define WCS[C ] to be the problemWCS where the input circuitC belongs to C .

Defini on 2.1.7. For t ≥ 1, a parameterized language L belongs to the classW [t] if there is a parameterized
reduc on from L toWCS[Ct,d ] for some d ≥ 1.

For more literature on W hierachy and various W[1]-complete and W[2]-complete problems, refer
[21]. Next we define kernel of parameterized problem.

Defini on 2.1.8. A parameterized problem L, is said to admit an f (k) kernel if there is an FPT mealgorithm
which given an input (x,k) outputs (x′,k′) such that |x| ≤ f (k) and k′ ≤ g(k) for some computable func ons
f and g of k. The func on f (k) is called the size of the kernel.

We have following theorem.

20



Theorem 2.1.1. A parameterized problem L has an FPT algorithm with a running if and only if it admits a
kernel.

Next we define the no on of parameterized minimiza on problem as defined in [60].

Defini on 2.1.9 ([60]). A parameterized minimiza on problem Π is a computable func on

Π : Σ∗×N×Σ∗→ R∪{±∞}.

The instances of a parameterized minimiza on problem Π are pairs (I,k) ∈ Σ∗×N, and a solu on
to (I,k) is simply a string s ∈ Σ∗, such that |s| ≤ |I|+ k. The value of the solu on s is Π(I,k,s). Just as for
“classical” op miza on problems the instances of Π are given as input, and the algorithmic task is to find a
solu on with the best possible value, where best means minimum for minimiza on problems.

Defini on 2.1.10 ([60]). For a parameterized minimiza on problem Π, the op mum value of an instance
(I,k) ∈ Σ∗×N is OPTΠ(I,k) = min s∈Σ∗

|s|≤|I|+k
Π(I,k,s). For an instance (I,k) of a parameterized minimiza on

problem Π, an op mal solu on is a solu on s such that Π(I,k,s) = OPTΠ(I,k).

Defini on 2.1.11 ([60]). Let α ≥ 1 be constant. A fixed parameter tractable α-approxima on algorithm for
a parameterized minimiza on problem Π is an algorithm that takes as input an instance (I,k), runs in me
f (k)|I|O(1), and outputs a solu on s such that Π(I,k,s)≤ α ·OPT (I,k).

Note that Defini on 2.1.11 only defines constant factor FPT-approxima on algorithms. The
defini on can in a natural way, be extended to approxima on algorithms whose approxima on ra o
depends on the parameter k, on the instance I, or on both. The parameterized minimiza on version of S
C (SC)1 can be defined as follows.

SC(((U,F ),k),F ′) =

{
∞ if F ′ is not a set cover of (U,F )

min{|F ′|,k+1} otherwise

One can similarly define parameterized minimiza on version of other problems such as G CF-SC
and M CF-SC. For more background, the reader is referred to the following books [31, 24, 21].

2.2 GRAPHS
Given a graph G(V,E),V (G) and E(G) denote its vertex-set and edge-set, respec vely. For a graph

G(V,E), we define G[V ′] to be the graph induced on vertex set V ′ ⊆ V . We use standard nota on and
terminology from the book of Diestel [23] for graph-related terms which are not explicitly defined here.

Now we define some graph classes that we use later in thesis.

LowDensity Graphs and Cluster Graphs. A graphG is a called a cluster graph, if each connected component
of G is a clique.

Defini on 2.2.1 ([43]). A set of objects A in Rd (not necessarily convex or connected) has density ρ if any
object f (not necessarily in A ) intersects at most ρ objects in A with diameter greater than or equal to the
diameter of f . The minimum such quan ty is called the density of A . If ρ is a constant, then A has low
density.

1We refer readers to page number 15, paragraph tled “Capping the objec ve func on at k+ 1” in [60] for the explana on of
capping the objec ve func on to k+1 in the parameterized approxima on.
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Defini on 2.2.2 ([43]). For α > 0, an object g⊆Rd is α-fat if for any ball b with a center inside g, that does
not contain g in its interior, we have vol(b∩g) ≥ α · vol(b). A set A of objects is fat if all its members are
α-fat for some constant α .

Now we define the arboricity of undirected graph.

Defini on 2.2.3. The arboricity of an undirected graph is the minimum number of forests into which its
edges can be par oned. Thus a graph G is said to have arboricity d if the edges of G can be par oned
into at most d forests.

Let Gd denote the family of graphs of arboricity d. This family includes the family of intersec on
graphs of low density objects in low dimensional Euclidean space as explained in [42, 43]. Specifically, this
includes planar graphs, graphs excluding a fixed graph as aminor, graphs of bounded expansion, and graphs
of bounded degeneracy. In most applica ons, conflict graphs themselves belong to a family of geometric
graphs. Har-Peled and Quanrud [42, 43] showed that low-density geometric objects form a subclass of the
class of graphs that have polynomial expansion, which in turn, is contained in the class of graphs of bounded
arboricity.

2.3 APPROXIMATION ALGORITHMS
As the problem whether NP=P or not is s ll unresolved, we don’t yet have polynomial me

algorithms for NP-complete problems. One of the approaches to resolve this issue is relaxing the need
to op mally solve these problems, and instead solve them efficiently with provable guarantees on the
distance of the returned solu on to the op mal one. This leads us to the concept of approxima on. Before
introducing approxima on, let us first formally define NP op miza on problems. Most of the defini ons
in this sec on are reffered from [19] and [20].
An NP op miza on problem Π is a quadruple (I, f ,m, type) where

1. I is a set of instances and is recognizable in polynomial me.

2. Given an instance x ∈ I, f (x) is the set of feasible solu ons such that for all y ∈ f (x), size of y is
polynomially bounded in size of x. Also, for any y with size bounded by polynomial in size of x ∈ I,
whether y ∈ f (x) can be determined in polynomial me.

3. Given an instance x and a feasible solu on y∈ f (x), m(x,y) denotes themeasure of y, which is usually
a posi ve real. Also m is polynomially computable func on.

4. type ∈ {max,min}.

The goal of an NP op miza on problem with respect to an instance x ∈ I is to find an op mum solu on,
that is, a feasible solu on y such that

m(x,y) = type{m(x,y′)|y′ ∈ f (x)}.

For example, consider the following problem

G C F S C (G CF-SC)
Input: A universeU of size n, a family F of size m of subsets ofU and a conflict graphCGF .
Ques on: Find a set a set cover (if exists) F ′ ⊆ F of minimum size such that CGF [F ′] is an
independent set?

Here type = min and m is the size of set coverC ⊆F such thatCGF [C] is an independent set. For
any x ∈ IΠ, The class NPO is the set of all NP op miza on problems.
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Let Π be an NPO problem. Given an instance x and a feasible solu on y of x and opt(x) is measure
of op mal solu on of x, we define the performance ra o of y with respect to x as

R(x,y) =max

{
m(x,y)
opt(x)

,
opt(x)
m(x,y)

}
The performance ra o is always a number greater than or equal to 1 and is as close to 1 as the value of the
feasible solu on is close to the op mum value.

We now define approxima on algorithm.

Defini on 2.3.1. Let Π be an NPO problem and let A be an algorithm that, for any instance x of Π, returns
a feasible solu on A (x) in polynomial me. Given a ra onal r > 1, we say that A is an r-approxima on
algorithm for Π if the performance ra o of the feasible solu onA (x)with respect to x verifies the following
inequality:

R(x,A (x))≤ r.

Now let us define the class APX.

Defini on 2.3.2. An NPO problem Π belongs to the class APX if exists an r-approxima on algorithm A for
Π, for some real r > 1.

One can also define a family of complexity classes f (n)-APX, where f (n)-APX contains problems
with a polynomial me approxima on algorithm having O( f (n)) approxima on ra o.

Another important class in approxima on is polynomial me approxima on scheme (PTAS) which
is defined as follows.

Defini on 2.3.3. A polynomial me approxima on scheme (PTAS) for a minimiza on problem is an
algorithm A that takes an input instance, a constant ε > 0, and returns a solu on SOL such that
SOL ≤ (1 + ε)OPT, where OPT is the op mal value, and the running me of A is nO( f ( 1

ε )), for some
computable func on f depending only on ε .

Now let us look at approxima on-preserving reduc ons.

Approxima on-Preserving Reduc ons
Given two op miza on problems Π and Π′

, an approxima on-preserving reduc on is a pair of func ons
( f ,g), such that:

1. f maps an instance x of Π to an instance x′ of Π′
. Also, f is polynomial me computable.

2. g maps a solu on y′ of Π′
to a solu on y of Π. Here, g is polynomial me computable.

3. g preserves approxima on ra o.

There are various approxima on reduc ons, few of which we discuss next. Let Π and Π′
be two

op miza on problems. Also let x be an instance of Π. The func on f maps x to an instance of Π′
denoted

as f (x) in polynomial me in length length of x. Assume sol(x) and sol( f (x)) denotes the set of feasible
solu on to x and f (x), respec vely. Assume y∈ sol( f (x)). We have m and m′ as measure func on of Π and
Π′

, respec vely. and y be an instance of Π′
. For the general scheme, refer Figure 2.1.

Using these nota ons, we define L-reduc on as follows.

Defini on 2.3.4. A reduc on ( f ,g) is said to be L-reduc on from Π(IΠ, fΠ,m, type) to Π′
(IΠ′ , fΠ′ ,m

′, type)
if there exists two posi ve constants α and β such that
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Problem Π Problem Π
′

x f(x)

g(x, y) ∈ sol(x) y ∈ sol(f(x))

Figure 2.1 : Approximation reduction scheme

1. For any x ∈ IΠ, opt( f (x))≤ αopt(x) where opt() gives the op mal solu on to the instance.

2. For any x ∈ IΠ and for any y ∈ sol( f (x)), |opt(x)−m(x,g(x,y))| ≤ β |opt( f (x))−m′( f (x),y)|.

Now let us define PTAS-reduc on. Here, assume RP(,) to be the performance ra o corresponding
to to any NP op miza on problem P.

Defini on 2.3.5. A reduc on ( f ,g,δ ) is said to be PTAS-reduc on from Π(IΠ, fΠ,m, type) to
Π′

(IΠ′ , fΠ′ ,m
′, type) for three computable func ons f ,g,δ if

1. For any x ∈ IΠ and for any ε ∈ (0,1), f (x,ε) ∈ IΠ′ is computable in me polynomial with respect to
|x|.

2. For any x ∈ IΠ, for any ε ∈ (0,1) and for any y ∈ sol( f (x,ε)), g(x,y,ε) ∈ sol(x) is computable in me
polynomial in |x| and |y|.

3. For any x ∈Π, for any ε ∈ (0,1) and for any y ∈ sol( f (x,ε))

RΠ′ ( f (x,ε),y)≥ δ (ε) implies RΠ(x,g(x,y,ε))≥ ε.

We use PTAS-reduc on to define class APX-complete as follows.

Defini on 2.3.6. An NPO problem Π in APX is APX-complete if, for any other problem Π′
in APX, Π′

is
PTAS-reducible to Π.

We introduce few more terms that we use in this thesis in next sec on.

2.4 FEW OTHER TERMINOLOGIES
For a posi ve integer t, we use [t] as a shorthand for {1,2, . . . , t}. Given a func on f : D→ R and

a subset D′ ⊆ D, let f |D′ denote the restric on of the func on f to the domain D′. and we say that f |D′
is injec ve if for any x,y ∈ D′, f (x) ̸= f (y). A family of sets A is called a p-family, if the cardinality of all
the sets in A is p. Given two families of sets A and B, we define A •B = {X ∪Y | X ∈ A and Y ∈
B and X ∩Y = /0}. Throughout the thesis we use ω to denote the exponent in the running me of matrix
mul plica on, the current best known bound for ω is< 2.373 [79]. We use e to denote the base of natural
logarithm.
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